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Preface

These notes are an attempt to understand fracture mechanics the way
Feynman might have approached it: starting with puzzles, building
physical intuition, and letting the mathematics emerge from the
physics rather than the other way around.

The central mystery is this: solids are far weaker than they should
be. If you calculate the stress needed to pull apart a perfect crystal,
atom by atom, you get a number about a thousand times larger than
what actually breaks real materials. Why? The answer, discovered
by A.A. Griffith in 1921, launched the field of fracture mechanics and
changed how we think about the strength of materials.

These notes assume you're comfortable with continuum mechanics—
stress tensors, strain energy, elasticity. We won’t derive stress-strain
relations from scratch. But we will try to build a physical under-
standing of why cracks behave as they do, grounded in energy, ex-
periments, and careful reasoning.






1
Why Things Break

In this chapter we shall discuss one of the great puzzles of materials
science—a puzzle that occupied some of the best minds of the early
twentieth century, and whose resolution opened up an entirely new
way of thinking about mechanical failure. The puzzle is simple to

state: why are real materials so much weaker than they ought to be?

If you sit down with what you know about atomic bonds and do a
straightforward calculation of how much stress it should take to pull
a solid apart, you get a number—call it the “theoretical strength”—
that is typically E/10 or so, where E is Young’s modulus. But if you
go into a laboratory and actually test a piece of steel or glass or alu-
minum, you find it breaks at perhaps E/1000. That’s a factor of a
hundred. Where did all that strength go?

Now, you might say: “So what? Materials have the strength they
have. Engineers have been designing structures for centuries without
worrying about theoretical strength.” And that’s true. But the dis-
crepancy is so large, and so systematic—it shows up in almost every
material—that it demands explanation. When a simple calculation
gives an answer that’s wrong by two orders of magnitude, something
interesting is happening. Finding out what that something is turned
out to be the key to understanding fracture.

1.1 What Do We Mean by “Strength”?

Before we can ask why materials are weaker than expected, we ought
to be clear about what we mean by “strength.” The word gets used
loosely, and there are subtleties.

When an engineer says a piece of steel has a “tensile strength”
of 500 MPa, she means: if you put it in a testing machine and pull
on it, it will break when the average stress reaches 500 MPa. This is
an operational definition—it tells you what to measure, not what’s
happening at the atomic scale.

But what’s actually happening? At the microscopic level, “break-
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ing” means separating atoms that were bonded together. The steel
isn’t some continuous jelly; it’s atoms arranged in a crystal lattice,
held together by metallic bonds. When it breaks, those bonds break.
So another way to ask about strength is: how hard do you have to
pull on atoms to break the bonds between them?

These two questions—the engineer’s “when does the sample fail?”
and the physicist’s “what does it take to break bonds?”—turn out to
have very different answers. Understanding why they differ is the
starting point for fracture mechanics.

Let me put in some numbers to make the puzzle concrete. For
mild steel:

* Young’s modulus: E ~ 200 GPa
® Theoretical strength (from bond-breaking): oy, ~ E/10 ~ 20 GPa
* Actual tensile strength: 0,4, ~ 400 MPa = 0.4 GPa

The ratio is 20/0.4 = 50. Fifty times weaker than the atomic bonds
can explain. For glass, the discrepancy is even worse—closer to a
factor of 100.

1.2 Let’s Calculate the Theoretical Strength

Where does this theoretical strength come from? Let me work through
the calculation, because it’s instructive to see how simple it is—and
therefore how surprising the discrepancy becomes.

Consider two planes of atoms in a crystal, separated by the equi-

*
librium spacing a. We want to know what stress is required to pull Tt et

them apart. e e
As you separate the planes by a distance x beyond the equilibrium RV
spacing, the atoms resist. For small x, this resistance is just Hooke’s Figure 1.1: Pulling two planes of atoms
law: the stress is proportional to the strain, with constant of propor- apart.

tionality E:

c=E- g (for small x) (1.1)

But this can’t continue forever. The atomic bonds aren’t ideal
springs that get arbitrarily stiff. At some point, the bonds reach their
maximum strength and begin to fail. For large enough x, the atoms
are essentially independent—the stress drops to zero.

So the stress as a function of separation must look something like
this: it starts at zero, rises roughly linearly (Hooke’s law), reaches a
maximum (the theoretical strength y;,), then decreases back to zero
as the atoms separate completely.

A simple mathematical form that captures this is:

0 = oy, sin (%) (1.2)



where A is the “range” of the bond—roughly the distance over which
it goes from maximum strength to fully broken.

Now here’s the connection. For small x, the sine is approximately
linear:

TX
O 0y 7 (13)

Comparing with Hooke’s law:

T E
Oth - A (1.4)
Therefore:
o =22 (1.5)
T oa

What is A? It’s the range over which the bond fails. This can’t be
much larger than an atomic spacing—you can’t stretch an atomic
bond by more than an interatomic distance before it’s completely
broken. If we take A = a:

E E
oy, & g ~ = (1.6)

Being more conservative, with A ~ a/3, we get oy, ~ E/10.

The exact prefactor depends on details of the crystal structure and
interatomic potential, but the order of magnitude is robust. For any
reasonable assumptions, you get 03, somewhere between E /30 and
E/3. Let’s call it E/10 as a round number.

1.3 Putting in the Numbers

Let’s make a table. For each material, I'll list Young’s modulus, the
theoretical strength (taking oy, = E/10), and the actual measured
strength:

The pattern is universal: actual strengths are 10 to 100 times lower
than theoretical. Glass is the worst offender, with a ratio of 140. Even
the best materials—high-strength steels, carefully processed—fall
short by more than an order of magnitude.

Now, you might object: “Maybe the calculation is wrong. Maybe
atomic bonds don’t work the way you assumed.”

Fair enough. But people have calculated theoretical strengths us-
ing much more sophisticated methods—quantum mechanical calcu-
lations of specific materials, molecular dynamics simulations, careful
analysis of specific interatomic potentials. The answers vary in de-
tail, but they all give the same order of magnitude. The theoretical
strength really is about E/10.

And if that weren’t convincing enough, we can actually achieve
the theoretical strength in special circumstances, as we’ll see shortly.
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Figure 1.2: Cohesive stress versus

separation. The slope at origin is E/a.

Material E Ouetual Ratio
(GPa) (GPa)
Glass 70 0.05 140
Steel (mild) 200 0.4 50
Steel (hi-str) 200 1.5 13
Aluminum 70 0.3 23
Copper 120 0.2 60
Silicon 130 0.5 26
Diamond 1000 3 33

Table 1.1: Theoretical versus actual
tensile strengths. Ratio is 03,/ 0actyar

where 0y, ~ E/10.
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1.4 Some Things We Might Try

Confronted with this discrepancy, what might we try to explain it?

Maybe bulk materials have internal stress concentrations? Good
thought. But this just pushes the question back: why should internal
stress concentrations reduce the strength by a factor of 100? What are
these concentrations, and where do they come from?

Maybe the bonds are weaker than we calculated? Possible in
principle, but we can check. The calculation of theoretical strength
from interatomic potentials is well-established. Spectroscopic mea-
surements of bond energies agree with the potentials. The bonds
really are that strong.

Maybe bulk samples fail by a different mechanism—not by
breaking all bonds across a plane? Now we’re getting somewhere.
This is exactly right. Bulk materials don't fail by having all bonds
break simultaneously. They fail by having bonds break sequentially,
starting from some initiation point. The question becomes: what
determines where failure initiates, and why does it happen at such
low average stress?

Maybe thermal fluctuations help break bonds? At high tempera-
tures, yes. But the discrepancy exists even at cryogenic temperatures
where thermal energy is negligible compared to bond energies. Tem-
perature matters for some aspects of fracture, but it doesn’t explain
the basic discrepancy.

1.5 Griffith’s Experiments

In the early 1920s, A.A. Griffith at the Royal Aircraft Establishment in
England decided to investigate this puzzle experimentally.

His approach was simple but clever. Instead of testing bulk sam-
ples and trying to figure out why they’re weak, he’d test samples of
different sizes and see how strength varied. If the atomic-bond pic-
ture were correct, strength shouldn’t depend on size—atoms don’t
know how big the sample is.

Griffith made glass fibers by drawing molten glass into thin
threads, then measured their tensile strength. Here’s what he found:

Fiber diameter (um) Tensile strength (GPa)

~1000 (1 mm) 0.17
100 0.56

42 0.90

20 1.75

10 2.60

33 3.40

* Griffith, “The Phenomena of Rupture
and Flow in Solids,” Phil. Trans. R. Soc.
A, 1921. This paper launched the field
of fracture mechanics.

Table 1.2: Griffith’s data on glass fiber
strength versus diameter (approximate
values).



The thinnest fibers—just a few micrometers in diameter—reached
3.4 GPa. The theoretical strength for glass (taking E = 70 GPa, oy, ~
E/10) is about 7 GPa. The thin fibers were within a factor of two of
the theoretical limit!

Meanwhile, bulk glass (a centimeter thick) breaks at about 0.05
GPa—nearly a hundred times weaker than the thin fibers.

The same material. The same atomic bonds. But strength varies by
almost a factor of 100 depending on sample size. Smaller is stronger.

This is completely backwards from naive expectations. If anything,
you might expect smaller samples to be weaker—more surface area
relative to volume, and surfaces are often where problems start. But
no: smaller is much, much stronger.

1.6 The Resolution: Flaws

Griffith realized what was happening. The difference between a thin
fiber and a bulk sample isn’t the material—it’s the flaws.

Any real piece of glass has defects: scratches on the surface from
handling, microscopic cracks from thermal stresses during cooling,
bubbles trapped during manufacture, dust particles, chemical inho-
mogeneities. A bulk sample has more surface area and more volume
than a thin fiber, so it has more opportunities to contain flaws.

If flaws are what limit strength, then a sample with more flaws
should be weaker. A sample with fewer flaws—Ilike a freshly drawn
thin fiber—should be stronger. In the limit of a perfect, flaw-free
sample, you should approach the theoretical strength.

This explains the size effect. It’s not that small samples are intrinsi-
cally stronger; it’s that they’re statistically less likely to contain a bad
flaw.

But wait. A scratch on the surface might be a micrometer deep.
The sample might be a centimeter thick. Why should such a tiny
defect reduce the strength by a factor of 100?

To answer this, we need to understand stress concentration—how
a small flaw can create enormous local stresses. That’s the subject of
the next chapter. For now, let’s just accept that flaws matter, and ask:
can we verify Griffith’s picture more directly?

1.7 The Proof: Perfect Whiskers

If flaws cause weakness, then removing flaws should restore strength.

In the 1950s and 60s, materials scientists learned to grow “whiskers”—

extremely thin, nearly perfect single crystals of metals and ceramics.
Whiskers are grown slowly under controlled conditions, typically
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Figure 1.3: Fiber strength approaches
oy, as diameter decreases.
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from vapor deposition or slow precipitation from supersaturated
solutions. The growth is slow enough that the crystal structure forms
without defects. A typical whisker might be 1-10 ym in diameter and
a few millimeters long.

The results were stunning;:

Material oy, (GPa) Whisker strength (GPa) Ratio Table 1.3: Whisker strengths approach
theoretical values.

Iron ~20 13.4 1.5

Copper ~12 2.9 4

Silicon ~13 6.5 2

Graphite ~100 ~20

Alumina ~40 15 2.7

Iron whiskers achieved 13.4 GPa—within a factor of 1.5 of the the-
oretical strength. These weren’t exotic materials with special bond-
ing; they were ordinary iron atoms, just arranged without defects.

The theoretical strength isn’t fiction. It really is there, locked in
the atomic bonds. We just can’t access it in bulk materials because of
flaws.

1.8 Why Can’t We Eliminate Flaws?

A natural question: if flaws are the problem, why not eliminate
them?

For small samples under controlled conditions, you can—that’s
what whiskers demonstrate. But for bulk materials in real applica-
tions, it’s essentially impossible, for several reasons:

Surfaces are inevitably damaged. Any machining, grinding, or
handling scratches the surface. Even careful polishing leaves sub-
surface damage. You can reduce surface flaws, but you can’t elimi-
nate them.

Internal defects form during processing. When metal solidifies
from the melt, it forms grains, and the grain boundaries are regions
of disorder. Inclusions (non-metallic particles) get trapped. Vacancies
and dislocations are thermodynamically inevitable at finite tempera-
ture.

Flaws nucleate in service. Corrosion creates pits. Cyclic loading
creates fatigue cracks. Thermal cycling creates stress concentrations
at grain boundaries. Even a perfect material wouldn’t stay perfect.

Strength is limited by the worst flaw. It doesn’t matter how few
flaws you have; it only takes one bad one to cause failure. The sta-
tistical nature of flaw populations means that larger samples almost
certainly contain more severe flaws.

This last point is crucial and worth emphasizing. Imagine you've
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manufactured a material with flaws of random sizes. In a small sam-
ple, the largest flaw might be 10 pm. In a sample 100 times larger,
you have 100 times more chances to find a large flaw; statistically,
the largest one will be bigger. The larger sample will be weaker, even
though the material is identical.

This is a statistical, not a deterministic, weakness. It's why strength
measurements show scatter, and why safety factors are necessary.

1.9 A Philosophical Aside

We’ve arrived at a rather remarkable conclusion. The “strength” of a
material—something you might think of as an intrinsic property like
density or melting point—isn’t really a material property at all. It’s a
property of the material plus its flaw population.

Two pieces of steel, chemically identical, can have completely
different strengths depending on how they were processed and han-
dled. The atoms are the same; the bonds are the same; but the flaws
are different.

This is why engineers don’t trust single measurements of strength.
They test many samples and use statistical descriptions: mean
strength, standard deviation, Weibull modulus (a measure of scat-
ter). The “strength” in engineering handbooks is typically some
conservative lower bound, not the intrinsic capability of the material.

There’s something almost philosophical about this. We like to
think that materials have definite properties. But for strength, the
“property” depends on extrinsic factors—history, size, surface condition—
as much as intrinsic ones. The material has a theoretical strength, yes,
but it also has a practical strength that depends on how it was made
and used.

Griffith’s insight was to stop asking “what is the strength of
glass?” and start asking “given a specific flaw, when will the glass
fail?” This shift in perspective—from material property to defect
mechanics—is the foundation of fracture mechanics.

1.10 What We Still Don’t Fully Understand

I should be honest about the limits of our understanding.

The theoretical strength calculation assumes that all bonds across
a plane break simultaneously. In reality, fracture proceeds by sequen-
tial bond breaking, starting at the flaw tip and propagating outward.
The details of this process—how fast, in what pattern, with what
energy dissipation—are still active research topics.

For very ductile materials like copper or low-carbon steel, things
are even more complicated. Before fracture, extensive plastic de-

13
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formation occurs. Dislocations move, material flows, the crack tip
blunts. The simple picture of brittle fracture doesn’t apply, and more
sophisticated theories are needed.

Even for brittle materials like glass, the behavior at the crack
tip—where stress becomes very large and eventually “something
breaks”—involves physics at the nanometer scale that’s difficult to
observe directly. Computer simulations help, but real materials have
complexities (impurities, surface chemistry, environmental effects)
that are hard to capture.

We have a very successful engineering framework for fracture
mechanics, which we’ll develop in the coming chapters. But the
atomic-scale details of why and how bonds break at a crack tip re-
main subjects of ongoing research.

1.11  Looking Ahead

The rest of these notes will develop the machinery for answering
Griffith’s question: given a flaw, when will it cause failure?
This requires two ingredients:

1. Understanding stress concentration: How does a flaw amplify the
local stress? What determines the stress at a crack tip?

2. A fracture criterion: Given high stress at a crack tip, what deter-
mines whether the crack grows?

The first question leads us to stress intensity factors—a way to
characterize how “severe” a crack is. The second question leads to
energy-based fracture criteria—QGriffith’s great contribution.

Both answers turn out to involve the same combination of applied
stress o and crack size a: the quantity o/7ta. This combination ap-
pears everywhere in fracture mechanics. But understanding why
requires working through the details, which is what the next few
chapters will do.

For now, the main message is this: real materials are weak because
they contain flaws, and flaws act as stress amplifiers. The theoretical
strength is real—we can achieve it in perfect whiskers—but practical
strength is determined by defects. Fracture mechanics is the science
of predicting when flaws will grow into cracks, and when cracks will
cause failure.

Griffith’s 1921 paper was published in the Philosophical Transactions of the Royal Society and was largely ignored for



WHY THINGS BREAK 15

nearly thirty years. It was elegant, it was correct, but it applied only to brittle materials like glass. Engineers cared
about steel, which is ductile. In steel, Griffith’s original theory gave predictions that were badly wrong. It wasn’t until
the late 1940s and 1950s, when Irwin and Orowan modified the theory to account for plastic dissipation, that fracture
mechanics became practical for metals. But the essential insight—that fracture is governed by the energetics of crack
growth, not by average stress—remains Griffith’s lasting contribution to engineering science.







2
Stress Concentration

We ended the last chapter with a puzzle: tiny flaws control the
strength of materials. A scratch a micrometer deep can reduce the
strength of glass by a factor of a hundred. How can such a small
defect have such a large effect?

In this chapter we shall answer that question. The answer—stress
concentration—is one of the most important ideas in solid mechanics,
and understanding it properly requires us to think carefully about
what “stress” really means near a sharp corner or crack tip. We’ll
find that the mathematics leads us to infinity, which sounds prob-
lematic. But infinities in physics often point us toward something
important, and this one is no exception.

2.1 A First Attempt: Reduced Cross-Section

Let’s try the most obvious explanation first, and see why it fails.

Suppose you have a rod with a small notch cut into it. You might
reason: “The notch removes some material, so the load-bearing cross-
section is smaller. The stress is force divided by area, so with less
area, the stress must be higher.”

This is true, but it’s completely inadequate to explain what we ob-
serve. If a notch removes 1% of the cross-sectional area, the average
stress in the remaining material increases by about 1%. That’s not
going to explain factors of 100.

Let’s be quantitative. Consider a plate of thickness ¢, width W =
10 cm, with a surface crack of depth 4 = 1 mm. The crack removes
area a X t from the load-bearing cross-section.

Fractional area lost: a/W =1 mm/100 mm = 1%

So the average stress in the remaining material is higher by about
1%. But experiments show that such a crack can reduce the failure
stress by a factor of 10 or more. The “reduced area” explanation is off
by roughly a factor of 1000.

There must be something else going on.
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2.2 Why Stress Crowds Around Obstacles

Here’s a better way to think about it. Imagine you're looking at stress
from above, watching how it “flows” through a material. This isn’t
quite right physically—stress isn’t a fluid—but the mental picture is
useful.

In a uniform plate under tension, the stress flows straight through,
like water in a wide, smooth channel. Now put an obstacle in the
way—a hole, a notch, a crack. The stress can’t flow through the ob-
stacle; there’s nothing there to carry it. So it has to go around.

When the stress goes around, it has to squeeze into a smaller re-
gion. Think of a river with an island: the water speeds up as it passes
the island because the same volume has to flow through a narrower
channel. Similarly, the same “amount” of stress has to pass through a
narrower region of material, so the stress magnitude increases.

But there’s more to it than just squeezing. The geometry matters
enormously. A smooth, rounded obstacle causes moderate stress
concentration. A sharp corner causes severe concentration. And a
mathematically sharp crack—infinitely sharp—causes infinite stress
concentration.

This is not just hand-waving. We can calculate it.

2.3 The Circular Hole: A Factor of Three

The simplest case is a circular hole in an infinite plate under uniform
tension. This problem was solved in the 19th century, and the answer
is elegant: the maximum stress occurs at the edge of the hole, on

the “equator” (perpendicular to the loading direction), and it equals
exactly 3 times the applied stress far from the hole.

Omax = 30 (circular hole) (2.1)

Let’s appreciate what this means. A simple round hole—nothing
sharp about it—triples the local stress. If you design a structure to
carry 100 MPa average stress, the material near any holes experiences
300 MPa. You’'d better account for that.

Why specifically 3? It comes from solving the elasticity equa-
tions in polar coordinates around the hole. The mathematics isn’t
trivial, but the factor of 3 emerges cleanly from the boundary condi-
tions. You might think it depends on the hole size, but remarkably, it
doesn’t. A pinhole and a porthole both give a factor of 3, as long as
the hole is small compared to the plate dimensions."

The factor of 3 is bad enough, but real flaws aren’t circular. They're
elongated, crack-like. What happens then?

iy

et

Figure 2.1: Stress “flow lines” around a
circular hole.

* The stress concentration factor does
depend on finite-size effects when the
hole diameter is comparable to the
plate width, but for small holes in large
plates, it’s always 3.



2.4 Inglis and the Elliptical Hole

In 1913, C.E. Inglis, a British naval architect, solved the problem of
an elliptical hole in an infinite plate.> He was motivated by practical
concerns—understanding stress around rivet holes and plate edges in
ships—but his solution turned out to have far-reaching implications.
An ellipse has two characteristic dimensions: the semi-major axis a
(the long direction) and the semi-minor axis b (the short direction). A
circle is just an ellipse with a = b. By making b smaller while keeping
a fixed, we can make the ellipse more and more crack-like.

O o = —

a/b=1 a/b=2 a/b=7 a/b=25

Inglis found that the maximum stress at the tips of the ellipse is:

2a
Omax = Oco (1 + ) (2.2)

b

Let’s make a table to see what this predicts. The aspect ratio a/b
tells us how elongated the ellipse is (a is the half-length along the
crack direction, b is the half-width perpendicular to it). The stress
concentration factor K; = 0pax/ 0o tells us how much the local stress
exceeds the applied stress:

Now we’re getting somewhere! As the ellipse becomes more crack-
like, the stress concentration factor shoots up. An ellipse with a/b =
100 gives a stress concentration of 201—the local stress is 200 times
the average. This is the kind of amplification that can explain why
small cracks are so dangerous.

But notice something troubling. As b — 0 (infinitely sharp ellipse),
the stress concentration goes to infinity. What does that mean?

2.5 Rewriting in Terms of Tip Radius

Before confronting the infinity, let’s rewrite Inglis’s formula in a more
illuminating form.

The tip of an ellipse has a radius of curvature p. For an ellipse
with semi-axes a and b:

b2
p="7 (2.3)

This p is physically meaningful: it's how “sharp” the tip is. A large

p means a blunt, rounded tip. A small p means a sharp tip.
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* Inglis, “Stresses in a Plate Due to the
Presence of Cracks and Sharp Corners,”
Trans. Inst. Naval Arch., 1913.

Figure 2.2: Ellipses with the same
length a but decreasing width b.

a/b Ky Shape

3 circle
5  mild ellipse
11 elongated

10 21 crack-like
50 101  very sharp
100 201 knife-edge

Table 2.1: Stress concentration factor
K¢ = 1+ 2a/b for an elliptical hole.
Higher a/b means a more crack-like
shape; higher K; means the local stress
is that many times greater than the
far-field stress.

—

>
a

Figure 2.3: The tip radius p character-
izes sharpness.
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From p = b?/a, we get b = ,/ap, and therefore:

a a
b E (2.4)

Substituting into Inglis’s formula:

Omax = Tco (1 + 2\/§> (2.5)

1/ ”

For a sharp crack where a > p, the is negligible:

Omax =~ 20’00\/? (2.6)

This is an important formula. It tells us that stress concentration
depends on two things:

* How long the crack is (a)
¢ How sharp the tip is (p)

And the dependence is through the square root of their ratio.

2.6 Numbers for Real Cracks

Let’s put in realistic numbers.

A crack in glass might be 1 mm long (so a = 0.5 mm, since 4 is
the half-length). How sharp is its tip? In a brittle material like glass,
cracks can be atomically sharp. The tip radius might be on the order
of an atomic spacing, roughly 0.3 nm. Let’'s use p = 1 nm to be
slightly conservative.

1x109m

3
\f 05x10°7m _ /55705 ~ 700 (2.7)

The stress concentration factor is about 2 x 700 = 1400.
If the glass is under an average stress of 50 MPa (a typical break-
ing stress for window glass), the stress at the crack tip is:

Omax ~ 1400 x 50 MPa = 70,000 MPa = 70 GPa (2.8)

Now compare this to the theoretical strength. For glass, E ~ 70
GPa, so 0y, ~ E/10 = 7 GPa.

The stress at the crack tip exceeds the theoretical strength by a
factor of 10!

This is remarkable. Even at a modest applied stress—well below
what a flaw-free specimen could sustain—the local stress at a crack
tip exceeds the strength of atomic bonds. Something has to give.
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2.7 The Mathematical Crack: Infinite Stress

Let’s push the mathematics further. What happens as we make the
crack infinitely sharp—p — 0?
According to our formula:

Omax = 2(700\/? —+o00 asp—0 (2.9)

The stress becomes infinite.

Now, you might object: “That’s ridiculous. Nothing physical is
infinite. You've taken an idealization too far.”

And you’d be partly right. Real cracks have some finite tip radius,
even if it’s only an atomic spacing. But the mathematical idealization
of a perfectly sharp crack—a crack with p = 0—turns out to be
enormously useful.

Here’s why. When we model a “mathematical crack” (a line where
the material is discontinuous), we can solve the elasticity equations
exactly. The solution shows that stress varies near the tip as:

o~ — (2.10)

where r is the distance from the tip.
Atr = 0, this is indeed infinite. But for any r > 0, it’s finite.
And here’s the key: the form of the field—the 1//r dependence—is
universal. It’s the same for any crack in any linear elastic material
under any loading. What changes is only the amplitude of the field.
This amplitude has a name: the stress intensity factor, denoted K.
We’ll develop it properly in Chapter 5, but for now the essential point
is that we can characterize a crack’s “severity” by a single number, K,
that tells us how strong the singular field is.

2.8 A Philosophical Aside: Infinity in Physics

The appearance of infinity often troubles students. “How can we use
a theory that predicts infinite results?”

The answer is that physics is full of useful infinities. Consider
electrostatics: the electric field of a point charge goes to infinity at the
location of the charge. We don’t reject Coulomb’s law because of this.
We recognize that real charges have finite size, and the idealization of
a point charge is useful for distances large compared to that size.

Similarly, real cracks have finite tip radii, and the “infinite stress”
of the mathematical crack is useful for distances large compared
to that radius. Inside some small “process zone” near the tip, the
idealized solution breaks down. But outside that zone, the 1/+/7
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field accurately describes the stress, and the stress intensity factor K
meaningfully characterizes the crack.

The crucial observation is that although stress is infinite at the
tip, the stress intensity factor K is finite. And fracture criteria, as
we'll see, are formulated in terms of K, not in terms of the infinite tip
stress. The infinity is, in a sense, tamed by extracting from it a finite,
physically meaningful quantity.

This is a general pattern in physics: singular solutions often con-
tain finite, meaningful information, which is extracted by looking
at the “coefficient of the singularity” rather than the singular value
itself.

2.9 Seeing Stress Concentration

These aren’t just theoretical predictions. You can actually see stress
concentration.

One beautiful technique is photoelasticity. Certain transparent
materials—some plastics and glasses—become birefringent (optically
anisotropic) when stressed. If you view them between crossed po-
larizers, you see colored fringes that map out lines of constant stress
difference.

Near a crack or notch, the fringes crowd together dramatically.
Far from the stress concentration, they’re widely spaced. Close to it,
they're packed tight. The pattern directly visualizes the 1/+/r field.

Another technique is digital image correlation: paint a speckle
pattern on a surface, photograph it before and after loading, and
use computer algorithms to track how the speckles move. From the
displacements, you can calculate strains and hence stresses. The
results confirm the theoretical predictions beautifully.

These experimental validations give us confidence that the theory,
despite its mathematical idealizations, captures something real about
how materials behave.

2.10 Other Geometries: The Role of Sharpness

The ellipse/crack is the most important case, but stress concentration
occurs in many geometries. Some examples:

The pattern is clear: rounder is better, sharper is worse. Any fea-
ture with a 9o° or sharper internal corner creates a stress singularity—
not as strong as a crack (the exponent in »~* is less than 1/2), but still
potentially dangerous.

This has practical implications. When you drill a hole in a struc-
ture, the stress concentration is 3 regardless of the hole size. You
can’t avoid it; you can only design for it. But if you have to machine a

crack

Figure 2.4: Schematic of photoelastic
fringes near a crack tip. Each fringe is a
contour of constant stress. The fringes
crowd together near the tip because
stress rises steeply there—a direct
visualization of the 1/+/r singularity.
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Table 2.2: Stress concentration factors

Geometry Max. stress concentration for various geometries.
Circular hole 3

Semicircular notch 3

U-shaped notch (semicircular bottom) ~3

V-shaped notch, go° angle ~ 3.5

V-shaped notch, 60° angle ~4

Sharp corner, 9o° angle oo (singular)

Crack (0° angle) oo (singular)

corner, round it. A fillet (a rounded corner) can reduce stress concen-
tration from infinity to a manageable factor of 2 or 3.

Engineers have developed extensive handbooks of stress concen-
tration factors for common geometries. Before finite element analysis
was routine, these handbooks were essential for structural design.
They're still useful for quick estimates and sanity checks.

2.11  The Paradox: Why Doesn’t Everything Break?

We’ve established that crack tips experience enormous stresses—
often exceeding the theoretical strength of the material. This seems to
lead to a paradox.

If the stress at a crack tip always exceeds the bond strength (which
our calculations suggest), why doesn’t the crack always grow? Ev-
ery piece of glass has microscopic cracks. Every piece of metal has
internal defects. According to our stress analysis, these should all
propagate, tearing the material apart.

Yet materials survive. Your coffee mug doesn’t spontaneously
shatter. The window holds against the wind.

Something must be limiting crack growth, and it can’t be stress—
we’ve shown that local stresses are always huge at sharp cracks.
Griffith’s great insight, which we’ll develop in the next chapter, was
that energy provides the right perspective.

A crack might have enormous stress at its tip, but that doesn’t
mean it will grow. Growth requires the crack tip to actually move,
and that requires energy. Specifically, creating new crack surface
requires energy (the surface energy of the material). This energy has
to come from somewhere—it comes from the elastic strain energy
stored in the loaded material.

The crack grows only if the energy released by advancing exceeds
the energy required to create new surface. This energy balance, not
the local stress, determines whether fracture occurs.

But we're getting ahead of ourselves. The next chapter will de-
velop Griffith’s energy criterion in detail. For now, the key messages
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from this chapter are:
1. Flaws cause stress concentration—enormously so for sharp cracks

2. The local stress at a crack tip can far exceed the theoretical strength
of the material

3. The stress field near a crack tip has a universal 1/+/r form, charac-
terized by the stress intensity factor K

4. Despite infinite stresses in the idealized theory, K is finite and
physically meaningful

5. The stress picture alone creates a paradox, suggesting we need a
different approach (energy)

Inglis’s 1913 paper appeared in a journal for naval architects, not physicists. He was solving a practical problem

in shipbuilding, not trying to found a new field. Yet his solution to the elliptical hole problem turned out to be the
mathematical foundation for understanding cracks. Sometimes the most far-reaching theoretical insights come from
the most practical motivations. Griffith, who built on Inglis’s work, was similarly motivated by practical concerns—
understanding why aircraft fabric cracked. The theory of fracture mechanics emerged not from abstract speculation
but from engineers trying to build things that wouldn’t break.




3
Griffith’s Criterion

We arrive now at one of the most beautiful and consequential ideas

in materials science. Griffith’s energy criterion for fracture is one of

those insights that, once you understand it, seems almost obvious—
yet it took decades for anyone to think of it, and decades more for it
to be widely accepted.

The problem we face is this: we’ve established that stress at a crack
tip can be enormous, theoretically infinite for a mathematically sharp
crack. If the local stress exceeds the theoretical strength of the mate-
rial (which our calculations say it should), why doesn’t every crack
grow immediately? How can a window with microscopic surface
scratches survive for years? How can a steel beam with internal flaws
carry load?

The stress-based picture has led us to a paradox. Griffith’s resolu-
tion was to abandon stress and think about energy instead.

3.1 Why Stress Fails Us

Let me be more explicit about why focusing on stress leads to trou-
ble.

In Chapter 2, we calculated that the stress at a crack tip in glass,
under typical breaking conditions (50 MPa average stress, 1 mm
crack), exceeds 70 GPa—ten times the theoretical strength. This cal-
culation assumed an atomically sharp crack, which is a reasonable
approximation for brittle materials.

Now, you might say: “Fine, so the bonds at the crack tip break.
The crack advances by one atomic spacing. But then there’s a new
tip, also atomically sharp, also with infinite stress. Why doesn’t it
keep going?”

And that’s exactly the puzzle. If infinite (or very large) stress is the
criterion for crack growth, then once growth starts, it should never
stop. Every loaded piece of glass should shatter instantly. Every
metal with an internal flaw should fail catastrophically.
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But they don’t. Materials are much more tolerant of cracks than a
stress analysis would suggest.

Here’s another way to see the problem. Consider two cracks in
glass:

¢ Crack A: length 0.1 mm, under stress 200 MPa

® Crack B: length 1 mm, under stress 63 MPa

Both have the same value of o1/a (roughly 63 MPa-mm!/2). The
stress concentration factor, and hence the tip stress, is essentially
the same for both. If stress controls fracture, they should behave the
same.

And in fact they do behave the same—both are at about the critical
condition for glass. But the stress-based explanation doesn’t tell us
why. We need a different framework.

3.2 Griffith’s Insight: Energy

Griffith’s key realization was that growing a crack requires creating
new surface. The material has to actually separate. This isn’t just

a matter of atoms being stressed; they have to come apart, perma-
nently.

Creating surface costs energy. Every material has a surface energy
y—the energy required to create a unit area of new surface. For
glass, 7 ~ 0.5]/m?. This might seem small, but it’s not negligible
when you're creating square meters of new surface (as happens in a
propagating crack).

Where does this energy come from? It has to come from somewhere—
energy is conserved. The only available source is the elastic strain
energy stored in the loaded material. When a solid is under stress,
it stores energy, just like a compressed spring. If the crack grows,
the material near the crack relaxes somewhat, releasing some of this
stored energy.

So there’s a competition:

¢ Growing the crack releases elastic energy (favorable)

* Growing the crack requires creating surface, which costs energy
(unfavorable)

The crack will grow only if the energy released exceeds the energy
required. This is Griffith’s criterion.

3.3 Setting Up the Calculation

Let’s make this quantitative. Consider an infinite plate with a central
crack of length 2a (so a is the half-length), under uniform tension ¢
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far from the crack. We want to calculate how the total energy of the v
system depends on crack length. ¢ ¢ ¢ ¢ ¢

The total energy has three parts:
1. Elastic strain energy. In an uncracked plate under stress o, the
strain energy per unit volume is 02 /2E. With a crack present, some

of this energy is released because the material near the crack can o
relax—it’s no longer carrying load.

How much is released? This requires solving the elasticity prob-
lem for a cracked plate. The full solution is beyond our scope, but T T T T T
the result is famous: the presence of a crack of half-length a releases Figure 3.1: A cracked plate under

. . . tension.
elastic energy (per unit thickness) equal to:

oa?

A uelastic = E

(plane stress) (3.1)

For plane strain (thick plate), replace E with E/(1 — v2), where v is
Poisson’s ratio. The difference is typically 10-20%.

The key feature is that released energy is proportional to a>—it
grows quadratically with crack length.

2. Surface energy. The crack has two faces, each of length 2a (per
unit thickness). Creating these surfaces costs:

usurface =2x2ax Y= 4“')’ (32)

This grows linearly with crack length.

3. Work done by external loads. This depends on the loading
conditions. For “fixed grip” loading (constant displacement at the
boundaries), no external work is done as the crack grows. For “fixed
load” loading (constant stress), the boundaries move as the plate
becomes more compliant, and the external forces do work. The two
cases give the same criterion for crack growth—the energy balance
works out identically—so we’ll assume fixed grips for simplicity.

3.4 The Total Energy Curve

The total energy (relative to an arbitrary constant) is:
nota?

U(a) = — F

+4avy (3-3)

The first term is negative (energy released by the crack); the sec-
ond is positive (energy required for surface). Let’s understand this
graphically.

For small g, the linear term dominates. Increasing a increases total
energy—the energy cost of creating surface outweighs the energy
released. The crack is stable.

27
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For large a, the quadratic term dominates. Increasing a decreases
total energy—the energy released exceeds the surface energy cost.
The crack is unstable; it will grow spontaneously.

The transition occurs at a critical crack length a. where the curve
has a maximum.

3.5 The Griffith Criterion

The condition for the crack to be at the critical point is dU/da = 0:

au 2702a
adv _ 4y = .
e - T4r=0 (3-4)
Solving for the critical crack length:
2E«y
Ie =702 (3.5)
Or equivalently, solving for the critical stress given a crack of
length a:
2Evy
0=\~ (3.6)

This is the Griffith equation. It’s worth memorizing.
Let me rewrite it to emphasize what depends on what:

o.v/ma = /2Ey (3.7)

The left side involves loading (0) and geometry (a). The right side
involves only material properties (E, ). The crack becomes critical
when the left side equals the right side.

The combination ¢+/7ta will appear again and again in fracture
mechanics. It’s closely related to the stress intensity factor K, which
we’ll develop in Chapter 5.

Figure 3.2: Energy versus crack length.
Surface energy is linear; released elastic
energy is quadratic.
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3.6 Testing the Prediction

Griffith tested his criterion experimentally using glass, the archetypal
brittle material. He prepared glass tubes with controlled cracks and
measured the stress at which they failed.

For glass, the relevant material properties are:

* Young’s modulus: E = 70 GPa
* Surface energy: v ~ 0.5 J/m?

The predicted critical stress is:

2x 70 %x10% x 0.5 7 x 1010
Oc = a = Ta (3'8)

Let’s compute this for several crack lengths:

Table 3.1: Griffith’s predictions versus
experimental measurements for glass.

a (mm) a (m) o; predicted (MPa) o, measured (MPa)

0.1 1074 14.9 ~ 14
0.2 2 x107* 10.5 ~ 10
05 5x1074 6.7 ~ 6.5
1.0 1073 4.7 ~ 45
20 2x1073 3.3 ~32
50 5x1073 2.1 ~ 2.0

The agreement is remarkable—within 10% across a factor of 50
in crack length. This wasn't a fit; these are genuine predictions from
independently measured values of E and 1.

This was strong evidence that the energy approach was fundamen-
tally correct. The stress at the crack tip might be infinite (or at least
very large), but that’s not what matters. What matters is the energy
balance.

3.7 Understanding the Result

Let me try to give some physical intuition for the Griffith criterion.

Why o2 in the numerator? Elastic energy is proportional to stress
squared (think of the area under a stress-strain curve, which is trian-
gular: %0’8 = %02 /E). So the energy available for crack growth scales
as o2,

Why a in the denominator of 0.? Longer cracks release more
energy when they grow (the quadratic dependence on a). So less
applied stress is needed to reach the critical condition.

Why the square root? It comes from the competition between the
quadratic released energy (x ¢?a?) and the linear surface energy cost

(< a). Balancing them gives 02a « constant, hence o « 1/+/a.
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Why Ev appears together? Stiffer materials (E high) store more
energy at a given strain, providing more energy for crack growth.
But the energy goes into creating surface, so higher surface energy (y
high) makes growth harder. The product Ey measures the “resistance
to fracture” of the material.

3.8 What About Metals?

Here’s where Griffith’s original theory runs into trouble. Let’s try
applying it to steel.
For steel:

* Young’s modulus: E = 200 GPa
* Surface energy: 7y ~ 2 J/m?

For a 1 mm crack (a4 = 0.5 mm):

2x200 x 10 x 2 8 x 1011 ey
%= \/ Tx05x10° \/1.57 <103 Vo1x10H A~ 23 MPa
(3.9)

This predicts that steel with a 1 mm crack should fail at only
about 23 MPa—far below the yield stress of most steels, which can
be 300-1500 MPa. But experiments show that steel can tolerate 1
mm cracks at stresses many times higher than this. The prediction is
badly wrong.

What went wrong?

The problem is that steel isn’t brittle. When you load steel, it
doesn’t just deform elastically and then suddenly fracture. Before
fracture, extensive plastic deformation occurs near the crack tip. The
material yields, dislocations move, the crack tip blunts.

All this plastic deformation requires energy—much more energy
than creating the bare surface. For steel, the energy consumed in
fracturing a unit area might be 10,000 to 100,000 ] /m?, compared to
the surface energy of about 2 J/m?2. The “true” cost of growing the
crack is dominated by plastic work, not surface energy.

Griffith’s criterion remains conceptually correct: the crack grows
when the energy released exceeds the energy consumed. But the
consumed energy isn’t just 27; it’s 2y plus a much larger plastic
dissipation term.

3.9 The Irwin-Orowan Modification

In the late 1940s and 1950s, George Irwin and Egon Orowan inde-
pendently recognized how to fix this. The solution is simple but pro-
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found: replace the surface energy 2y with a general “fracture energy”
G, that includes all energy dissipation at the crack tip.
The modified criterion becomes:

mta

(3.10)

where G, is the critical energy release rate, also called the fracture
toughness. For brittle materials like glass, G. ~ 2. For ductile
materials like steel, G, can be 1000 to 100,000 times larger.

Material 29 (/m*)  Ge(/m?) tare enerty. Doctle masenal have
Glass ~1 1-10 Ge > 27

Ceramics ~1 10-100

Epoxy ~ 0.1 100-500

PMMA ~ 0.1 500—1000

Aluminum ~2 10,000—30,000

Steel (tough) ~ 4 50,000—200,000

The beauty of this approach is that we don’t need to understand
the detailed mechanisms at the crack tip. Whether the energy goes
into surface creation, plastic work, microcracking, or any other pro-
cess, it’s all captured in a single number G, that can be measured
experimentally.

3.10 A Philosophical Aside: Why Energy?

Why should energy be the right quantity to consider, rather than
stress?

There’s a deep reason, connected to thermodynamics. Equilibrium
in thermodynamics is determined by energy minimization (or, more
precisely, free energy minimization). A system will spontaneously
change from one state to another only if the change reduces the total
energy.

A crack at length a is in one state; a crack at length a + da is in
another. The crack will grow if—and only if—the second state has
lower energy. This is a general principle, independent of the specific
mechanism of growth.

Stress, by contrast, is a local quantity. It tells you about forces at a
point. But a crack involves changes over a finite region, and whether
the change happens depends on global energetics, not local forces.

There’s also a practical reason. Stress is singular at a crack tip—
mathematically infinite. Energy release rate is finite. You can measure
G, in a well-defined way; you can’t measure “the stress at the crack
tip” because it’s not a meaningful quantity for a sharp crack.
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This shift from local stress to global energy was Griffith’s con-
ceptual breakthrough. It transformed fracture from an intractable
problem (how do you deal with infinite stress?) to a tractable one
(measure G, and compare with G).

3.11 Stable and Unstable Cracks

The energy curve we drew earlier has a maximum at a = a.. Let’s
think about what this means for crack stability.

For a < ac, the energy increases with crack length. If the crack
were to grow slightly, energy would increase—this would require
external work. Without that work being supplied, the crack won't
grow. Small cracks are stable.

For a > a., the energy decreases with crack length. If the crack
grows slightly, energy decreases. The excess energy has to go somewhere—
into kinetic energy of the separating surfaces, into heat, into acoustic
emission. Once started, the crack runs away. Large cracks are unsta-
ble.

At a = a. exactly, the crack is in unstable equilibrium, like a ball
balanced on top of a hill. The slightest perturbation sends it one way
or the other.

This explains a puzzling feature of fracture: the abruptness of fail-
ure. A structure can operate safely for years with a slowly growing
crack. The crack might extend by corrosion, fatigue, or other slow
mechanisms. As long as a < 4., nothing catastrophic happens.

But one day, the crack reaches a.. Suddenly, it becomes unstable.
Growth that was barely perceptible becomes runaway. The structure
fails in milliseconds.

This is why fracture failures are so dangerous—they give little
warning. The transition from stable to unstable is sharp.

3.12  Load Control vs. Displacement Control

I glossed over something earlier. Whether we hold load constant or
displacement constant during crack growth affects the details, though
not the final criterion.

Under load control (constant ), as the crack grows, the material
becomes more compliant and the boundaries move. The external
forces do positive work: W = ¢ x A > 0. But this work exactly com-
pensates for the additional strain energy stored in the now-longer
sample. The energy available for crack growth is the same as under
displacement control.

Under displacement control (constant J), the boundaries can’t
move, so the external forces do no work. The energy for crack growth



GRIFFITH'S CRITERION

comes entirely from releasing stored strain energy.

In both cases:

WUiota  702a

G= A~ (3.11)

where A = 2a X thickness is the crack area (factor of 2 for both

faces) and the derivative is taken appropriately for each loading
condition.

The criterion G = G is the same either way. The energy release
rate G depends on the current state (crack length, stress), not on how
you got there.

3.13 What We Don’t Fully Understand

Griffith’s criterion, with the Irwin-Orowan modification, is remark-
ably successful. But there are things it doesn’t explain.

What happens at the crack tip? The criterion treats the crack tip
as a black box that consumes energy G, per unit area. But what’s ac-
tually happening? Bonds breaking, dislocations moving, microcracks
forming—the details depend on the material and aren’t captured by a
single number.

Why does G, vary so much? Glass has G, ~ 10]/ m?; steel has
G¢ ~ 100,000 J/m?2. That's four orders of magnitude. What makes
steel so much tougher? The answer involves plastic deformation, but
the details are complex.

Rate and temperature effects. In some materials, G, depends
on how fast you load and what temperature you're at. This isn't
captured by the simple energy balance.

Initiation vs. propagation. It often takes more energy to start a
crack than to keep it going. The initial G, for nucleation can exceed
the steady-state G for propagation.

These are active research areas. The Griffith-Irwin framework is
the foundation, but the full story is richer.

3.14 Practical Implications

What does all this mean for engineering practice?

1. Cracks matter, but only above a critical size. Small cracks
are stable. Large cracks are dangerous. The critical size depends on
loading and material toughness.

2. Tougher materials tolerate larger cracks. High G; means you
can have bigger flaws before failure. This is why we use tough mate-
rials for critical applications.

3. 0\/a is the key quantity. Doubling the stress is equivalent to
quadrupling the crack length. Engineers track both.

33
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4. Failure can be sudden. The transition from stable to unstable
is abrupt. Inspection programs aim to find cracks before they reach
critical size.

5. The energy approach works even when stress doesn’t. For
sharp cracks, stress is singular. Energy release rate is well-defined
and measurable.

Griffith’s 1921 paper was published in the Philosophical Transactions of the Royal Society—one of the oldest and most
prestigious scientific journals in the world. Yet it was largely ignored for three decades. Engineers continued using
empirical stress-based methods. It took the catastrophic failures of World War I (Liberty Ships breaking in half, air-
craft crashes from fatigue) to force a reconsideration of fracture. Irwin, working at the Naval Research Laboratory in
the 1950s, developed the stress intensity factor K and connected it to Griffith’s energy approach. This finally made
fracture mechanics practical for engineering. Today, the aircraft you fly in, the bridges you drive over, and the pres-
sure vessels that store energy all rely on fracture mechanics for their safe design.




4
Energy Release Rate

In the last chapter, we derived Griffith’s criterion for a specific geom-
etry: a central crack in an infinite plate under uniform tension. The
result was elegant:

2Evy

Oc = T (4.1)

But there’s a problem. Engineering structures aren’t infinite plates
with central cracks. They have edges, holes, stiffeners, varying thick-
ness, multiple cracks, complex loading. The derivation we did as-
sumed a specific stress field (uniform tension in an infinite plate with
a crack), and that stress field came from solving a particular elasticity
problem.

Do we need to redo the entire calculation for every new geometry?
That would be impractical. What we need is a general framework—a
way to characterize “how hard the crack is being driven” that works
for any configuration.

That framework is the energy release rate, denoted G. It’s one of
the most useful concepts in fracture mechanics.

4.1 The Problem with Geometry-Specific Solutions

Let me make the problem concrete. Suppose you have three different
cracked structures:

1. A large plate with a central crack (the Griffith geometry)
2. An edge-cracked plate

3. A beam with a crack growing from a surface

Each has different stress fields. The elastic energy depends on
geometry in complicated ways. If we had to re-derive the energy
balance for each case from scratch, fracture mechanics would be a
catalog of special solutions, not a coherent theory.
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What saves us is a key observation: for any geometry, we can
define the energy release rate G as the energy released per unit area
of new crack surface. This G can be calculated (or measured) for any
geometry, and the fracture criterion is always the same:

G > G, (4.2)

The critical value G, depends only on the material, not on the
geometry. The driving force G depends on the geometry and loading.
Separating these is what makes fracture mechanics practical.

4.2 Defining G Precisely

The energy release rate is defined as:

_ dUiotal

G=—"a

(4-3)

where Uy, is the total potential energy of the system (elastic
strain energy minus work done by external forces), and dA is an
increment of crack surface area.

The minus sign is there because energy is released when the crack
grows—Ujia1 decreases, so dU;oy < 0, and we want G to be positive.

For a through-crack in a plate of thickness B, growing by length da
creates area dA = B - da on each face, or 2B - da total. Conventions
vary about whether to count one face or two; I'll use dA = B - da (one
face) to match common notation, but be careful when comparing
formulas from different sources.

With this convention:

_ l d u’total

G:Bda

(4-4)
G has units of energy per area: J]/m?, which is the same as N/m
(force per length). You can think of it as the “force” driving the crack

forward, per unit length of crack front.

4.3 Why G Works

Here’s the key insight. Suppose you have two completely different
structures—different shapes, different loadings—but they happen
to have the same value of G at their crack tips. Then they have the
same “driving force” for fracture. If one is at the critical condition
(G = Gp), so is the other.

This is the principle of similitude. It means we can:

¢ Test small laboratory specimens and apply the results to large
structures



¢ Use handbook solutions for G in standard geometries
¢ Compare different designs on a common basis

The fracture criterion G = G is universal. What varies from
geometry to geometry is how G depends on load and crack length.
But once you know G for your specific configuration, the criterion is
the same.

4.4 Calculating G: The Compliance Method

How do we actually calculate G for a given geometry? There are
several approaches. The most intuitive is the compliance method.
The compliance C of a cracked structure is defined as:

c=3 (45)

where ¢ is the displacement at the point where load P is applied.
A cracked structure is more compliant (flexible) than an uncracked
one. As the crack grows, compliance increases.
Now, the stored elastic energy in a linear elastic body loaded by
force P is:
U=_1ps=tep (4.6)
2 2

Let’s work out the energy balance when the crack grows by da,
under fixed load P.

Before growth: stored energy is U = %CPz.

After growth: compliance is C + dC, so stored energy is U + dU =
3(C+dC)P2.

Change in stored energy: dU = 1P2dC.

But we also need the work done by the external load. The dis-
placement increases by:

dé=P-dC (4-7)

Work done by load: W = P -dé = P?dC.
The energy released for crack growth is:

Energy for crack = W — dU = P*dC — %PZdC = %Pde (4.8)

This equals G - B - da (energy per area times crack area created).

Therefore:
_Pac
~ 2B da
This is the compliance formula for G. It's powerful because com-

(4-9)

pliance can be measured experimentally: load the specimen, measure
displacement, calculate C = J/P. Do this for several crack lengths
and you have C(a). The slope dC/da gives you G.

ENERGY RELEASE RATE 37

a

Figure 4.1: Compliance increases with
crack length.
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4.5 Example: The Double Cantilever Beam

Let’s work through a concrete example: the double cantilever beam
(DCB) specimen. This is a classic fracture test geometry, consisting
of two arms bonded together except at one end, where they’re sepa-
rated by a crack.

P A Figure 4.2: Double cantilever beam
(DCB) specimen. Two arms are bonded
together from the crack tip to the right

crack tip arm 1 I h end; the crack of length a separates
them on the left. Loads P pull the arms
bonded apart at the cracked end.
CraCk ......................................
arm 2
Py

Each arm is a cantilever of length 4, thickness i, and width B.
From beam theory, the tip deflection of a cantilever under point load
P is: 3

5arm = % (4-10)
where I = Bh3/12 is the moment of inertia.

Since both arms deflect, the total opening is:

2Pa®> _ 8Pa’
O = 20um = 3ET T EBWS (1)
The compliance is:
5 83
~ P EBW (4.12)
Taking the derivative:
dC  24a°
Using the compliance formula:
_P2dC _ P* 24 12P%° (4.14)
T 2Bda 2B EBW  EB 4

Let’s check this with numbers. Suppose:
e P=100N
e g=>50mm = 0.05 m

¢ B=25mm = 0.025m
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e i =5mm = 0.005m
e E =70 GPa (aluminum)

Then:
12 x 1002 x 0.052 12 x 10* x 2.5 x 1073

T 70 x 109 x 0.0252 x 0.005° 70 x 10° x 6.25 x 10-% x 1.25 >Z 10—)7
4.15
Let me compute the denominator: 70 x 10° x 6.25 x 107% x 1.25 x

1077 = 5.47. Numerator: 12 x 10* x 2.5 x 107® = 300. So G =
300/5.47 ~ 55 J/m?.
This is quite low for aluminum alloys (the table later in this chap-

ter gives 8,000-40,000 J/m?), indicating that this particular loading is
far from critical—the crack is very stable. To approach fracture, we
would need a much higher load or longer crack.

4.6 G for the Griffith Problem Revisited

Let’s verify that our general definition of G gives the same answer as
Chapter 3 for the Griffith geometry.

For a central crack of half-length a in an infinite plate under stress
o, we found that the elastic energy released by the crack is:

toa?

AU =
E

(per unit thickness) (4.16)

The crack area per unit thickness is 2a (length of crack, both faces
counting as one). Taking the derivative:

d(aU)  1d (rmo?a® nola
= =57 = (4.17)
d(2a)  2da E E
Wait—this doesn’t match what I had before! Let me be more care-
ful about conventions.
The issue is whether we count crack area as a (half-length) or 24
(full length). If we define G as energy per unit area of one crack face,
then for growth da at one tip:

d(AU)  2no?a

G:da_E

(4.18)

Hmm, there’s a factor-of-2 issue that depends on whether you
have one tip or two growing. Let me just quote the standard result:
for a central crack of length 24 in an infinite plate under stress ¢

nota

G= “E (4.19)
where E/ = E for plane stress and E’ = E/(1 — v?) for plane

strain.! * The factor of 2 conventions are a
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notorious source of confusion. Different

books use different definitions. The

physics is always consistent; you just

have to be careful about what'’s being

counted.
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The fracture criterion G = G, then gives:

nia

o = (4.20)

For brittle materials where G, = 27, this matches Griffith’s result.

4.7 Fixed Load vs. Fixed Displacement

You might wonder: does it matter whether we hold load constant or
displacement constant during crack growth?

The answer is: not for the value of G, but yes for the stability of
crack growth.

Under fixed load, when the crack grows, the compliance increases,
so the displacement increases. The external load does positive work,
and this work provides energy for crack growth. We showed that
G = (P?/2B)(dC/da).

Under fixed displacement, when the crack grows, the compliance
increases, so to maintain the same displacement, the load must de-
crease. No external work is done; all the energy for crack growth
comes from releasing stored strain energy. You can show that:

_ & dc
"~ 2BC2 da

(4.21)

But since § = PC, this gives exactly the same G as the fixed-load
case. The energy release rate depends on the current state (crack
length, load or displacement), not on how we control the loading.

However, stability is different. Under fixed load, as the crack
grows, G often increases (because C increases with a). If G exceeds
G,, it keeps exceeding it as the crack grows—unstable propagation.

Under fixed displacement, as the crack grows, the load drops, and
G may decrease. The crack might grow a bit, then arrest when G
drops below G.—stable (controlled) propagation.

This difference matters for testing. If you want to study crack
growth in a controlled way, use displacement control. Load control
tends to give catastrophic propagation once the crack starts.

4.8 Measuring G,

The critical energy release rate G, is a material property. How do we
measure it?
The basic procedure:

1. Prepare a specimen with a known crack of length a

2. Load the specimen until the crack just starts to grow



ENERGY RELEASE RATE 41

3. Record the load P (or displacement ¢) at initiation
4. Calculate G using the formula for that geometry
5. That G equals G,

The double cantilever beam is one standard specimen. Others
include:

Compact tension (CT) specimen: A thick block with a machined
notch and holes for loading pins. Widely used for metals.

Single edge notched bend (SENB): A beam loaded in three-point
bending with a notch on one side.

Center cracked tension (CCT): A plate with a central crack under
tensile load (the Griffith geometry).

Each has a formula relating G (or equivalently, K) to load and
crack length. Test standards (ASTM, ISO) specify specimen dimen-
sions, preparation methods, and testing procedures.

Material Ge (/ mz) Table 4.1 Typical G, values for various
materials.

Glass 1-10

Epoxy 100-300

PMMA 500—1000

Aluminum alloys 8,000—40,000

Steels (mild) 20,000—100,000

Steels (tough) 100,000—300,000

Rubber 10,000—100,000

The range is enormous—from 1 J/m? for glass to 300,000 J/m?
for tough steels. This reflects the different mechanisms of energy
dissipation in different materials, which we’ll explore in Chapter 6.

4.9 What Determines G.?

For a perfectly brittle material, G = 27, where 7 is the surface
energy. Creating crack surfaces is all you have to pay for.

For real materials, G, includes everything that dissipates energy
during fracture:

e Surface energy (always present, but often small)

¢ Plastic deformation near the crack tip (dominant in metals)
¢ Crazing and microcracking (in polymers and ceramics)

e Friction between crack faces

¢ Fiber pullout and bridging (in composites)



- LECTURES ON FRACTURES

* Microstructural effects (grain boundaries, second phases)

All these mechanisms are swept into the single number G. This is
convenient for engineering—you don’t need to understand the micro-
scopic details to use fracture mechanics. But it’s also a limitation: G,
may depend on temperature, loading rate, specimen thickness, and
other factors that affect the microscopic mechanisms.

g.10 The J-Integral

There’s another way to calculate energy release rate that’s particu-
larly powerful: the J-integral, developed by Jim Rice in 1968.%

The J-integral is defined as a line integral around any path encir-
cling the crack tip:

' Ju
J= 74r (W dy—T- ™ ds) (4.22)
where:

e W = fos ¥ 0jj dejj is the strain energy density (energy per unit
volume stored in the deformed material)

¢ T = 0 - nis the traction vector acting on the contour (stress tensor
dotted with outward normal)

¢ u is the displacement vector

¢ dsis an element of arc length along the contour I

* The integral is taken counterclockwise around the crack tip

® The x-direction is along the crack, pointing in the direction of
propagation

Why is this integral useful? The remarkable property of | is that
it’s path-independent: you get the same value whether you integrate
close to the crack tip or far away. This follows from the divergence
theorem, provided the material inside the contour has no body forces
and the crack faces are traction-free.

Path independence is powerful because:

* You can evaluate | on a convenient path where the fields are
known, rather than trying to compute stress and strain right at
the singular tip

¢ In finite element analysis, you can use a contour far from the crack
tip where numerical accuracy is better

¢ Experimental techniques can measure | from far-field quantities

> Rice, “A Path Independent Integral
and the Approximate Analysis of Strain
Concentration by Notches and Cracks,”
J. Appl. Mech., 1968. This paper is one
of the most cited in fracture mechanics.
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Physical interpretation. The J-integral represents the rate of de-
crease of potential energy with respect to crack advance—exactly
what G represents. In fact, for linear elastic materials:

J=G (4-23)

But | has a crucial advantage: it remains well-defined even when
plasticity is significant near the crack tip. The G definition (—dU/dA)
assumes reversible energy release, which isnt true when plastic
deformation occurs. The J-integral, being a path integral evaluated in
the elastic region far from the tip, sidesteps this problem.

This makes | the preferred fracture parameter for ductile materials
like structural steels. The fracture criterion becomes | > ., where ],
(or Jic for mode I) is the critical value measured in testing.

Computing J. For complex geometries, | is typically computed
using finite element analysis. Most FE codes have built-in J-integral
evaluation. For simple geometries, analytical solutions exist. The
DCB result we derived earlier, for instance, can be verified using the
J-integral.

For a deeper treatment of the J-integral, including its derivation
and applications to elastic-plastic fracture, see Rice’s original paper
or textbooks like Anderson’s Fracture Mechanics.

4.11 Limitations and What We Don’t Know

The energy release rate framework is powerful, but it has limitations:

Rate independence. The simple theory assumes G, is a material
constant. In reality, G can depend on loading rate—fast loading
often gives lower toughness.

Temperature dependence. Many materials, especially steels, show
dramatic changes in G, with temperature. Below a brittle-ductile
transition temperature, G, drops sharply.

Environment effects. Corrosive environments, hydrogen, moisture—
all can reduce G, or cause slow crack growth even when G < G,
(stress corrosion cracking).

Small-scale behavior. The energy approach averages over the
crack tip region. It doesn’t tell us what’s happening at the nanometer
or micrometer scale where bonds actually break.

R-curve effects. In some materials, G, isn’t constant but increases
as the crack grows (due to crack bridging, process zone development,
etc.). The “toughness” depends on crack extension.

These complications are important in practice and are subjects of
ongoing research. But the basic framework—define G, measure G,
check if G > G,—remains the foundation.
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4.12  Practical Use

In engineering practice, you typically:

1. Identify the crack geometry (shape, location, loading)

2. Look up or calculate G as a function of load and crack length
3. Get G, from handbooks or testing

4. Determine the critical condition (G = G.) and what it implies
(maximum load, critical crack size, etc.)

For standard geometries, formulas for G (or the equivalent stress
intensity factor K) are tabulated in handbooks. For unusual geome-
tries, you might use finite element analysis to compute G numeri-
cally.

The ability to separate the “driving force” (G) from the “material
resistance” (G.) is what makes this framework so useful. You can
analyze structures without knowing the material in advance; you can
select materials without knowing the final design.

The energy release rate concept emerged from Griffith’s work but was developed into a practical engineering tool

by Irwin and others in the 1950s and 6os. The compliance method, in particular, made it possible to measure frac-
ture toughness reliably and to calculate G for complex geometries. Today, fracture toughness testing is standardized
(ASTM E399 for Kjc, ASTM E1820 for Jic), and values are tabulated for thousands of materials. This infrastructure
of testing standards and data makes fracture mechanics genuinely practical for design. You can look up G, for your
material and calculate G for your structure, confident that the results are meaningful.




5
Stress Intensity Factors

In this chapter we come to what may be the most practical single idea
in fracture mechanics. We have been approaching fracture from the
energy side: how much energy is released when a crack grows? That
led us to G, the energy release rate, which is beautiful and funda-
mental. But there’s another perspective that turns out to be equiva-
lent and, in many ways, more convenient for everyday calculations:
characterizing the stress field near the crack tip by a single number.
The idea is audacious when you think about it. The stress field
near a crack tip is complicated—it varies with distance, varies with
angle, has different components in different directions. How could
a single number possibly capture all of that? And yet it can. That
single number is the stress intensity factor K, and it has become
the workhorse of practical fracture mechanics. Structural engineers
use it daily. Handbooks are filled with K solutions for thousands of
geometries. It’s rare that such a clean simplification emerges from
such a messy-looking problem.

5.1 The Search for a Characterizing Parameter

Let’s think about what we’d like to have. We’ve established that
cracks are dangerous because of stress concentration. Near the tip,
stresses get very high—in fact, infinitely high in our idealized linear
elastic theory. The severity of a crack depends on the loading and
geometry, but in what way?

Here’s a naive first attempt: why not just characterize the crack by
the maximum stress? The problem, as we saw in Chapter 2, is that
the maximum stress is infinite. That’s not useful. We can’t compare
two cracks by asking which has the higher infinite stress.

Maybe we could look at the stress at some fixed small distance
from the tip? Say, the stress at ¥ = 1 mm? But this is arbitrary. Why
1 mm and not 0.5 mm? Different choices would give different charac-
terizations, and none has any fundamental significance.
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What about the total force transmitted across some line near the
tip? This fails too. In the limit as we approach the tip, the stress
goes to infinity but the area goes to zero, and the product depends
sensitively on how we take the limit.

Let’s try yet another approach. We know that stress varies as 1/+/r
near the tip. What if we define some parameter that captures the
coefficient in front of this singularity? The stress has the form:

(something)
Jr

The “something” is finite and depends on the loading and geometry.
This is more promising. If we could extract that coefficient, we’d
have a well-defined finite number that characterizes how severe the
singularity is.

This is exactly what the stress intensity factor does.

5.2 The Crack Tip Stress Field

Consider a crack in a linear elastic material under load. Far from the
crack, the stress depends on the specific loading and geometry—it
could be anything. But very close to the crack tip, something remark-
able happens: the stress field takes a universal form. For the most
common case (Mode I: opening), the stress components are:

K; 0 .6 . 30
Oxx = ECOSE 1-— SIHESII’I? (51)
oy —KIC056<1—|—sinesin36> (5.2)
W Va2 27772 >

Toy = K cos Q sin Q cos % (5-3)
YU Vo 2722
where (7,0) are polar coordinates centered at the crack tip, with
§ = 0 along the crack plane ahead of the tip.

These formulas look complicated, but don’t let them intimidate
you. The key feature is simple: everything is proportional to K;/+/r.
The angular functions—all those sines and cosines of half-angles—
just describe how the stress varies as you go around the crack tip at
fixed r. These angular functions are the same for all Mode I cracks,
regardless of geometry or loading. The only thing that changes from
one crack to another is Kj.

Let’s check this makes sense. If K; doubles, all the stresses double.
If we move twice as far from the tip (double r), the stresses decrease
by a factor of /2. The singularity is there—stresses go to infinity as
r — 0—but it’s a gentle infinity, an inverse square root. The coeffi-
cient K tells us how fast we're approaching infinity.

’
0
> X

crack

Figure 5.1: Polar coordinates at the
crack tip.
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K7 is called the Mode I stress intensity factor. Its units are unusual:

stress times square root of length. In SI units, that's MPa/m. In

American engineering practice, you'll often see ksiv/in." *To convert: 1 ksiv/in ~ 1.10 MPay/m.
Why the factor of /27 in the denominator? This is a convention,

chosen so that certain formulas come out nicely. Some older texts use

a different convention without the 77, so be careful when comparing

sources. The factor of v/27t has become standard in modern fracture

mechanics.

5.3 A Worked Example: How Big Are These Stresses?

Let’s put in actual numbers to see what we’re dealing with. Consider
an aluminum plate with a small edge crack under tension. The plate
is 10 mm thick, 100 mm wide, loaded at o = 100 MPa. The crack is 5
mm long.

For an edge crack, K; = 1.120/7ta. Plugging in:

K; = 1.12 x 100 MPa x v/7r x 0.005 m = 14.0 MPa\/m

Now let’s compute the stress at various distances from the crack
tip, directly ahead (6 = 0). At 8 = 0, the angular functions simplify:
oy = K1/ /277,

Table 5.1: Stress ahead of the crack tip

Distance from tip r  Stress oy, for K; — 14.0 MPa,/m.

1 mm 177 MPa

0.1 mm 559 MPa

0.01 mm (10 ym) 1,770 MPa
0.001 mm (1 ym) 5,590 MPa

Look at those numbers. At 1 mm from the tip, the stress is nearly
twice the applied stress of 100 MPa. At 10 micrometers, it’s 1,770
MPa—far exceeding the yield stress of aluminum (around 300 MPa).
At 1 micrometer, we're predicting 5,590 MPa, which is absurd. No
material can sustain such stress.

This tells us something important: the elastic K-field is only valid
down to some distance from the tip. Closer than that, other physics
takes over—plasticity in metals, crazing in polymers, microcracking
in ceramics. We'll discuss this “process zone” in detail in Chapter
6. For now, the point is that K characterizes the elastic field in an
annular region around the tip: far enough that we’re outside the
process zone, but close enough that the K-field dominates over the
background stress.
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5.4 The Three Modes of Fracture

There are three independent ways to load a crack. You can think
of these as three types of motion of the crack faces relative to each
other:

O]
(— [— » [—
-
02y
Mode 1 Mode II Mode III
(opening) (sliding) (tearing)

Mode I (opening): The crack faces move directly apart, perpendic-
ular to the crack plane. This is like prying open a book. It’s the most
common mode in engineering failures—tensile loading of a cracked
component typically produces Mode 1.

Mode II (sliding or in-plane shear): The crack faces slide past
each other in the plane of the crack, perpendicular to the crack front.
Think of sliding two cards past each other. Earthquake faults often
operate in Mode I

Mode III (tearing or anti-plane shear): The crack faces slide par-
allel to the crack front. Imagine a stack of papers and sliding the top
half of the stack horizontally relative to the bottom half.

Each mode has its own stress intensity factor: Ki, Kyy, Kyp. Each
has its own angular distribution of stresses, though all share the
1/+/r singularity. For a general loading, the total near-tip field is the
superposition of all three modes.

Why these three and only these three? It comes from symmetry.
The crack plane defines a mirror symmetry. Mode I is symmetric
about the crack plane (both sides pull apart equally). Mode II is
antisymmetric in-plane. Mode III is antisymmetric out-of-plane.
These exhaust the possibilities.?

In practice, most engineering applications involve primarily Mode
I, so that’s what we’ll focus on. But the other modes matter in situa-
tions like: inclined cracks under tension (mixed I/II), torsion of shafts
with longitudinal cracks (Mode III), and frictional sliding on faults
(Mode 1II).

Figure 5.2: The three modes of crack
loading.

> Mathematically, these correspond

to the symmetric and antisymmetric
parts of the displacement field, decom-
posed into in-plane and out-of-plane
components.



5.5 K for Standard Geometries

For simple geometries, K can be calculated analytically. Let me show
you the key results, and then we’ll work through some numbers.
Central crack in infinite plate:

K; =ov/ma (5-4)

where 24 is the total crack length. This is the simplest case and serves
as a reference for everything else. Notice that K depends on /4, not
a. A crack twice as long has K larger by only v/2 ~ 1.41.

Edge crack in semi-infinite plate:

Ky =1120+/mta (5.5)

The factor 1.12 accounts for the free surface. An edge crack is more
severe than a central crack of the same length because there’s less
material to carry the load.

Penny-shaped (circular) crack in infinite solid:

2
Ky = ;a\/na (5.6)

where 4 is the crack radius. The factor 2/t ~ 0.64 means penny
cracks are less severe than edge cracks of the same radius—the 3D
geometry provides more constraint.

For more complex cases, the stress intensity factor is written as:

Ky =Yovma (5.7)

where Y is a dimensionless geometry factor. This Y can be found in

handbooks, computed numerically, or measured experimentally.3
Let’s work out an example. Suppose we have a plate 200 mm wide

with a central crack of total length 20 mm (so 4 = 10 mm), loaded

at 0 = 150 MPa. The plate is finite, so we need a correction. For a

central crack in a finite plate, Y depends on a/W:

Y ~ /sec (%)

Here a/W = 10/200 = 0.05, giving Y ~ 1.006—almost exactly 1. The
finite width barely matters for such a small crack.

K; = 1.006 x 150 MPa x /7t x 0.01 m = 26.8 MPay/m

Now consider the same crack length but in a narrower plate, W =
60 mm. Then a/W = 10/60 ~ 0.17, giving Y ~ /sec(0.177) =
Vv1.16 ~ 1.08. The stress intensity factor becomes:

K; = 1.08 x 150 MPa x v/7r x 0.01 m = 28.7 MPay/m

STRESS INTENSITY FACTORS 49

3 The classic reference is Tada, Paris

& Irwin’s “Stress Analysis of Cracks
Handbook,” which contains K solutions
for hundreds of geometries. It's an
indispensable resource for practicing
engineers.
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The finite-width correction increased K by about 7%. For an even
narrower plate with W = 40 mm, we get a/W = 0.25, Y =~ 1.19, and
Kj ~ 31.6 MPay/m—an 18% increase. When the crack is a significant
fraction of the width, the remaining material carries much more
stress.

5.6 The Connection Between K and G

Here’s something beautiful. We’ve developed two ways of think-
ing about fracture: the energy approach (Chapter 4) with G, and the
stress approach with K. They look like completely different perspec-
tives. One asks about energy release, the other about stress amplifica-
tion. Yet they’re intimately connected.

For Mode I loading in plane strain:

2
_KI

C=%

(5-8)
where E’ = E/(1 — v?) for plane strain and E’ = E for plane stress.

Why should this be true? Here’s an intuitive argument. Both G
and K characterize the same physical situation—a crack about to
grow. G is an energy per area (dimensions of ]/m? = Pa-m). K has
dimensions of Pa\/m. If we square K, we get Pa? - m. Dividing by a
modulus E (in Pa) gives Pa - m—the same as G. The relationship G =
K?/E' is almost forced by dimensional analysis; only the numerical
factor needs to be determined.

Let’s verify this for the central crack in an infinite plate. We had:

2
G= % and K;=o0vma
Computing K2 /E':
K?  o?ma
- ¢VY

It works! This wasn’t guaranteed by dimensional analysis alone—
the factor of 7t had to come out right. That it does reflects deep math-
ematical structure: both K and G are fundamentally characterizing
the same singular field.

For mixed-mode loading, the generalization is:

2 2 2
KI KII KIII

C=ptE 2

(5.9)

where y is the shear modulus. The energies from the three modes
simply add.
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5.7 The Fracture Criterion: K vs Kj¢

Armed with the K-G relationship, we can rewrite Griffith’s criterion
G > G, in terms of stress intensity:

K; > Kic (5.10)

where Kjc = v/E’'G, is the critical stress intensity factor, or fracture
toughness.

Kjc is a material property. Just as yield stress oy tells you when
plastic flow begins, Kj¢ tells you when crack growth begins. It’s
measured in the same peculiar units as K: MPay/m.

Material Kic MPayim)  Ge (/%) Chtcl anergy release e for varous
Window glass 0.7-0.8 7—9 materials.

Alumina ceramic 3-5 30-80

PMMA (Plexiglass) 1.0-1.5 350-700

Aluminum 7075-T6 24 8,000

Mild steel 50—100 12,000—-50,000

High-toughness steel 100—-200 50,000—200,000

The spread is enormous. Glass fractures at Kjc =~ 0.7 MPay/m;
tough steels require Kjc &~ 200 MPay/m. That’s a factor of almost 300.
And this directly translates to how large a crack can be tolerated at a
given stress, or how high a stress can be applied with a given crack.

5.8 The Power of Superposition

Here’s why the K approach is so useful in practice. The crack tip

stress field is linear in the applied load.# This means that stress inten- +This follows from linearity of elasticity.
: Double the loads, double the stresses
sity factors superpose. s '
y perp double K.

Suppose you have a cracked plate under combined loading: a
tensile stress o7 plus a bending stress that varies across the section.
You don’t need to solve the complete combined problem. Instead:

1. Find K for the tensile stress alone (from a handbook)

2. Find K for the bending stress alone (from another handbook en-
try)

3. Add them: Kiya1 = Kiension + Kbending

This is tremendously powerful. Complex loading can be built
up from simple cases. The handbook becomes a library of building
blocks.

As an example, consider an edge-cracked beam under pure bend-
ing with moment M. The bending stress at the cracked surface is



= LECTURES ON FRACTURES

o, = 6M/ tW2 for a rectangular section of thickness t and width W.
For an edge crack:

Kr = Yho’b\/ ta

where Yj, depends on a/W. If the beam is also under tension P:

P 6M —
Ktotal e th\/ 7ta + wa 7ta

The geometry factors Y; and Y}, are different (tension vs. bending),
but the total K is just their sum.

5.9 Measuring Kjc: A Delicate Business

How do we actually measure fracture toughness? The procedure
sounds simple: apply load to a cracked specimen until it breaks,
compute K at failure. But the details matter enormously.

First, you need a sharp crack—not a machined notch. A notch has
a finite radius, which blunts the stress concentration. The standard
approach is to machine a notch and then grow a sharp fatigue crack
from its tip by cyclic loading at low stress. This fatigue precrack
mimics natural cracks.

Second, you need to be in plane strain. This is crucial. Under
plane stress (thin specimens), the material near the crack tip can flow
plastically in the thickness direction. This extra freedom for plastic
deformation increases the apparent toughness. Under plane strain
(thick specimens), this out-of-plane flow is constrained, the stress
state is more severe, and fracture occurs at lower K.

The compact tension (CT) specimen has become standard. It’s
economical with material, and the K calibration is well established.
The specimen has a machined notch, a fatigue precrack, and holes for
pin loading. You load it, record load versus displacement, and look
for the load at which the crack begins to grow.

Here’s where it gets subtle. How do you define “the load at which
the crack begins to grow”? If the load-displacement curve is linear
up to sudden fracture, it’s clear. But many materials show some
nonlinearity before fracture—plasticity, slow crack growth, or both.
The ASTM standard specifies procedures: draw a line from the origin
with slope 5% less than the initial elastic slope; the load at which
this line intersects the load-displacement curve is taken as the critical
load.>

Even after all this care, the test may be invalid if the specimen was
too small. The standard requires:

Kic\?
B,a,(W—a)>25 ()

Oy

P_A

4\

crack

7Y

Figure 5.3: Compact tension (CT)
specimen for measuring Kjc.

5 This “5% secant” method has been
debated, but it provides a reproducible
definition.
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where B is thickness, a is crack length, and oy is yield stress. If your
specimen doesn’t meet these criteria, the measured K is higher than
the true plane strain Kjc, and you need a larger specimen.

For a tough material like a high-strength steel with K;c = 100
MPay/m and ¢y = 1000 MPa, the required dimensions are:

B,a, (W —a) >25x (0.1)> m = 25 mm

That’s manageable. But for a moderate-strength aluminum with
Kic = 30 MPay/m and oy = 300 MPa:

B,a,(W —a) > 2.5 x (0.1)> m = 25 mm

Still 25 mm-—not a coincidence; I chose examples with the same
Kic /oy ratio. For a really tough, low-strength material, the required
specimen can become impractically large.

5.10 Design Against Fracture

With Kjc known, we can design structures to avoid fracture. The
criterion is:

K; =Yov/ma < K¢ (5.11)

This can be rearranged in three ways, depending on what question
you're asking:
What'’s the maximum allowable stress?

Kic

Y/ ma

What’s the maximum tolerable crack size?

1 (Kic\?
<7 -
? 7T(Y0'>

What toughness is required?

Kic > Yo/ ma

o<

Let’s work through a design example. A pressure vessel is made
from steel with Kjc = 80 MPay/m. The hoop stress under operating
pressure is 200 MPa. What's the largest crack that can be tolerated?

Assume a surface crack with ¥ = 1.12:

1 80 2 )
A 41 mm crack is quite large—easily detected by inspection. This
material-stress combination is tolerant of substantial damage.
Now suppose we switch to a high-strength steel with yield stress
1500 MPa, allowing us to increase operating stress to 500 MPa.

53
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But this steel has Kjc = 50 MPay/m (toughness often decreases as
strength increases). The tolerable crack is now:

1 50 21 )
a<— (112><500) = ;(0.089) =25mm
Only 2.5 mm! This crack might be missed in routine inspection.
The high-strength design is operating much closer to the edge.

This tradeoff between strength and damage tolerance is one of the
central dilemmas of structural design. High-strength materials allow
lighter structures, but they’re less forgiving of defects.

5.11 A Philosophical Aside: What Does K Really Mean?

Let’s step back and ask what we’ve actually done. We started with

a complicated stress field that varies with position. We extracted a
single number, K, that somehow captures the “severity” of the crack.
What entitles us to do this?

The answer lies in the universality of the near-tip field. Very close
to the tip—but not so close that plasticity or other nonlinear effects
dominate—the stress field has the same angular distribution for all
Mode I cracks. Only the amplitude varies. That amplitude is K.

This is actually a statement about the mathematics of the elasticity
equations. Near a crack tip, the solution must have certain singular
behavior dictated by the local geometry (a mathematical branch
cut). The strength of that singularity is determined by the boundary
conditions far away, but its form is universal.

You might object: “But every real crack has a process zone where
the K-field breaks down. So where exactly is this K-field valid?” This
is a fair point. The K-field is strictly valid only in an annular region:
not too close (process zone), not too far (other terms in the series
become significant). This is called the “K-dominated region.”

For the approach to work, this annular region must exist—the
process zone must be small compared to crack length and specimen
dimensions. When it is, we say we have “small-scale yielding,” and
K makes sense. When the process zone becomes comparable to other
length scales, we're in “large-scale yielding,” and we need more
sophisticated approaches (like the J-integral, which we won’t cover
here).

The remarkable thing is that small-scale yielding holds for most
engineering situations with metals, ceramics, and brittle polymers.
That’s what makes K so useful.
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5.12  What We Don’t Fully Understand

The K-approach is remarkably successful, but there are aspects we
don’t fully understand or that remain subjects of research:

Mixed-mode fracture. When Kj, K, and Kjjy are all present, how
do we predict fracture? Simply adding the energies (G = K?/E' + ...)
gives the total energy release rate, but the crack may not grow in the
plane of maximum G. It might turn to become pure Mode 1. Various
criteria have been proposed—maximum tangential stress, minimum
strain energy density—but none is universally accepted.

The Kj¢ thickness transition. We know K measured in thin spec-
imens exceeds the plane strain Kjc. But the detailed shape of this
transition and how to predict it from first principles is still not fully
resolved.

Loading rate effects. Many materials show rate-dependent tough-
ness. Some are tougher at high rates (viscous effects), others are more
brittle (adiabatic heating, insufficient time for plasticity). Predicting
this from microstructure remains challenging.

Why Kjc varies so much between materials. We can measure Kjc,
but predicting it from fundamental material properties is difficult.
Why does iron have K¢ &~ 50 MPay/m while copper has K;c ~ 100
MPa,/m? The answer involves dislocation motion, grain boundaries,
and other microstructural features that are hard to compute.

These aren’t just academic puzzles. They affect how confidently
we can apply fracture mechanics to new situations or new materials.
The honest answer is: we have a powerful framework that works
extraordinarily well in many cases, but its foundations are empirical
as much as theoretical.
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On plane strain vs. plane stress. Fracture toughness depends on specimen thickness. In thin specimens (plane

stress), the material near the crack tip can deform freely in the thickness direction, allowing more plastic
energy dissipation and higher apparent toughness. In thick specimens (plane strain), this out-of-plane
deformation is constrained, leading to a more brittle response and lower toughness. The “true” Kjc is
the plane strain value—the lower, more conservative number. Test standards specify minimum thickness

requirements to ensure plane strain conditions. This thickness effect confused researchers for years before

Irwin clarified the distinction in the 1950s.







6
The Process Zone

We’ve built up a beautiful theory. We have K, the stress intensity
factor, which characterizes the severity of a crack in a single number.
We have G, the energy release rate, which tells us the driving force
for crack growth. We have Kjc and G., material properties that tell us
when fracture will occur. The mathematics is elegant. The predictions
are testable. Engineers use these tools daily.

But buried in this elegant theory is an embarrassing secret: it pre-
dicts infinite stress at the crack tip. As you approach the tip, the
stress goes as 1/+/r, which blows up as r — 0. We’ve been quietly ig-
noring this because the rest of the theory works so well. But at some
point we have to face it: nothing is actually infinite. No material can
sustain infinite stress. Something has to give.

This chapter is about what really happens at the crack tip—the
region where our elegant linear elastic theory breaks down, and
where the actual business of material separation takes place. This is
where the action is. This is where fracture actually happens.

6.1 Coming to Terms with Infinity

Let’s be precise about what our theory says. According to the elastic
solution, the stress at distance r from the crack tip is:

K
\2mr

What numbers does this give? Let’s take a typical case with K =
10 MPa+/m and work out the stress at various distances:
Look at the progression. At 1 mm, the stress is 126 MPa—perfectly

o~ (6.1)

reasonable, well below yield for most structural materials. At 1 mi-
crometer, we're at 4,000 MPa, which exceeds the yield stress of even
the strongest steels. At 1 nanometer, we're predicting 126,000 MPa,
which is roughly half the elastic modulus of steel.

But recall Chapter 1: we calculated that the theoretical strength
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Distance r Stress o Comment
1 mm 126 MPa Reasonable
100 pm 400 MPa Still plausible
10 ym 1,260 MPa Higher than most yield stresses
1um 4,000 MPa  Exceeds yield stress of any metal
100 NmM 12,600 MPa  Approaching theoretical strength
10 nm 40,000 MPa About E/5 for steel
1 nm 126,000 MPa About 60% of E for steel

of a perfect crystal is about E/10 to E/5. That’s the stress at which
atomic bonds should break catastrophically. So our elastic solution is
predicting stresses, at nanometer scales, that approach or exceed the
theoretical cohesive strength.

In a strange way, this is reassuring. It means the elastic solution is
telling us: “At very small scales, the stress gets high enough to break
atomic bonds.” Which is what has to happen for fracture to occur!
The infinity in the mathematical solution is signaling the physics:
bonds are breaking near the tip.

But the elastic solution can’t be correct all the way down to r = 0,
because the material will fail first. Somewhere—call it r = r,—the
material’s actual response deviates from linear elasticity. Inside this
region, something else happens. This region is called the process
zone.

6.2  What Could Happen in the Process Zone?

Before examining what actually does happen, let’s think about what
could happen. As stress increases toward the crack tip, what re-
sponses might the material exhibit?

Possibility 1: The material remains elastic up to atomic spac-
ing, then bonds break. This would be perfectly brittle fracture—the
elastic 1//7 field all the way down to the atomic scale, then atomic
separation. This is approximately what happens in very brittle mate-
rials like silica glass.

Possibility 2: The material yields plastically before bonds break.
In metals, dislocations move when shear stress exceeds a critical
value. The material flows, deforms permanently, and the stress is
limited to roughly the yield stress. The crack tip blunts as material
flows away from the sharp tip.

Possibility 3: Microcracks form. The high stress might cause
small cracks to nucleate around the main crack tip. The material
develops a cloud of damage that shields the main crack from some of
the stress.

Table 6.1: Elastic stress prediction at
various distances from the crack tip.
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Possibility 4: Molecules untangle or align. In polymers, high
stress might cause long-chain molecules to disentangle, stretch, and
orient. This creates a network of stretched fibrils that can bridge the
crack.

Possibility 5: Phase transformation occurs. In some ceramics,
high stress can trigger a crystal structure change that absorbs energy
and creates compressive stresses near the crack.

All of these actually happen in various materials. The common
theme is: the material responds to high stress in some nonlinear way
that prevents the stress from actually reaching infinity.

6.3 Plastic Zones in Metals: A Quantitative Treatment

Let’s work out what happens in a metal, where plastic yielding is the
dominant response. This is the best-understood case and gives us a
framework for thinking about process zones in general.

Consider a Mode I crack with stress intensity K;. Along the line
directly ahead of the crack (8 = 0), the elastic solution gives:

K;

Oyy = —7—

o (6.2)

This stress increases without bound as » — 0. But metals yield
when the stress exceeds the yield stress oy. So there must be some
distance r, where the elastic stress equals the yield stress, and inside
that region, the material is plastic.

Setting 0,y = 0y and solving:

K; 1 K 2
= = =—| = 6.
/27ty o " on <0y> (63)

Let’s put in numbers. For a steel with oy = 500 MPa and K; = 50

MPa+/m:

NEAC e
=5 (500) m= E(O'Ol) m = 1.6 mm 8
crack
So the plastic zone extends about 1.6 mm ahead of the crack.
That’s a macroscopic distance—visible to the naked eye. - >
Now, here’s a subtlety that took researchers some years to sort out. Tr
The estimate above is too simple. If the material inside the plastic Figure 6.1: Plastic zone (shaded) at a

crack tip in a metal. Within this zone,
the stress is limited to approximately
tribution changes entirely. The stress that would have been carried by the yield stress.

zone yields, the stress there doesn’t just freeze at oy. The stress dis-

the yielded region has to go somewhere—it gets redistributed to the
surrounding elastic material.

Think of it like a bucket brigade passing water: if one person
(the yielded region) can only carry so much (the yield stress), the
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extra load gets passed along to the next person (the elastic region
just outside). This means the elastic stresses just outside the plastic
zone are higher than our naive estimate, which means more material
yields, which enlarges the plastic zone.

A more careful analysis (first done by Irwin) accounts for this
redistribution and roughly doubles the estimate:

7T

2
rp & L (KI) (plane stress) (6.4)

Oy

Under plane strain conditions (thick specimens), the stress state is
different—there’s an additional constraint in the thickness direction
that suppresses yielding. The plastic zone is smaller:

Ty R 1 (& ’ (plane strain) (6.5)
P~ 3x oy p -5
Let’s redo our calculation for both cases with K; = 50 MPay/m and
oy = 500 MPa:
Condition Formula coefficient rp
First estimate 1/2m ~ 0.16 1.6 mm
Plane stress (corrected) 1/m~0.32 3.2 mm
Plane strain 1/3m ~ 0.11 1.1 mm

The plane strain plastic zone is about three times smaller than
the plane stress zone. This explains why thick specimens have lower

apparent toughness: less plastic work is done per unit crack advance.

The shape of the plastic zone isn’t circular, by the way. A more
detailed analysis shows it’s roughly butterfly-shaped, with lobes
extending at angles to the crack plane. The formulas above give the
extent directly ahead of the crack; the zone extends further in other
directions. But for engineering estimates, the circular approximation
usually suffices.

6.4 A Digression on Why This All Matters

You might wonder: why are we spending so much effort on some-
thing that our theory says doesn’t exist (the process zone is where
our K-field breaks down, after all)? Here’s why it matters:

This is where toughness lives. The material property Kjc or G,
is determined by what happens in the process zone. A material with
a larger process zone that dissipates more energy will have higher
toughness. Understanding the process zone is understanding tough-
ness.

This determines when our theory is valid. We can only use K

and G when the process zone is small compared to other dimensions.

Table 6.2: Plastic zone sizes for different
estimates.
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Knowing the process zone size tells us when linear elastic fracture
mechanics applies.

This explains material differences. Why is steel tough and glass
brittle? Why does toughness depend on temperature? Why do load-
ing rate effects exist? The answers all lie in the process zone.

6.5 Small-Scale Yielding: When K Still Works

Here’s the crucial question: if there’s a plastic zone, can we still char-
acterize the crack by K?

The answer is yes, provided the plastic zone is small compared
to other relevant dimensions. This condition is called small-scale
yielding.

Why does this work? The key insight is that the K field is an inter-
mediate asymptotic solution. It’s valid in an annular region:

* Not too close to the tip: r > r, (outside the process zone)

e Not too far from the tip: r < a, (W — a) (small compared to crack
length and ligament)

If this annular region exists—if there’s a zone where the 1//r
field is valid—then K still characterizes the severity of the crack.
Two cracks with the same K have the same stress field in this region,
hence the same driving force acting on the process zone, hence the
same behavior.

This is the principle of similitude, and it's what makes fracture
mechanics useful in practice. A small laboratory specimen can pre-
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Figure 6.2: The three regions near a
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dict the behavior of a large structure, as long as both have the same K
and both are in the small-scale yielding regime.

6.6  When Small-Scale Yielding Fails

Consider loading a cracked specimen. As the load increases, K in-
creases, and r, grows with it (remember 7, « K?). Eventually, the
plastic zone might become comparable to the crack length or liga-
ment.

At this point, the K-dominated region shrinks to nothing. The
elastic solution is no longer valid anywhere. We’re in the regime of
large-scale yielding or general yielding.

The test standards for measuring Kjc include size requirements
precisely to prevent this:

Kic\?
a,(W—a),B>25 ((;) (6.6)

Let’s see what this requires for different materials:

Material Kic oy Kjc/oy Min dimension
(MPay/m) (MPa) (m'/?) (mm)
High-strength steel 50 1500 0.033 2.8
Structural steel 100 350 0.29 204
Aluminum 7075-T6 25 500 0.050 6.3
Tough titanium 100 800 0.125 39

Look at the structural steel: valid K¢ testing requires specimens
at least 204 mm (8 inches) in each critical dimension. That’s a sub-
stantial piece of steel—expensive to machine, requiring large testing
machines. For some tough, low-strength materials, the required spec-
imens can be meters thick!

This practical difficulty motivated the development of elastic-
plastic fracture mechanics, which uses parameters like the J-integral
that remain valid under large-scale yielding. But that’s beyond our
scope here.

6.7 The Cohesive Zone: A Different Perspective

There’s another way to think about the process zone that avoids
the stress singularity entirely. It was developed independently by
Barenblatt in the USSR and Dugdale in England in the early 1960s,
during the period of limited scientific exchange between East and
West.

Table 6.3: Minimum specimen dimen-
sions for valid Kjc testing.



The idea is elegant: instead of trying to model the complicated me-
chanics inside the process zone, replace it with a simplified model—a
zone where cohesive stresses act between the separating surfaces.

Think of it this way: ahead of the visible crack, there’s a zone
where the material is damaged but not fully separated. The surfaces
are pulling apart, but they're still connected—by atomic bonds in
glass, by bridging ligaments in ceramics, by stretched fibrils in poly-
mers. As the separation increases, this cohesive stress eventually
drops to zero, and the material is fully cracked.

The cohesive zone model is specified by a traction-separation
law: a relationship between the stress ¢ acting across the zone and
the separation & between the surfaces. The simplest version is the
Dugdale model:

oy 0<é
o= (6.7)
0 62>
The material resists separation with constant stress oy until the
surfaces are 6. apart, then releases completely. The fracture energy in

this model is just the area under the traction-separation curve:
GC = O-Y(sc (6.8)

More realistic models use smooth curves: the stress rises to a peak
as separation begins, then gradually decreases to zero. The shape of
this curve captures different failure mechanisms. A sharp peak with
rapid decay represents brittle cleavage. A lower, broader curve repre-
sents ductile tearing. A very extended tail represents fiber bridging.

The beautiful thing about the cohesive zone approach is that
it removes the stress singularity entirely. The stress is bounded
everywhere—by the cohesive strength. Yet it reproduces all the pre-
dictions of K-based fracture mechanics in the limit of small process
zones. It’s a physically motivated regularization of the theory.

6.8 Crack Tip Opening Displacement

As long as we're discussing alternatives to K, let’s mention an-
other characterizing parameter: the crack tip opening displacement
(CTOD), usually denoted ;.

The idea is appealingly direct: even if we can’t calculate the stress
at the tip (because the material is plastic there), we can measure how
much the crack faces have separated at the tip. This opening reflects
the deformation in the process zone and correlates with fracture.

Under small-scale yielding (plane stress), CTOD relates to our

other parameters:
K2 G
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cohesive zone

intact

Figure 6.3: The cohesive zone model.
In the cohesive zone, stresses (arrows)
resist separation until a critical opening
is reached.

Figure 6.4: Crack tip opening displace-
ment d;.
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(For plane strain, replace E with E/(1 — v?) in the first expression;
the second equality 6; = G/oy holds generally since G already
accounts for the stress state.)

This makes sense dimensionally: G has units of energy per area,
oy has units of force per area, so G/oy has units of length—the open-
ing displacement.

The fracture criterion becomes 6; > J., where . is the critical
CTOD. This is equivalent to K > Kjc under small-scale yielding,
but CTOD remains meaningful even when the plastic zone is large.
It’s particularly useful for structural steels, where Kj¢ testing would
require impractically large specimens.

6.9 What Determines Toughness?

We can now answer a fundamental question: why are some materials
tough and others brittle?

The answer lies in the process zone. A material is tough when it
dissipates a lot of energy in the process zone before the crack ad-
vances. This requires:

Easy plastic deformation: Materials with low yield stress and high
ductility develop large plastic zones. Each increment of crack ad-
vance requires plastically deforming a substantial volume of material,
which absorbs energy. Copper, aluminum, and low-carbon steel are
tough for this reason.

Energy-absorbing mechanisms beyond simple plasticity: Craz-
ing in polymers, fiber bridging in composites, microcracking in
transformation-toughened ceramics, void growth and coalescence
in ductile metals—all dissipate energy and increase toughness.

A large process zone: The bigger the region where energy is dissi-
pated, the more total energy is absorbed per unit crack advance.

Conversely, a material is brittle when:

Plastic deformation is suppressed: High yield stress, limited dis-
location mobility, or strong tendency toward cleavage. Ceramics have
very high yield stresses (if they yield at all), so cracks can propagate
with minimal plasticity.

Easy cleavage: Some materials have crystallographic planes where
bonds are weak. Cracks follow these planes with minimal energy
dissipation in surrounding material.

A small process zone: In glasses, the process zone may be only a
few nanometers wide. Essentially all the energy goes into breaking
bonds at the atomic scale.

The range in Gc—five orders of magnitude from glass to tough
steel—reflects the range of process zone sizes and the efficiency of
energy dissipation mechanisms. The “surface energy” of Griffith’s
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Material Ge (J /mz) Zone size Mechanism Table 6.4: Fracture energy and process
zone size for various materials. The

Silica glass 5-10 nm bond breaking five-order-of-magnitude range in G,

Alumina 30-50 um microcracking reflects differences in energy dissipation

Silicon 3 nm cleavage mechanisms.

PMMA 300-700 0.1-1 mm crazing

Epoxy 100-500  10-100 ym plasticity

Al alloy 8k-15k 1-5 mm void growth

Mild steel 50k-100k 1-10 mm plasticity

Tough steel 100k—-300k  5-20 mm plasticity

theory is really the total energy dissipated in the process zone, di-
vided by the new crack area. For glass, this is perhaps 5-10 times the
true thermodynamic surface energy (27 ~ 0.6-1]/m?), reflecting
some energy dissipation even in this nearly ideal brittle material. For
steel, G, is dominated by plastic work and can be 100,000 times larger
than the surface energy.

6.10 Temperature and Rate Effects

The process zone is where all the interesting materials physics hap-
pens, so it’s not surprising that its character depends on temperature
and loading rate.

Temperature effects in metals: Dislocation motion is thermally
activated—easier at high temperatures, harder at low temperatures.
At elevated temperatures, plastic zones are larger, more energy is
dissipated, and toughness is higher. At low temperatures, yielding is
suppressed, plastic zones shrink, and materials become more brittle.

Many steels exhibit a dramatic ductile-to-brittle transition (DBT)
over a narrow temperature range. Above the transition, fracture
is ductile with high energy absorption. Below it, fracture is brittle
cleavage with low energy. The transition temperature depends on
composition, grain size, and loading rate. For structural steels, it
might be around —20°C, which has serious implications for winter
operation of bridges and ships.

Rate effects: Plastic deformation takes time—dislocations must
nucleate and move, which involves thermally activated processes.
Under fast loading, there isn’t time for extensive plastic flow. The
plastic zone is smaller, less energy is dissipated, and the material
appears more brittle.

This is why impact toughness is different from quasi-static tough-
ness. A steel that’s perfectly tough in a slow laboratory test might
shatter under impact loading. The Charpy impact test, with its
swinging hammer, measures the behavior under dynamic conditions.
For safety-critical applications, both static and dynamic properties
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matter.

6.11 A Philosophical Aside: What Is “the Crack Tip”?

We’ve been talking about “the crack tip” as if it were a well-defined
point. But is it?

In our mathematical idealization, the crack tip is a singular point
where the displacement field has a discontinuity. But in a real ma-
terial, made of discrete atoms, what does “the crack tip” mean? Is
it the last pair of broken bonds? The last atom that’s still bonded to
atoms on the other crack face? The center of the process zone?

For practical purposes, this ambiguity doesn’t usually matter.
We're interested in the far-field behavior, which is characterized by
K regardless of the detailed tip structure. But when we try to un-
derstand fracture at the atomic scale—through molecular dynamics
simulations, for instance—these questions become pressing.

There’s a deeper philosophical point here. Continuum mechanics
is an approximation. It replaces the discrete atomic structure with a
continuous medium, which is wonderfully tractable mathematically
but is always an approximation. The stress singularity at the crack
tip is an artifact of this continuum approximation. In a real atomic
material, there are no infinite stresses—just atoms at various levels of
strain.

The cohesive zone model can be seen as a partial remedy: it reg-
ularizes the singularity by acknowledging that atomic-scale pro-
cesses have a characteristic length and strength. But even this is an
approximation—real atomic fracture is messier than any traction-
separation law.

6.12  What We Don't Fully Understand

Despite decades of research, several aspects of process zone behavior
remain incompletely understood:

Predicting toughness from first principles. We can measure K¢,
and we can explain qualitatively why some materials are tough and
others brittle. But predicting Kjc quantitatively from fundamental
material properties (crystal structure, bond energies, dislocation
behavior) remains extremely difficult. Why exactly does nickel have
higher toughness than iron? We have qualitative stories, but not
predictive theories.

The ductile-to-brittle transition. We know that many metals be-
come brittle at low temperatures, and we can identify contributing
factors (reduced dislocation mobility, cleavage competition). But
predicting the transition temperature from microstructure, or fully



THE PROCESS ZONE

understanding the transition mechanism, remains an active research
area.

Process zone evolution during crack growth. The process zone
isn’t static—it changes as the crack advances. In some materials,
the zone reaches a steady state that propagates with the crack. In
others, it evolves throughout the fracture process. Understanding this
dynamic behavior is crucial for fatigue and subcritical crack growth.

Scale bridging. We have atomic-scale simulations of bond break-
ing, and we have continuum theories of crack fields. Connecting
these scales—understanding how atomic events lead to macroscopic
toughness—is one of the grand challenges in mechanics of materials.

Environment effects. Many materials show dramatically differ-
ent toughness in different environments. Stress corrosion cracking,
hydrogen embrittlement, and liquid metal embrittlement all involve

complex chemistry in the process zone. The interactions between me
chanical stress and chemical reactions at the crack tip are not fully
understood.

These aren’t just academic puzzles. The inability to predict tough-
ness from first principles means that new materials must be tested
extensively before use in critical applications. The uncertainty in
ductile-to-brittle transitions contributed to the Liberty ship failures in
World War II, where welded steel ships broke apart in cold water.
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The cohesive zone concept traces back to a fundamental question: what holds materials together, and how does that
connection fail? Barenblatt, working in Moscow in the late 1950s, arqued that the stress singularity in elasticity is
an artifact of the continuum approximation. At atomic scales, atoms attract each other at moderate separations and
repel at close approach. This leads naturally to a finite cohesive strength and a characteristic separation distance.

Dugdale, working independently in Cambridge, developed a similar model for plastic yielding at crack tips. Neither

was aware of the other’s work until later—a common occurrence in the Cold War era of limited scientific exchange.

Today we recognize both approaches as special cases of a general cohesive zone framework that has become central to

computational fracture mechanics.







7
Fatigue

Here is one of the most insidious problems in all of engineering.
You build a structure. You test it. It holds the design load with a
comfortable margin. You put it in service. Years pass. The structure
performs perfectly. Then one day, without warning, it breaks.

The load that day was nothing special—well below what the struc-
ture had carried thousands of times before. There was no defect, no
abuse, no obvious cause. And yet it failed.

This is fatigue. It's responsible for the majority of mechanical fail-
ures in service. It killed the passengers on the de Havilland Comet
aircraft. It brings down bridges. It cracks turbine blades. It is, in
some sense, the fundamental limit on the life of any structure that
experiences repeated loading.

Understanding fatigue means understanding how damage accu-
mulates invisibly, how cracks grow slowly under loads that would
never cause immediate failure, and why the millionth loading cycle
can break what the first cycle could not.

7.1 The Puzzle of Subcritical Loading

Here’s what makes fatigue so strange. Consider a steel bar with yield
stress 500 MPa. Load it to 200 MPa in tension. Nothing happens—
we’re well below yield, so the deformation is elastic. Unload it. The
bar returns exactly to its original state. The atoms are back where
they started. No damage, no change, no memory of the loading.

Do it again. And again. A hundred times, a thousand times. Still
nothing—elastic deformation is perfectly reversible.

But keep going. After a million cycles, or ten million, something
has changed. A tiny crack has appeared. It wasn’t there before.
Where did it come from?

The crack nucleates at some stress concentration—a surface
scratch, an inclusion, a grain boundary. Each loading cycle does a
tiny amount of plastic deformation at this local stress raiser, even
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though the bulk stress is below yield. Over millions of cycles, this
localized damage accumulates. Slip bands form, harden, crack. A
microcrack appears, then grows.

The bulk of the material is still perfectly elastic. But at the mi-
croscale, irreversible damage is occurring with every cycle. The mate-
rial is “remembering” each load application, even though macroscop-
ically it appears unchanged.

This is why fatigue is so dangerous: it’s invisible until it’s too late.

7.2 Wohler and the Discovery of Fatigue

The first systematic study of fatigue was conducted by August Woh-
ler, a German railway engineer, in the 1850s and 1860s. Railway axles
were failing in service—not immediately, but after years of satisfac-
tory operation. The failures were sudden and catastrophic, often
causing derailments.

Wohler designed rotating-bending tests and ran them for millions
of cycles. He established several fundamental facts:

1. The number of cycles to failure decreases as stress amplitude
increases

2. Failure occurs at stresses far below the static strength

3. For steel, there appears to be a stress level below which failure
doesn’t occur, no matter how many cycles (the endurance limit)

The result of such testing is an S-N curve: stress amplitude versus
number of cycles to failure.

S
A
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> log N
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Wohler’s data looked something like this for steel axles:

The endurance limit for this steel is around 250 MPa—about 40%
of the ultimate tensile strength. Below this stress, the axle could
rotate forever without failing.

Figure 7.1: S-N curves for steel and
aluminum alloys.



Stress amplitude (MPa) Cycles to failure steel.
400 10,000
350 100,000
300 500,000
275 2,000,000
250 10,000,000+ (no failure)
225 50,000,000+ (no failure)

Aluminum alloys, unfortunately, show no true endurance limit.
The S-N curve keeps decreasing. Given enough cycles, failure occurs
at any stress level. For these materials, we define a fatigue strength at
a specified life (often 107 or 108 cycles).

Wohler’s work was empirical and phenomenological—he estab-
lished what happens without explaining why. The mechanistic un-
derstanding would come later, with fracture mechanics.

7.3 From S-N Curves to Crack Growth

S-N curves treat the specimen as a black box. You apply stress, count
cycles, record failure. But what’s happening inside?

From a fracture mechanics perspective, fatigue is subcritical crack
growth. The process has three stages:

Stage I: Crack initiation. A microcrack nucleates at a stress
concentration—a surface defect, inclusion, or grain boundary. This
can take most of the fatigue life, especially at low stresses.

Stage II: Stable crack propagation. The crack grows through the
material, advancing a small amount with each loading cycle. This is
the regime where fracture mechanics applies.

Stage III: Final fracture. The crack reaches critical size and the
component fails rapidly, often in a single cycle.

The transition from S-N thinking to crack growth thinking was a
major conceptual advance. Instead of asking “how many cycles to
failure?” we ask “how fast does a crack grow, and how do we predict
it?”

7.4  Stress Intensity Factor Range

The key insight is that crack growth rate should depend on the “driv-
ing force” for crack extension during each cycle. What characterizes
this driving force?

For static fracture, we use K or G. For fatigue, the natural parame-
ter is the range of stress intensity during each cycle:

AK = Kmax - Kmin (7'1)
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Table 7.1: Typical S-N data for a carbon
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We also define the load ratio:

R — Kmin

Kmax

(7.2)

For loading between zero and some maximum (tension-tension),
R = 0. For fully reversed loading (tension-compression), R is nomi-
nally —1, though in practice when the applied stress goes compres-
sive, the crack closes and Ky, is effectively zero. For constant tension
with superimposed cyclic stress, R might be 0.5 or higher.

Why should AK control crack growth? Think about what happens
at the crack tip during one cycle. As load increases from Kpin to
Kmax, the stress field near the tip intensifies. Plastic deformation
occurs, the crack blunts and advances slightly. As load decreases
back to Kmin, reversed plastic deformation occurs. The amplitude of
this back-and-forth deformation is controlled by AK.

7.5 The Paris Law

In 1963, Paul Paris and Frank Erdogan proposed a remarkably simple
relationship:

d
% = C(AK)" (7.3)

where da/dN is the crack growth per cycle, and C and m are mate-
rial constants.”
On a log-log plot, this is a straight line with slope m:

d
log <de]> = log C + mlog(AK) (7.4)

Typical values for metals:

Material m C (SI units) Units

Aluminum alloys 3.0-3.5 1071 t0 1071 m/cycle, MPay/m
Steels 2.5-40 1072t0 107"  m/cycle, MPay/m
Titanium alloys 3.0-50 107" t0 1071 m/cycle, MPay/m

Let’s work through an example. Consider an aluminum alloy with
C = 5x 107! m/cycle (in SI units with AK in MPay/m) and m = 3.
A component has a crack with AK = 10 MPa/m.

The growth rate is:

da

% =5x10"1 x 10> =5 x 107® m/cycle = 50 nm/cycle

Fifty nanometers per cycle. That’s about 200 atomic spacings. Tiny,
but relentless. After a million cycles, the crack has grown 50 mm.

* Paris and Erdogan’s paper was ini-
tially rejected by several journals. The
idea that such a complex phenomenon
could be characterized by a simple
power law seemed too good to be true.
It turned out to be mostly true—at least
in the intermediate growth rate regime.

Table 7.2: Typical Paris law parameters.
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Now suppose the load increases so that AK = 20 MPay/m. The
growth rate becomes:

;—;\l[ =5x10 1 x203=4x10"7 m/cycle = 400 nm/cycle

Doubling AK increased the growth rate by a factor of 23 = 8. The
exponent m makes AK very influential.

7.6 The Three Regimes

The Paris law works well in the intermediate regime, but the full
fatigue crack growth curve has three distinct regions:

da Figure 7.2: The three regimes of fatigue
108 = gure 7 g g

crack growth.
A

‘ > log AK
AKyy,

Region I: Near-threshold. At low AK, the crack growth rate drops
precipitously. Below a threshold value AKy,, no measurable growth
occurs. For steels, AKy, is typically 3-6 MPay/m; for aluminum al-
loys, 1-3 MPay/m.

The threshold is enormously important for design. If you can
keep AK < AKjy, for all potential cracks, fatigue crack growth won't
occur—in principle, infinite life.

Region II: Paris regime. The Paris law applies. Growth is stable
and predictable. A component might spend 90% of its fatigue life in
this regime, with the crack slowly lengthening cycle by cycle.

Region III: Near-failure. As Knax approaches K¢, growth acceler-
ates. The crack is becoming critical. This regime is short-lived—once
you enter Region III, failure is typically only thousands of cycles
away.
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7.7 What Happens During Each Cycle?

Let’s trace through one loading cycle at the crack tip to understand
the mechanism:

Loading phase (increasing K): The stress field intensifies. The
plastic zone grows. Material near the tip yields, with dislocations
moving and slip occurring. The crack tip blunts as material flows
away from the sharp tip. The crack may advance slightly by ductile
tearing.

Peak load (K = Kmax): Maximum plastic zone size. Maximum
crack opening. The blunted tip is at its most open state.

Unloading phase (decreasing K): The surrounding elastic ma-
terial compresses the plastically deformed zone. Reversed yielding
occurs—dislocations move back, but not all the way. Some irre-
versible damage accumulates.

Minimum load (K = Kpn): The crack has partially closed. If
R <0, the crack faces may be in compression.

Each cycle leaves a small increment of damage. Over many cycles,
this accumulates as crack extension.

The crack advance per cycle is often visible as striations on the
fracture surface—parallel markings perpendicular to the growth di-
rection, each representing one cycle. Under ideal conditions, striation
spacing matches the macroscopic growth rate predicted by the Paris
law. This correspondence between microscopic observation and con-
tinuum prediction is one of the satisfying confirmations of fracture
mechanics.

7.8  Crack Closure: A Subtlety

Here’s a complication that took decades to recognize and that still
causes confusion.

Consider a crack that has grown some distance. The material
behind the current crack tip—the “wake”—has been plastically de-
formed during previous cycles. This stretched material doesn't fit
neatly back together when the load is removed.

The result: the crack faces may contact before the applied load
reaches zero. The crack “closes” at some positive stress intensity Ko,
called the opening stress intensity.

Only the portion of the cycle when the crack is actually open con-
tributes to growth. This leads to an effective stress intensity range:

AK@f = Kmax — Kop (7'5)

A modified Paris law using AK,ss often correlates data better than
nominal AK, especially for different R-ratios.

A

Figure 7.3: Fatigue striations (top-down
view of fracture surface). The crack
originated at the marked point and
grew outward. Each arc is one loading
cycle.

origitr
&~
1 cycle

> time

Figure 7.4: Only the shaded portion
of the cycle (above K,) drives crack
growth. AKgff = Kmax — Kop-
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Crack closure explains several observations:

¢ Higher R gives faster growth at the same AK (less closure, more of
the cycle is effective)

* An overload can retard subsequent growth (it enlarges the plastic
wake, increasing closure)

* Growth rate depends on history (the wake depends on previous
cycles)

The closure concept has been controversial. Some researchers ar-
gue it’s been overemphasized; others consider it essential. What's
clear is that the simple Paris law with nominal AK is an approxima-
tion, and real behavior is more complex.

7.9 Fatigue Life Prediction: A Worked Example

Given the Paris law, we can predict the life of a cracked component.
If a crack grows from initial size ay to critical size a., the number of

cycles is:
% da
N= ). cary 76)

Let’s work through a complete example. An aluminum plate has
a central crack of initial half-length ap = 2 mm. The plate is loaded
cyclically with stress range Ac = 100 MPa. The material has C =
5 x 10711 m/cycle (SI units), m = 3, and K;c = 30 MPay/m.

First, find the critical crack size. At failure:

Kic = Omaxy/mac

If R =0, then omax = Ao = 100 MPa:

2 2
aczl(KIC) :1<30) —0.029 m = 29 mm
7 \oma) ~ 7 \100

For a central crack in an infinite plate, K = o+/ma, so AK =
Ac+/ma. The Paris law becomes:

;lel = C(Aoy/ma)™ = C(Ao)" ™/ 2" /2

Rearranging and integrating:

ac da
1 C(Ao)mmm/2gm/2

N:

For m = 3:

C(Ac)373/2 Jq, ~ C(Ac)3m3/2 7 gl/2 1,

N:

75
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V= e (7 vw)

Substituting values:

2 1 1
N = -
5x 10~11 x (100)3 x 73/2 <\/o.002 \/0.029>
2 2 x16.5 5
N = 224-59)= ———— =119x1 1
510 T x 106 x 557 224759 = g7 g8 = 119X 107 eyeles
About 120,000 cycles. Let’s check: most of this life is spent with

the crack small. Ata = 2 mm:

AK = 100v/7t x 0.002 = 7.9 MPay/m
da

N =X 1071 % 79> =25 x 1078 m/cycle

At a = 20 mm (near failure):
AK = 100v/7t x 0.02 = 25.1 MPay/m
di
N
The growth rate near the end is 30 times faster than at the begin-

5x 1071 %2513 =79 x 1077 m/cycle

ning! This is why finding cracks early is so valuable—most of the life
has been consumed by the time a crack becomes large.

7.10 Damage Tolerance Philosophy

The modern approach to fatigue in aerospace is called damage tol-
erance. It represents a philosophical shift from “design to prevent
cracks” to “design assuming cracks exist.”

The principles:

1. Assume flaws exist—because they do, from manufacturing, han-
dling, or service damage

2. Size those flaws at the limit of detectability
3. Predict how long they take to grow to critical size

4. Set inspection intervals to catch cracks before they become danger-
ous

This approach was developed after catastrophic failures in the
1950s and 1960s. The de Havilland Comet, the first commercial jet
airliner, suffered multiple fuselage failures from fatigue cracks that
grew from rivet holes. The failures occurred after thousands of pres-
surization cycles, at stresses well below the design limit.

The lesson was profound: you cannot prevent fatigue cracks by
careful design alone. You must assume they will occur and manage
them through inspection and maintenance.
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7.11 A Philosophical Aside: The Nature of Fatigue

Fatigue raises interesting questions about the nature of damage and
memory in materials.

An elastic solid, by definition, has no memory. Each loading cy-
cle leaves it unchanged. Yet fatigue clearly involves memory—the
material “remembers” previous cycles, accumulating damage until
failure.

The resolution is that fatigue damage occurs at the microscale, in
regions of local stress concentration, even while the bulk remains
elastic. The material is simultaneously elastic (macroscopically) and
plastic (locally). This multi-scale character makes fatigue inherently
complex.

There’s also a philosophical question about the endurance limit.
For steels, we say there’s a stress below which fatigue failure won't
occur. But how do we know? We've tested to 107 or 108 cycles, but
what about 10!2? Some recent research suggests that very-high-cycle
fatigue can occur even below the classical endurance limit, through
different mechanisms (internal crack initiation rather than surface
initiation).

The endurance limit may be less absolute than we thought. Or
perhaps it’s real for surface-initiated fatigue but not for internally-
initiated fatigue. The honest answer is: we’re not entirely sure.

7.12  What We Don’t Fully Understand

Despite over 150 years of study, fatigue retains mysteries:

Why m =~ 3? The Paris exponent is remarkably consistent across
metals—typically 2 to 4. Why? If m = 2, growth would be propor-
tional to plastic zone size (r, & K?). But most metals show m > 2.
Various models have been proposed, but none provides a complete
first-principles prediction of m.
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Figure 7.5: Damage tolerance: inspec-
tions scheduled to catch cracks while
they're still safe.
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The threshold phenomenon. Why is there a AKy;, below which
cracks don’t grow? Is it truly zero growth, or just immeasurably
slow? The threshold appears related to microstructural features
(grain size, oxide debris, roughness-induced closure), but the detailed
mechanism remains debated.

Environment effects. Fatigue in air is different from fatigue in
vacuum, in seawater, in hydrogen. Corrosion-fatigue can dramatically
reduce the threshold and increase growth rates. The interplay be-
tween mechanical cycling and environmental chemistry at the crack
tip is complex and not fully understood.

Small crack behavior. Very small cracks (micrometers in size)
often grow faster than predicted by the Paris law extrapolated from
long-crack data. They can grow even below the long-crack threshold.
The small-crack problem has practical importance for predicting
initiation life but remains theoretically challenging.

Sequence effects. Real loading isn’t constant amplitude. Over-
loads can retard subsequent growth (through increased closure).
Underloads can accelerate it. Block loading produces different lives
than random loading of the same spectrum. These interaction effects
are captured empirically but not from first principles.

Variability. Fatigue life shows large scatter—factors of 10 be-
tween nominally identical specimens are common. This reflects the
stochastic nature of crack initiation, microstructural variability, and
sensitivity to surface condition. Predicting not just mean life but the
distribution of lives remains challenging.

7.13  The Importance of Inspection

Let me emphasize something practical. The entire damage tolerance
approach depends on inspection. You must find cracks before they
reach critical size.

For aircraft, this means:

¢ Non-destructive evaluation (NDE): ultrasonic, eddy current, X-ray,
dye penetrant

¢ Regular inspection intervals based on crack growth analysis
* Retirement of parts that can’t be adequately inspected

The detection limit is crucial. If your NDE method can reliably
find 2 mm cracks but not 1 mm cracks, you must assume 2 mm
cracks exist at any location you can’t prove is crack-free.

This is conservative, which is appropriate for safety-critical appli-
cations. But it also means that better inspection technology directly
enables longer intervals and lighter designs: if you can detect smaller
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flaws, you can catch cracks earlier in their growth, allowing either
longer inspection intervals or the use of higher-strength (but less
damage-tolerant) materials.

The interplay between fracture mechanics, inspection technology,
and structural design is at the heart of modern aerospace engineer-

mng.

Fatigue is the patient enemy. It does its work slowly, invisibly, one cycle at a time. The crack grows a few atoms with
each loading cycle, year after year, until one day it reaches critical size. Then, in an instant, what took millions of
cycles to prepare happens in a fraction of a second. The structure that held load yesterday fails catastrophically today.
This is why damage tolerance matters—not because we can prevent fatigue, but because we can manage it. With
proper inspection and analysis, fatigue cracks can be found and addressed before they become fatal. The price of safe
operation is eternal vigilance.







8
Dynamic Fracture

So far we’ve treated fracture as a quasi-static process. The crack
inches forward; we compute stresses; we check whether K exceeds
Kic; if so, the crack grows. Time doesn’t really enter, except as a
sequence of equilibrium states.

But this picture breaks down when cracks become unstable. A
crack that starts growing in a highly stressed material doesn’t stop—
it accelerates. And once a crack is moving fast, everything changes.
The stress field is different. The energy balance is different. Inertia
matters. Waves propagate.

This chapter is about what happens when cracks run. It turns out
there’s a speed limit, but reaching it is surprisingly hard. And along
the way, strange things happen.

8.1 The Question of Speed

How fast can a crack go?

Let’s start with dimensional analysis. A crack propagating through
a material must be controlled by the material properties: density
o, elastic modulus E (or shear modulus y), and fracture energy G..
From these, we can form a characteristic speed:

This is (roughly) the speed of elastic waves in the material. Infor-
mation about stress propagates at this speed. It would be strange if a
crack could go faster than the stress field that drives it—how would
the material ahead “know” to break?

So we expect: crack speed should be bounded by some elastic
wave speed.

What wave speed, exactly? In an isotropic elastic solid, there are
several:
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Dilatational (P) wave speed:

A+ 2u E(1-v)
“EN T T\ a2

This is the fastest wave, involving compression and extension. For
v =03, cg = 19c;.
Shear (S) wave speed:

_[H E
%_ﬁ_ZMH)

This is slower, involving shearing without volume change.

Rayleigh (R) wave speed:

087 +1.12v

RN G 0.92¢; (v =10.3)

Rayleigh waves are surface waves that travel along free surfaces—
like the crack faces.

Material E (GPa) p(kg/m3) cs(m/s) cg(m/s)
Steel 200 7800 3200 2950
Aluminum 70 2700 3100 2850
Soda-lime glass 70 2500 3400 3100
PMMA 3 1180 1000 920
Natural rubber 0.002 1100 27 25

For a Mode I crack (opening), energy arguments suggest the
Rayleigh speed cr is the limiting velocity. The crack tip is essentially
a propagating free surface, and Rayleigh waves are the characteristic
waves of free surfaces.

So we might expect cracks in steel to reach speeds around 3000
m/s—about 10 times the speed of sound in air, or roughly Mach 9!
That’s extraordinarily fast.

8.2 The Disappointing Reality

Here’s what experiments actually find: cracks are much slower than
CR.

In brittle materials like glass and PMMA, carefully measured
terminal velocities are typically 0.4-0.6cg. In tougher materials like
metals, they're even lower.

Why the discrepancy? This is one of the classic puzzles of dy-
namic fracture. Several factors contribute:

The fracture energy increases with velocity. As a crack speeds
up, the process zone doesn’t have time to develop fully. More energy

Table 8.1: Wave speeds in various
materials.



Material cr (m/s) Observed vz (M/S)  Uymax/CR
Soda-lime glass 3100 1500-1800 0.48-0.58
PMMA 920 400-500 0.43-0.54
Homalite-100 1250 400-500 0.32-0.40
Steel 2950 500—1500 0.17-0.51

goes into creating rough surfaces, microbranches, and secondary
damage. The effective G, rises with velocity.

Instabilities develop. Fast cracks become unstable. They oscillate,
wobble, and eventually branch. These instabilities consume energy
and prevent smooth, fast propagation.

The stress field changes unfavorably. At high velocities, the an-
gular distribution of stress near the tip shifts. The maximum stress
moves away from the forward direction, encouraging the crack to
turn or branch rather than run straight.

Let me elaborate on each of these.

8.3 Velocity-Dependent Fracture Energy

The quasi-static fracture energy G, is a material property. But it’s
really the energy dissipated per unit crack area under quasi-static
conditions. Under dynamic conditions, this can change.

Consider what happens at the crack tip. In quasi-static fracture,
the process zone has time to develop: plastic flow occurs, microcracks
form, the stress field relaxes. All these processes take time.

At high speeds, there isn’t time. The crack tip outruns some of
these relaxation processes. The result: a different (usually higher)
effective fracture energy.

We can write:

I'(v) = G- f(v/cR)

where f is an increasing function, with f(0) = 1. Various measure-
ments suggest f increases by factors of 2-5 as v approaches typical
terminal velocities.

This velocity dependence creates a stabilizing feedback. As the
crack speeds up, I' increases, consuming more of the available energy.
The crack slows until energy supply matches the velocity-dependent
demand.
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Table 8.2: Observed limiting crack
velocities compared to Rayleigh wave
speed.
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8.4 The Dynamic Energy Release Rate

For a moving crack, the energy release rate is not simply G = K?/E'.
The relationship becomes velocity-dependent:
(K7)?

G= i

A(v) (8.1)

where K? is the dynamic stress intensity factor and A(v) is a func-
tion that goes to 1 as v — 0 and to 0 as v — cg.

The function A(v) captures the effect of inertia. As the crack
moves faster, more energy goes into accelerating material near the
tip (kinetic energy), leaving less for actually extending the crack. At
v = cR, all available energy goes into kinetic energy—none is left for
the crack to advance.

An approximate form for A(v) is:

1—v/cg
(1—02/c3)V/2(1 — 02/ c2)1/2

A(v) =~

This has the right qualitative behavior: A — lasv — 0, and
A —0asv— cp.

Let’s compute an example. Take PMMA with ckx = 920 m/s,
cs = 1000 m/s, ¢; = 1850 m/s. At v = 460 m/s (half the Rayleigh
speed):

Afv) ~ 1-05 _ 0.5

(1-0.062)1/2(1—021)1/2 097 x 0.89 0.58

Even at half the theoretical limit, over 40% of the available energy
is going into kinetic energy rather than fracture.

8.5 The Equation of Motion

Combining these effects gives an equation of motion for a running
crack. At steady state:
G(K,v) =T(v) (8.2)

The left side is the available energy (depending on the loading
through K and on velocity through the A(v) function). The right side
is the energy consumed (increasing with velocity).

For a given loading level (given K), this equation determines the
crack velocity. Higher K gives higher v, but there’s an upper limit
where the increasing I'(v) absorbs everything the decreasing A(v)
makes available.

Let’s sketch this graphically. Plot both G(v) and I'(v) against ve-
locity:

Higher loading gives higher velocity, but the velocities pile up well
below cr because I'(v) is rising rapidly while G(v) is falling.
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energy rate Figure 8.1: Energy available (solid
curves, for different K) and energy con-

A
high K sumed (dashed) versus crack velocity.
Intersections give steady-state velocities.
med K
low K

8.6 Instabilities and Branching

Fast cracks don’t stay straight. As velocity increases, the crack begins
to oscillate, its path becoming wavy. At higher velocities still, the
crack branches—splitting into two or more diverging paths.

growth Figure 8.2: Crack branching: one crack
E— becomes many.

Why does branching occur? There’s a beautiful analysis by Yoffe
(1951) that gives insight. She calculated the stress field around a mov-
ing crack and found that the angular distribution of stress changes
with velocity.

At low velocities, the maximum tensile stress is directly ahead
of the crack (6 = 0). This favors straight propagation—the crack
“wants” to continue in its current direction.

As velocity increases, the maximum stress moves to an angle away
from 6 = 0. Above a critical velocity (around o.6¢s, or roughly 0.65¢cR,
in Yoffe’s analysis), the maximum is no longer ahead. The crack
“wants” to turn, or to split into branches that can follow the maxi-
mum stress directions.

Yoffe’s analysis was idealized (a steady-state crack in an infinite
medium), and the detailed mechanics of branching are more com-
plex. But the basic insight holds: the stress field at high velocities
destabilizes straight propagation.

Branching is energetically favorable when there’s excess energy. If
G > 2G,, there’s enough energy to drive two cracks instead of one.
Each branch has lower K than the parent crack, but together they can



s« LECTURES ON FRACTURES

consume more energy.

8.7 Fracture Surface Signatures

The fracture surface tells the story of dynamic fracture. In brittle

materials like glass, a characteristic sequence of features appears:
Mirror: Near the origin, the surface is smooth and flat. This is

where the crack was slow, well below the instability threshold.

Mist: As the crack accelerated, the surface becomes slightly
rough—a fine texture that scatters light, creating a misty appearance.
The crack is beginning to oscillate.

Hackle: Further from the origin, distinct elongated markings ap-
pear, radiating from the origin. These hackle marks indicate more
severe oscillations and incipient branching.

Branching: Beyond the hackle zone, the crack may split into multi-
ple branches, each creating its own fracture surface.

mirror (smooth)

mist (fine texture)

hackle (radial marks)

_ branching

The radii of these zones are related to the stress at fracture. An
empirical relationship (the mirror constant) relates the mirror radius
r, to the failure stress 0y

Of\/Tm & A

where A, is a material constant. This is useful in fractography: by
measuring the mirror radius, you can estimate the stress that caused
the fracture.

8.8 Crack Arrest

A running crack can be stopped if it enters a region where the driv-
ing force drops below the resistance. This is crack arrest, and it’s
crucial for damage-tolerant design.

Arrest can occur because:

Figure 8.3: Fracture surface zones in
brittle materials. The crack originated at
the central point. As velocity increases
outward: the smooth mirror zone,

the fine-textured mist zone, the radi-
ally marked hackle zone, and finally
branching.
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Stress decreases: The crack outruns the highly stressed region. K
drops, and if it falls below a critical arrest value, the crack stops.

Toughness increases: The crack enters tougher material—perhaps
a weld, a different alloy, or a compressively prestressed zone. Local
Kjc exceeds K, and the crack arrests.

Geometric features: Crack arrestor strips, rivet holes, or stiffeners
can locally reduce K or increase energy absorption.

The arrest criterion is:

K(aarrest) <K

where KJ, is the crack arrest toughness. Importantly, Kj, is often
different from the initiation toughness Kjc. For many steels, Ky, <
Kic, sometimes significantly.

Why the difference? A running crack experiences high strain rates
at the tip. Many materials are less tough under dynamic loading
than under quasi-static loading. The practical consequence is that K
must drop to a lower value (K},;) to arrest a running crack than the
value (Kjc) needed to prevent initiation of a stationary crack. In other
words, a running crack will continue propagating through regions
where a stationary crack would not have initiated.

This has sobering implications. If K at some location is between
K1, and K¢, a stationary crack won’t grow, but a running crack
won't stop. You can have stable configurations that are unstable to
perturbations.

8.9 A Historical Aside: The Liberty Ships

The importance of dynamic fracture was driven home by disaster.
During World War II, the United States built thousands of Liberty
Ships—welded steel cargo vessels, produced quickly and in vast
numbers to supply the war effort.

Some of these ships broke in half.

Not from enemy action. Not from storms. They broke in calm
seas, sometimes while sitting at dock. The fractures were catas-
trophic: the entire hull would split, typically starting from a hatch
corner or other stress concentration.

What was happening? The ships were made from steel that was
perfectly adequate under quasi-static testing. But they were operating
in cold North Atlantic waters, and the steel had a ductile-to-brittle
transition temperature above the service temperature. Under dy-
namic loading (wave impacts, cargo shifts), cracks initiated at stress
concentrations and ran through the brittle steel at high speed.

About 1,500 Liberty Ships experienced significant brittle fractures.
Twelve broke completely in half. The deaths and material losses

87
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prompted intensive research into fracture mechanics, leading directly
to many of the concepts we’ve discussed.

The Liberty Ship failures demonstrated that dynamic fracture
is not just an academic topic. It’s a matter of life and death, and it
requires careful attention to material properties, temperature, loading
rate, and the possibility of crack arrest.

8.10 Intersonic Cracks: Breaking the Speed Barrier

Can cracks ever exceed cg? The answer, surprisingly, is yes—but only
in Mode II (shear).

In Mode 1II, the crack faces slide past each other rather than pulling
apart. The relevant wave speed turns out to be ¢, rather than cg. And
under certain conditions, Mode II cracks can propagate at speeds
between ¢; and c;—the intersonic regime.

Intersonic cracks have been observed in laboratory experiments
and are believed to occur in some earthquakes. An earthquake fault
rupture is essentially a giant Mode II crack propagating along a
preexisting fault plane.

The mechanics of intersonic cracks is exotic. The crack tip is mov-
ing faster than shear waves can propagate, so there’s a Mach cone
of shear waves trailing behind—like the sonic boom behind a super-
sonic aircraft. The stress field has a different character, with disconti-
nuities along the Mach cone.

Mode I cracks, on the other hand, seem to be firmly limited to
sub-Rayleigh speeds. The energy arguments and instability analyses
all point to cg as an insurmountable barrier for tensile cracks. No
reproducible observations of supersonic Mode I cracks exist.

This Mode I / Mode II asymmetry is not fully understood. Why
should shear cracks be able to break the barrier while tensile cracks
cannot? The detailed answer involves the different stress fields and
energy flows for the two modes, but a complete intuitive explanation
remains elusive.

8.11 A Philosophical Aside: What Is “Fast”?

We’ve been discussing “fast” cracks—but how fast is fast?

In absolute terms, crack speeds in glass can exceed 1500 m/s.
That’s about Mach 4.5, or one mile every three seconds. A crack can
traverse a meter-scale structure in a millisecond.

But from the material’s perspective, what matters is the ratio v/cg.
A crack at 0.5cR is dynamically significant regardless of whether
that’s 1500 m/s (glass) or 12 m/s (rubber).

The time scale for dynamic effects is set by the transit time of
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waves across the process zone. If the process zone is a few millime-
ters and the wave speed is a few thousand meters per second, the
relevant time is microseconds. Any crack that traverses the process
zone in less than this time is “fast” in the sense that dynamic effects
matter.

This connects to the strain rate sensitivity of materials. At high
strain rates, materials often behave differently—typically becoming
stronger but more brittle. The transition from quasi-static to dynamic
behavior isn’t sharp, but somewhere in the range of 10% to 10° per
second strain rate, dynamic effects become important for most mate-
rials.

8.12  What We Don’t Fully Understand

Dynamic fracture remains an active research area with several open
questions:

The terminal velocity mystery. Why is the maximum crack
speed typically 0.4-0.6cg and not closer to cg? We have explana-
tions (velocity-dependent toughness, instabilities), but can we predict
the terminal velocity from first principles for a given material? Not
reliably.

The branching threshold. Branching occurs at some combination
of velocity and loading, but predicting exactly when is difficult. Is
there a universal criterion, or does it depend on material-specific
details?

Crack path selection. When a crack branches, what determines the
angles of the branches? What determines which branches dominate
and which arrest? The full dynamics of branching are complex and
not fully understood.

Intersonic Mode II propagation. Under what conditions do shear
cracks become intersonic? What stabilizes intersonic propagation
when it occurs? How does this apply to earthquake ruptures?

The transition from quasi-static to dynamic. When a crack accel-
erates from rest, how does the process zone evolve? How does the
velocity-dependent toughness develop? The transient regime is less
understood than steady-state propagation.

Three-dimensional effects. Most analysis assumes 2D (plane
strain or plane stress). Real cracks are 3D, with curved fronts and
varying conditions along the front. How do dynamic effects vary
along a 3D crack front?

These questions matter practically. Improving predictions of dy-
namic fracture would help design safer structures, better understand
natural phenomena like earthquakes, and develop materials opti-
mized for impact resistance.
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8.13 Implications for Design

What should engineers take away from dynamic fracture?

Unstable crack growth is catastrophic. Once a crack becomes
unstable, it propagates in microseconds to milliseconds. There’s no
time for warning or intervention. The entire fracture event is over
before you can react.

Arrest features are essential. Since fast cracks can’t always be
prevented, structures should be designed to arrest cracks before
they cause total failure. Crack arrestor strips, redundant structural
members, and tough regions can limit damage.

Temperature and rate matter. Many materials are less tough under
dynamic loading and at low temperatures. A material that passes
quasi-static tests at room temperature might fail catastrophically
under impact at low temperature. Both conditions must be tested.

Fractography reveals the history. The features on fracture surfaces—
mirror, mist, hackle, branching—record what happened. Learning to
read these features is valuable for failure analysis.

There is something awe-inspiring about a running crack. In a fraction of a second, it travels the length of a struc-
ture, converting stored elastic energy into kinetic energy, surface energy, and noise. The sound of fracture—the crack
of a breaking window, the report of a snapping cable—is the sonic signature of this violent energy transformation.
The crack tip moves at speeds approaching a mile per second, faster than most bullets. Yet it follows precise physical
laws, its speed and path determined by the interplay of stress, material, and geometry. Understanding these laws has
prevented countless failures. Not understanding them has caused disasters.




9
A Bestiary of Materials

We’ve developed fracture mechanics from general principles: energy
balance, stress fields, the K singularity, the process zone. These prin-
ciples apply to all materials—that’s part of their power. But how they
manifest depends on the specific material: its bonding, its structure,
its defects, its available deformation mechanisms.

This chapter is a tour through the zoo of materials, each with
its own fracture character, its own tricks, its own failure modes. By
the end, you'll see why there’s no universal theory of fracture—
and why the general framework we’ve developed is nevertheless
indispensable.

9.1 Glasses: The Ideal Brittle Material

Let’s start with glass, because glass is where fracture mechanics
began and where the theory works most cleanly.

Glass is an amorphous solid—atoms arranged in a disordered
network, like a liquid frozen in place. There are no crystal planes, no
dislocations, no easy modes of plastic deformation. When you stress
glass, bonds stretch. When the stress gets high enough, bonds break.
That's it.

The process zone in glass is tiny: perhaps 1—10 nanometers, barely
more than a few atomic spacings. Almost all the fracture energy goes
into creating the new surfaces. The measured G, values—typically 5-
10 J/m%—are close to, but somewhat higher than, the thermodynamic
fracture surface energy (27 ~ 3-5]/m? for freshly fractured silica),
indicating that even in this nearly ideal brittle material, some energy
dissipation occurs beyond simple bond breaking.

This makes glass almost perfectly brittle. The Griffith theory was
developed for glass, and glass behaves almost exactly as the theory
predicts.

But here’s the catch: glass strength is all about flaws.

The theoretical strength of silica glass (calculated from bond en-
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ergies) is about 7-14 GPa—roughly E/10 to E/5. In practice, com-
mercial window glass breaks at 50-100 MPa. That’s 200—400 times
weaker than the theoretical limit.

The difference is surface flaws. Microscopic scratches, handling
damage, impact sites from dust particles, chemical attack—all create
stress concentrations that nucleate fracture at stresses far below the
theoretical strength.

This explains several facts about glass:

Glass type Typical strength (MPa) Why zslsflaeczz'oﬂ?tsii:rength depends on
Window pane (handled) 30-50 Many flaws from use

Fresh glass rod 200-500 Few flaws

Fire-polished surface 500—1000 Flaws healed

Pristine fiber 3000—-5000 Minimal surface area

Griffith’s original insight came from exactly this observation. He
noticed that thin glass fibers were much stronger than thick ones, and
he reasoned (correctly) that thinner fibers have smaller surface area
and hence fewer flaws.

Glass optical fibers—the kind that carry internet traffic—are ex-
traordinarily strong because they’re drawn quickly, immediately
coated with polymer, and never touched by anything that could
create flaws. Their strength approaches a significant fraction of the
theoretical limit.

9.2 Ceramics: Brittle but Crystalline

Ceramics are like glass in their brittleness but different in structure.
They’re crystalline, with atoms arranged in regular lattices. Alu-
mina (Al,O3), silicon carbide (SiC), silicon nitride (SizNy), zirconia
(ZrO,)—these are the workhorses of structural ceramics.

Why are ceramics brittle despite being crystalline? The bonding
is ionic or covalent, which makes dislocation motion very difficult.
In metals (metallic bonding), dislocations glide easily. In ceramics,
they don’t—the energy barriers are too high. Without dislocation-
mediated plasticity, there’s no way to relieve stress concentrations,
and fracture occurs in a brittle manner.

Ceramic toughnesses are higher than glass but still modest:

The somewhat higher toughness of ceramics compared to glass
comes from small-scale mechanisms: microcracking ahead of the
crack, grain boundary effects, and crack deflection at grain bound-
aries. These create a small process zone that dissipates some energy.

Transformation toughening: a clever trick.



Material Kic (MPay/m) G (J/m?)
Silica glass 0.7-0.8 5-10
Alumina (Al,O3) 3-5 30-80
Silicon carbide (SiC) 3—4 25-50
Silicon nitride (SizNy) 4-7 40-100
Zirconia (ZrO,), unstabilized 2-3 15-30

Some ceramics have a trick up their sleeve. Zirconia undergoes a
phase transformation from tetragonal to monoclinic crystal structure
under stress. This transformation involves a volume expansion of
about 4%.

Near a crack tip, the high stress triggers this transformation in
a zone surrounding the tip. The expanding transformed particles
create compressive stresses that partially close the crack, resisting
its growth. The transformation also absorbs energy. Together, these
effects can increase Kjc by a factor of 3-5.

Transformation-toughened zirconia (TZP) has K¢ values of 8-

15 MPay/m—approaching the range of some metals. It's used in
applications demanding both wear resistance (ceramic hardness) and
some damage tolerance.

9.3 Metals: The Triumph of Plasticity

Metals are fundamentally different. They have metallic bonding—a

“sea” of electrons shared among positive ions—which allows disloca-

tions to move easily. This changes everything about fracture.
When a crack tip approaches in a metal, the stress concentration

triggers yielding before brittle fracture can occur. Plastic deformation

blunts the tip, spreads the stress over a larger volume, and dissi-
pates energy. The process zone is not nanometers but millimeters—
sometimes centimeters.

The result: metal toughnesses are enormous compared to ceram-

ics:
Material Kic (MPay/m) G (J/m?)
Aluminum 7075-T6 24-30 8,000-12,000
Titanium 6Al-4V 50—-100 15,000—50,000
4340 Steel (quenched) 50-80 12,000—30,000
A533B Steel (reactor vessel) 150—200 100,000—200,000
Pure copper 100-150 100,000+

The contrast with ceramics is stark. Copper has toughness 10,000
times higher than glass. This is entirely due to the plastic zone.
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Table 9.2: Fracture properties of com-
mon ceramics.
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Figure 9.1: Transformation toughening:
zirconia particles (circles) near the crack
tip transform and expand under stress
(filled), creating compressive stresses
that shield the crack.

Table 9.3: Fracture properties of com-
mon metals.
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How metals actually fracture: void growth and coalescence.
The mechanism of ductile fracture in metals is beautiful in its
complexity. It's not just “atoms pulling apart.” Instead:

1. As the crack tip region deforms plastically, voids nucleate at in-
clusions (sulfides, oxides) or second-phase particles. These hard
particles can’t deform with the matrix, so the interface debonds.

2. Under continued straining, the voids grow—the material between
them stretches and thins.

3. Adjacent voids eventually link up (coalesce), creating new crack
surface.

4. The main crack advances by this process of void growth and coa-
lescence.

.o . —> @?@ —_— @ Figure 9.2: Void nucleation, growth, and

coalescence in ductile metals.

inclusions voids grow  coalescence

The fracture surface of a ductile metal shows dimples—each dim-
ple is the half of a void. Dimple size correlates with inclusion spac-
ing, confirming the void mechanism.

The strength-toughness tradeoff.

Here’s a sobering fact: making a metal stronger often makes it less
tough.

Higher strength typically means smaller plastic zones (since rj «
(K/0oy)?). Smaller plastic zones mean less energy dissipation. The
result is lower toughness.

Table 9.4: Strength-toughness trade-
off in medium-carbon steel (Q&T =
quenched and tempered).

Condition oy Kic Comment
(MPa) (MPa+/m)

Annealed 400 150 Soft, tough
Q&T (300°C) 1200 60 Strong, moderate
Q&T (200°C) 1500 35 Very strong, brittle

This tradeoff is one of the fundamental constraints in structural
design. You want high strength (to save weight) but high toughness
(to tolerate flaws). You can’t maximize both. Material selection in-
volves finding the best compromise for your application.

9.4 The Brittle-to-Ductile Transition

Many materials that are ductile at room temperature become brit-
tle when cold. This brittle-to-ductile transition (BDT) has caused



catastrophic failures and remains one of the most important consider-
ations in structural engineering.

What happens: As temperature drops, thermal activation de-
creases, and dislocation motion becomes harder. The yield stress
rises. At some temperature, yielding becomes so difficult that cleav-
age fracture (brittle breaking along crystal planes) becomes easier
than plastic deformation. Below this transition temperature, the ma-
terial fractures in a brittle manner at much lower energy.

ductile

brittle

Y
H

The transition is not sharp—it occurs over a temperature range.
And it’s not a fixed material property; it depends on:

e Composition (carbon, nitrogen, and phosphorus raise the transi-
tion; nickel lowers it)

¢ Grain size (finer grains lower the transition)

* Loading rate (faster loading raises the effective transition tempera-
ture)

¢ Constraint (thicker sections have higher transitions due to plane
strain effects)

Engineering disasters. The BDT was implicated in the Liberty
Ship failures of World War II. Welded steel ships broke apart in cold
North Atlantic waters. The steel was adequate at normal tempera-
tures but became brittle in the cold, and stress concentrations at weld
defects initiated fast fracture.

The Titanic’s hull steel has been analyzed and found to have a
transition temperature around 25-35°C—far above the —2°C water
temperature at the time of the collision. The steel was significantly
more brittle than modern steels would be at that temperature, likely
contributing to the extent of the damage.

Modern structural steels are specified with transition temperatures
well below their service range. But the threat remains, especially
under impact loading where high strain rates effectively raise the
transition.
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Figure 9.3: Brittle-to-ductile transition
in toughness.
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9.5 Polymers: A Different World

Polymers are neither crystalline ceramics nor dislocation-mediated
metals. They’re long-chain molecules—sometimes tangled randomly
(amorphous), sometimes partially ordered (semi-crystalline). Their
fracture behavior is governed by molecular motion and chain interac-
tions.

Temperature and rate matter enormously.

Polymers have a glass transition temperature Tg. Below Tg, molec-
ular motion is frozen out, and the polymer is glassy—stiff, often
brittle. Above Tg, chains can move more freely, and the polymer is
rubbery—soft, tough.

But here’s the subtlety: what matters is not just temperature but
the ratio of observation time to molecular relaxation time. A polymer
can behave glassy at low temperatures or high rates, and rubbery
at high temperatures or low rates. The same material can be brittle
under impact and tough under slow loading.

This complicates fracture testing. The measured Kjc depends on
loading rate. For design, you need data at the relevant rates and
temperatures for your application.

Crazing: a polymer-specific mechanism.

Many glassy polymers (PMMA, polystyrene, polycarbonate) de-
velop crazes before fracturing. A craze looks like a crack but isn't—
it’s a planar zone of highly stretched material containing fibrils and
voids.

The fibrils bridge the craze and carry load. As the craze opens,
fibrils stretch and eventually break, but progressively—the craze tip
advances while material behind it is still carrying load. This crack
bridging increases toughness.

Crazed polymers like PMMA have G, values of 300-1000 J/m?—
much higher than truly brittle materials like glass.

Rubber toughening.

A common strategy to toughen brittle polymers is to add rubber
particles. When stress concentrations develop around the particles,
they trigger either crazing or shear yielding in the surrounding ma-
trix. These mechanisms absorb energy and increase toughness.

High-impact polystyrene (HIPS) is polystyrene with rubber parti-
cles. ABS adds rubber to a styrene-acrylonitrile copolymer. Both are
much tougher than the base polymer.

9.6 Composites: Engineered Fracture Behavior

Fiber-reinforced composites are deliberately designed to control frac-
ture. The reinforcement (typically glass, carbon, or aramid fibers)

T

fibrils
Figure 9.4: A craze: fibrils bridge the
opening.



provides strength and stiffness. The matrix (polymer, metal, or ce-
ramic) binds the fibers together. The interface between them is criti-
cal.

Fiber bridging and crack deflection.

When a crack in the matrix encounters a fiber, several things can
happen:

® The crack breaks the fiber (fiber fracture)}—bad for toughness

¢ The crack goes around the fiber, which remains intact (fiber
bridging)—good for toughness

e The crack runs along the fiber-matrix interface (debonding)—
intermediate
matrix

fiber
<— cjack tip

fibers bridge crack

The optimal interface is neither too strong (fiber breaks) nor too

stress

weak (easy debonding, poor load transfer). Interface design is a
major topic in composite engineering.

Delamination.

In laminated composites (layers of unidirectional fibers at different
angles), cracks often run between layers rather than through them.
This delamination is a characteristic failure mode.

Delamination can be good (it deflects cracks and absorbs energy)
or bad (it reduces stiffness and can grow progressively). Impact dam-
age often manifests as internal delamination that’s invisible from the
surface but significantly reduces strength.

Delamination resistance is characterized by interlaminar fracture
toughness, Gyc for Mode I (opening) and Gyjc for Mode II (shear).
These are typically measured with specialized specimen geometries
(double cantilever beam for Gjc, end-notched flexure for Gyc).

9.7 Concrete and Rock: Quasi-Brittle Materials

Concrete, rock, ice, and some ceramics fall into a category called
quasi-brittle. They have process zones that are large compared to
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Figure 9.5: Fiber bridging in a com-
posite: the matrix cracks, but intact
fibers spanning the crack resist opening.
This bridging significantly increases
toughness.
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structural dimensions, which changes how fracture mechanics ap-
plies.

The process zone is distributed microcracking.

In concrete, ahead of a propagating crack, there’s a zone of dis-
tributed microcracks. These microcracks dissipate energy and shield
the main crack tip from the full applied stress. The process zone can
be centimeters in size—comparable to aggregate dimensions.

This leads to size effects. A small concrete beam and a geometri-
cally similar large beam don’t have the same nominal strength. The
larger beam is weaker (in terms of average stress at failure), because
the process zone is a smaller fraction of its dimensions.

R-curve behavior. Cx
As a crack grows in concrete, its resistance to growth increases.
This rising R-curve reflects the development of the process zone and

crack bridging by aggregate particles.

The rising R-curve means that stability analysis is more complex. A
a

A crack may be stable even if G > G initially, because Gg rises as ) . )
Figure 9.6: Rising R-curve in concrete.

the crack grows. This requires comparing the slope of the G-curve
(driving force) with the slope of the R-curve (resistance).

9.8 Fractures in the Earth

Fracture mechanics applies not just to engineered structures but to
the Earth itself.

Earthquakes. An earthquake is sudden slip on a fault—essentially,
rapid Mode II (shear) crack propagation. The rupture nucleates at a
point and spreads along the fault at speeds approaching the shear
wave velocity.

The seismic waves we feel are the elastic waves generated by
this dynamic fracture event. The energy released—the earthquake’s
magnitude—depends on stress drop, fault area, and slip, which are
analogous to G, crack area, and displacement in laboratory fracture.

Some earthquake ruptures propagate at intersonic speeds (faster
than the shear wave but slower than the P-wave), as we discussed in
Chapter 8. Understanding earthquake mechanics is fundamentally a
problem in dynamic fracture.

Hydraulic fracturing. In oil and gas extraction, fluid pumped into
rock at high pressure creates fractures. The competition between
fluid pressure (opening the crack) and rock toughness (resisting it)
governs the fracture geometry.

Glaciers. Ice is a quasi-brittle material. Crevasses form when
tensile stresses exceed ice strength. Iceberg calving is fracture on
a massive scale. Understanding ice fracture has implications for
predicting sea level rise.
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9.9 Biological Materials: Nature’s Solutions

Nature has evolved materials with remarkable fracture resistance.
Bone, wood, shell, tooth enamel—these achieve toughness through
hierarchical structure and clever design.

Bone combines mineral (hydroxyapatite, for stiffness) with protein
(collagen, for toughness) at multiple length scales. The microstruc-
ture is hierarchical: collagen molecules form fibrils, fibrils form fibers,
fibers form lamellae, lamellae form osteons.

Bone exhibits an R-curve—toughness increases with crack ex-
tension. The mechanisms include microcracking, crack bridging by
collagen fibers, and crack deflection at interfaces between structural
units.

Nacre (mother-of-pearl) arranges brittle aragonite platelets in a
brick-and-mortar structure with thin organic layers. Cracks must
navigate this tortuous path, with energy absorbed by platelet pullout
and organic layer deformation. The toughness is about 1,000 times
higher than pure aragonite (some studies report up to 3,000 times,
depending on the measure used).

These natural materials have inspired biomimetic design: engi-
neered materials that mimic nature’s strategies. Layered ceramics,
fiber-reinforced composites with controlled interfaces, and hierarchi-
cal structures all draw on biological precedents.

9.10 Why No Universal Fracture Theory?

After this tour, you might wonder: why isn’t there one theory that
explains fracture in all materials?
The answer is that fracture is not one phenomenon. It involves:

¢ Bond breaking (atomic scale)

e Defect behavior (dislocations, microcracks, voids)

* Microstructure (grains, fibers, phases)

¢ Time-dependent processes (diffusion, viscosity, creep)

¢ Environmental interactions (corrosion, hydrogen, water)

These operate differently in different materials. Glass fractures
by simple bond breaking. Metals fracture by void growth and co-
alescence. Polymers craze. Composites delaminate. Each requires
understanding the specific mechanisms at work.

What fracture mechanics provides is a framework—K, G, the en-
ergy balance, the process zone concept—that applies universally. The
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framework tells you what questions to ask. The answers are material-
specific.

This is why practicing engineers need both general principles
and material-specific knowledge. Knowing fracture mechanics isn’t
enough; you need to know how it applies to your particular steel al-
loy, your particular polymer grade, your particular composite layup.

9.11  What We Don’t Fully Understand

Even after a century of study, mysteries remain:

Predicting toughness from microstructure. We can measure K¢,
and we can explain qualitatively why some materials are tough.

But predicting K;c quantitatively from first principles—from crystal
structure, bond strengths, defect populations—remains extremely
difficult.

Environment-assisted cracking. Many materials fail unexpect-
edly in certain environments: stress corrosion cracking, hydrogen
embrittlement, liquid metal embrittlement. The interactions between
mechanical stress and environmental chemistry at the crack tip are
complex and not fully understood.

Small-scale fracture. As devices shrink to microscale and nanoscale,
fracture mechanics must be reformulated. Continuum assumptions
break down. Size effects appear. This frontier is active but incom-
plete.

Biological materials. Despite progress, we don’t fully understand
how natural materials achieve their remarkable properties. Mimick-
ing them in synthetic materials remains challenging.

The honest summary: we have a powerful framework that works
well in many situations, but the detailed connection between mi-
crostructure and macroscopic fracture behavior remains partly empir-
ical. New materials, new applications, and new questions continue to
push the field forward.

Every material has its own way of breaking. Glass shatters cleanly, metals tear, wood splinters, concrete crumbles,
composites delaminate. These differences reflect the underlying physics—bond types, crystal structures, available
deformation mechanisms. A good fracture mechanics practitioner knows not just the general theory but the particu-
lar behavior of the materials they work with. The theory provides the framework; the material provides the content.
Together, they give us the tools to predict, prevent, and—uwhen necessary—understand failure.
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