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Preface

These notes are an attempt to understand fracture mechanics the way

Feynman might have approached it: starting with puzzles, building

physical intuition, and letting the mathematics emerge from the

physics rather than the other way around.

The central mystery is this: solids are far weaker than they should

be. If you calculate the stress needed to pull apart a perfect crystal,

atom by atom, you get a number about a thousand times larger than

what actually breaks real materials. Why? The answer, discovered

by A.A. Griffith in 1921, launched the field of fracture mechanics and

changed how we think about the strength of materials.

These notes assume you’re comfortable with continuum mechanics—

stress tensors, strain energy, elasticity. We won’t derive stress-strain

relations from scratch. But we will try to build a physical under-

standing of why cracks behave as they do, grounded in energy, ex-

periments, and careful reasoning.
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Why Things Break

In this chapter we shall discuss one of the great puzzles of materials

science—a puzzle that occupied some of the best minds of the early

twentieth century, and whose resolution opened up an entirely new

way of thinking about mechanical failure. The puzzle is simple to

state: why are real materials so much weaker than they ought to be?

If you sit down with what you know about atomic bonds and do a

straightforward calculation of how much stress it should take to pull

a solid apart, you get a number—call it the “theoretical strength”—

that is typically E/10 or so, where E is Young’s modulus. But if you

go into a laboratory and actually test a piece of steel or glass or alu-

minum, you find it breaks at perhaps E/1000. That’s a factor of a

hundred. Where did all that strength go?

Now, you might say: “So what? Materials have the strength they

have. Engineers have been designing structures for centuries without

worrying about theoretical strength.” And that’s true. But the dis-

crepancy is so large, and so systematic—it shows up in almost every

material—that it demands explanation. When a simple calculation

gives an answer that’s wrong by two orders of magnitude, something

interesting is happening. Finding out what that something is turned

out to be the key to understanding fracture.

1.1 What Do We Mean by “Strength”?

Before we can ask why materials are weaker than expected, we ought

to be clear about what we mean by “strength.” The word gets used

loosely, and there are subtleties.

When an engineer says a piece of steel has a “tensile strength”

of 500 MPa, she means: if you put it in a testing machine and pull

on it, it will break when the average stress reaches 500 MPa. This is

an operational definition—it tells you what to measure, not what’s

happening at the atomic scale.

But what’s actually happening? At the microscopic level, “break-
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ing” means separating atoms that were bonded together. The steel

isn’t some continuous jelly; it’s atoms arranged in a crystal lattice,

held together by metallic bonds. When it breaks, those bonds break.

So another way to ask about strength is: how hard do you have to

pull on atoms to break the bonds between them?

These two questions—the engineer’s “when does the sample fail?”

and the physicist’s “what does it take to break bonds?”—turn out to

have very different answers. Understanding why they differ is the

starting point for fracture mechanics.

Let me put in some numbers to make the puzzle concrete. For

mild steel:

• Young’s modulus: E ≈ 200 GPa

• Theoretical strength (from bond-breaking): σth ∼ E/10 ≈ 20 GPa

• Actual tensile strength: σactual ≈ 400 MPa = 0.4 GPa

The ratio is 20/0.4 = 50. Fifty times weaker than the atomic bonds

can explain. For glass, the discrepancy is even worse—closer to a

factor of 100.

1.2 Let’s Calculate the Theoretical Strength

Where does this theoretical strength come from? Let me work through

the calculation, because it’s instructive to see how simple it is—and

therefore how surprising the discrepancy becomes.

Consider two planes of atoms in a crystal, separated by the equi-

librium spacing a. We want to know what stress is required to pull

them apart.

x

Figure 1.1: Pulling two planes of atoms
apart.

As you separate the planes by a distance x beyond the equilibrium

spacing, the atoms resist. For small x, this resistance is just Hooke’s

law: the stress is proportional to the strain, with constant of propor-

tionality E:

σ = E ·
x

a
(for small x) (1.1)

But this can’t continue forever. The atomic bonds aren’t ideal

springs that get arbitrarily stiff. At some point, the bonds reach their

maximum strength and begin to fail. For large enough x, the atoms

are essentially independent—the stress drops to zero.

So the stress as a function of separation must look something like

this: it starts at zero, rises roughly linearly (Hooke’s law), reaches a

maximum (the theoretical strength σth), then decreases back to zero

as the atoms separate completely.

A simple mathematical form that captures this is:

σ = σth sin
(πx

λ

)

(1.2)
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where λ is the “range” of the bond—roughly the distance over which

it goes from maximum strength to fully broken.

x

σ

σth

λ/2

Figure 1.2: Cohesive stress versus
separation. The slope at origin is E/a.

Now here’s the connection. For small x, the sine is approximately

linear:

σ ≈ σth ·
πx

λ
(1.3)

Comparing with Hooke’s law:

σth ·
π

λ
=

E

a
(1.4)

Therefore:

σth =
E

π
·

λ

a
(1.5)

What is λ? It’s the range over which the bond fails. This can’t be

much larger than an atomic spacing—you can’t stretch an atomic

bond by more than an interatomic distance before it’s completely

broken. If we take λ ≈ a:

σth ≈
E

π
≈

E

3
(1.6)

Being more conservative, with λ ≈ a/3, we get σth ∼ E/10.

The exact prefactor depends on details of the crystal structure and

interatomic potential, but the order of magnitude is robust. For any

reasonable assumptions, you get σth somewhere between E/30 and

E/3. Let’s call it E/10 as a round number.

1.3 Putting in the Numbers

Let’s make a table. For each material, I’ll list Young’s modulus, the

theoretical strength (taking σth = E/10), and the actual measured

strength:

Material E σactual Ratio

(GPa) (GPa)

Glass 70 0.05 140

Steel (mild) 200 0.4 50

Steel (hi-str) 200 1.5 13

Aluminum 70 0.3 23

Copper 120 0.2 60

Silicon 130 0.5 26

Diamond 1000 3 33

Table 1.1: Theoretical versus actual
tensile strengths. Ratio is σth/σactual

where σth ≈ E/10.

The pattern is universal: actual strengths are 10 to 100 times lower

than theoretical. Glass is the worst offender, with a ratio of 140. Even

the best materials—high-strength steels, carefully processed—fall

short by more than an order of magnitude.

Now, you might object: “Maybe the calculation is wrong. Maybe

atomic bonds don’t work the way you assumed.”

Fair enough. But people have calculated theoretical strengths us-

ing much more sophisticated methods—quantum mechanical calcu-

lations of specific materials, molecular dynamics simulations, careful

analysis of specific interatomic potentials. The answers vary in de-

tail, but they all give the same order of magnitude. The theoretical

strength really is about E/10.

And if that weren’t convincing enough, we can actually achieve

the theoretical strength in special circumstances, as we’ll see shortly.
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1.4 Some Things We Might Try

Confronted with this discrepancy, what might we try to explain it?

Maybe bulk materials have internal stress concentrations? Good

thought. But this just pushes the question back: why should internal

stress concentrations reduce the strength by a factor of 100? What are

these concentrations, and where do they come from?

Maybe the bonds are weaker than we calculated? Possible in

principle, but we can check. The calculation of theoretical strength

from interatomic potentials is well-established. Spectroscopic mea-

surements of bond energies agree with the potentials. The bonds

really are that strong.

Maybe bulk samples fail by a different mechanism—not by

breaking all bonds across a plane? Now we’re getting somewhere.

This is exactly right. Bulk materials don’t fail by having all bonds

break simultaneously. They fail by having bonds break sequentially,

starting from some initiation point. The question becomes: what

determines where failure initiates, and why does it happen at such

low average stress?

Maybe thermal fluctuations help break bonds? At high tempera-

tures, yes. But the discrepancy exists even at cryogenic temperatures

where thermal energy is negligible compared to bond energies. Tem-

perature matters for some aspects of fracture, but it doesn’t explain

the basic discrepancy.

1.5 Griffith’s Experiments

In the early 1920s, A.A. Griffith at the Royal Aircraft Establishment in

England decided to investigate this puzzle experimentally.1 1 Griffith, “The Phenomena of Rupture
and Flow in Solids,” Phil. Trans. R. Soc.
A, 1921. This paper launched the field
of fracture mechanics.

His approach was simple but clever. Instead of testing bulk sam-

ples and trying to figure out why they’re weak, he’d test samples of

different sizes and see how strength varied. If the atomic-bond pic-

ture were correct, strength shouldn’t depend on size—atoms don’t

know how big the sample is.

Griffith made glass fibers by drawing molten glass into thin

threads, then measured their tensile strength. Here’s what he found:

Fiber diameter (µm) Tensile strength (GPa)

∼1000 (1 mm) 0.17

100 0.56

42 0.90

20 1.75

10 2.60

3.3 3.40

Table 1.2: Griffith’s data on glass fiber
strength versus diameter (approximate
values).
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diameter

strength

σth

Figure 1.3: Fiber strength approaches
σth as diameter decreases.

The thinnest fibers—just a few micrometers in diameter—reached

3.4 GPa. The theoretical strength for glass (taking E = 70 GPa, σth ≈
E/10) is about 7 GPa. The thin fibers were within a factor of two of

the theoretical limit!

Meanwhile, bulk glass (a centimeter thick) breaks at about 0.05

GPa—nearly a hundred times weaker than the thin fibers.

The same material. The same atomic bonds. But strength varies by

almost a factor of 100 depending on sample size. Smaller is stronger.

This is completely backwards from naive expectations. If anything,

you might expect smaller samples to be weaker—more surface area

relative to volume, and surfaces are often where problems start. But

no: smaller is much, much stronger.

1.6 The Resolution: Flaws

Griffith realized what was happening. The difference between a thin

fiber and a bulk sample isn’t the material—it’s the flaws.

Any real piece of glass has defects: scratches on the surface from

handling, microscopic cracks from thermal stresses during cooling,

bubbles trapped during manufacture, dust particles, chemical inho-

mogeneities. A bulk sample has more surface area and more volume

than a thin fiber, so it has more opportunities to contain flaws.

If flaws are what limit strength, then a sample with more flaws

should be weaker. A sample with fewer flaws—like a freshly drawn

thin fiber—should be stronger. In the limit of a perfect, flaw-free

sample, you should approach the theoretical strength.

This explains the size effect. It’s not that small samples are intrinsi-

cally stronger; it’s that they’re statistically less likely to contain a bad

flaw.

But wait. A scratch on the surface might be a micrometer deep.

The sample might be a centimeter thick. Why should such a tiny

defect reduce the strength by a factor of 100?

To answer this, we need to understand stress concentration—how

a small flaw can create enormous local stresses. That’s the subject of

the next chapter. For now, let’s just accept that flaws matter, and ask:

can we verify Griffith’s picture more directly?

1.7 The Proof: Perfect Whiskers

If flaws cause weakness, then removing flaws should restore strength.

In the 1950s and 60s, materials scientists learned to grow “whiskers”—

extremely thin, nearly perfect single crystals of metals and ceramics.

Whiskers are grown slowly under controlled conditions, typically
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from vapor deposition or slow precipitation from supersaturated

solutions. The growth is slow enough that the crystal structure forms

without defects. A typical whisker might be 1-10 µm in diameter and

a few millimeters long.

The results were stunning:

Material σth (GPa) Whisker strength (GPa) Ratio

Iron ∼20 13.4 1.5

Copper ∼12 2.9 4

Silicon ∼13 6.5 2

Graphite ∼100 ∼20 5

Alumina ∼40 15 2.7

Table 1.3: Whisker strengths approach
theoretical values.

Iron whiskers achieved 13.4 GPa—within a factor of 1.5 of the the-

oretical strength. These weren’t exotic materials with special bond-

ing; they were ordinary iron atoms, just arranged without defects.

The theoretical strength isn’t fiction. It really is there, locked in

the atomic bonds. We just can’t access it in bulk materials because of

flaws.

1.8 Why Can’t We Eliminate Flaws?

A natural question: if flaws are the problem, why not eliminate

them?

For small samples under controlled conditions, you can—that’s

what whiskers demonstrate. But for bulk materials in real applica-

tions, it’s essentially impossible, for several reasons:

Surfaces are inevitably damaged. Any machining, grinding, or

handling scratches the surface. Even careful polishing leaves sub-

surface damage. You can reduce surface flaws, but you can’t elimi-

nate them.

Internal defects form during processing. When metal solidifies

from the melt, it forms grains, and the grain boundaries are regions

of disorder. Inclusions (non-metallic particles) get trapped. Vacancies

and dislocations are thermodynamically inevitable at finite tempera-

ture.

Flaws nucleate in service. Corrosion creates pits. Cyclic loading

creates fatigue cracks. Thermal cycling creates stress concentrations

at grain boundaries. Even a perfect material wouldn’t stay perfect.

Strength is limited by the worst flaw. It doesn’t matter how few

flaws you have; it only takes one bad one to cause failure. The sta-

tistical nature of flaw populations means that larger samples almost

certainly contain more severe flaws.

This last point is crucial and worth emphasizing. Imagine you’ve
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manufactured a material with flaws of random sizes. In a small sam-

ple, the largest flaw might be 10 µm. In a sample 100 times larger,

you have 100 times more chances to find a large flaw; statistically,

the largest one will be bigger. The larger sample will be weaker, even

though the material is identical.

This is a statistical, not a deterministic, weakness. It’s why strength

measurements show scatter, and why safety factors are necessary.

1.9 A Philosophical Aside

We’ve arrived at a rather remarkable conclusion. The “strength” of a

material—something you might think of as an intrinsic property like

density or melting point—isn’t really a material property at all. It’s a

property of the material plus its flaw population.

Two pieces of steel, chemically identical, can have completely

different strengths depending on how they were processed and han-

dled. The atoms are the same; the bonds are the same; but the flaws

are different.

This is why engineers don’t trust single measurements of strength.

They test many samples and use statistical descriptions: mean

strength, standard deviation, Weibull modulus (a measure of scat-

ter). The “strength” in engineering handbooks is typically some

conservative lower bound, not the intrinsic capability of the material.

There’s something almost philosophical about this. We like to

think that materials have definite properties. But for strength, the

“property” depends on extrinsic factors—history, size, surface condition—

as much as intrinsic ones. The material has a theoretical strength, yes,

but it also has a practical strength that depends on how it was made

and used.

Griffith’s insight was to stop asking “what is the strength of

glass?” and start asking “given a specific flaw, when will the glass

fail?” This shift in perspective—from material property to defect

mechanics—is the foundation of fracture mechanics.

1.10 What We Still Don’t Fully Understand

I should be honest about the limits of our understanding.

The theoretical strength calculation assumes that all bonds across

a plane break simultaneously. In reality, fracture proceeds by sequen-

tial bond breaking, starting at the flaw tip and propagating outward.

The details of this process—how fast, in what pattern, with what

energy dissipation—are still active research topics.

For very ductile materials like copper or low-carbon steel, things

are even more complicated. Before fracture, extensive plastic de-
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formation occurs. Dislocations move, material flows, the crack tip

blunts. The simple picture of brittle fracture doesn’t apply, and more

sophisticated theories are needed.

Even for brittle materials like glass, the behavior at the crack

tip—where stress becomes very large and eventually “something

breaks”—involves physics at the nanometer scale that’s difficult to

observe directly. Computer simulations help, but real materials have

complexities (impurities, surface chemistry, environmental effects)

that are hard to capture.

We have a very successful engineering framework for fracture

mechanics, which we’ll develop in the coming chapters. But the

atomic-scale details of why and how bonds break at a crack tip re-

main subjects of ongoing research.

1.11 Looking Ahead

The rest of these notes will develop the machinery for answering

Griffith’s question: given a flaw, when will it cause failure?

This requires two ingredients:

1. Understanding stress concentration: How does a flaw amplify the

local stress? What determines the stress at a crack tip?

2. A fracture criterion: Given high stress at a crack tip, what deter-

mines whether the crack grows?

The first question leads us to stress intensity factors—a way to

characterize how “severe” a crack is. The second question leads to

energy-based fracture criteria—Griffith’s great contribution.

Both answers turn out to involve the same combination of applied

stress σ and crack size a: the quantity σ
√

πa. This combination ap-

pears everywhere in fracture mechanics. But understanding why

requires working through the details, which is what the next few

chapters will do.

For now, the main message is this: real materials are weak because

they contain flaws, and flaws act as stress amplifiers. The theoretical

strength is real—we can achieve it in perfect whiskers—but practical

strength is determined by defects. Fracture mechanics is the science

of predicting when flaws will grow into cracks, and when cracks will

cause failure.

Griffith’s 1921 paper was published in the Philosophical Transactions of the Royal Society and was largely ignored for
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nearly thirty years. It was elegant, it was correct, but it applied only to brittle materials like glass. Engineers cared

about steel, which is ductile. In steel, Griffith’s original theory gave predictions that were badly wrong. It wasn’t until

the late 1940s and 1950s, when Irwin and Orowan modified the theory to account for plastic dissipation, that fracture

mechanics became practical for metals. But the essential insight—that fracture is governed by the energetics of crack

growth, not by average stress—remains Griffith’s lasting contribution to engineering science.
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Stress Concentration

We ended the last chapter with a puzzle: tiny flaws control the

strength of materials. A scratch a micrometer deep can reduce the

strength of glass by a factor of a hundred. How can such a small

defect have such a large effect?

In this chapter we shall answer that question. The answer—stress

concentration—is one of the most important ideas in solid mechanics,

and understanding it properly requires us to think carefully about

what “stress” really means near a sharp corner or crack tip. We’ll

find that the mathematics leads us to infinity, which sounds prob-

lematic. But infinities in physics often point us toward something

important, and this one is no exception.

2.1 A First Attempt: Reduced Cross-Section

Let’s try the most obvious explanation first, and see why it fails.

Suppose you have a rod with a small notch cut into it. You might

reason: “The notch removes some material, so the load-bearing cross-

section is smaller. The stress is force divided by area, so with less

area, the stress must be higher.”

This is true, but it’s completely inadequate to explain what we ob-

serve. If a notch removes 1% of the cross-sectional area, the average

stress in the remaining material increases by about 1%. That’s not

going to explain factors of 100.

Let’s be quantitative. Consider a plate of thickness t, width W =

10 cm, with a surface crack of depth a = 1 mm. The crack removes

area a × t from the load-bearing cross-section.

Fractional area lost: a/W = 1 mm/100 mm = 1%

So the average stress in the remaining material is higher by about

1%. But experiments show that such a crack can reduce the failure

stress by a factor of 10 or more. The “reduced area” explanation is off

by roughly a factor of 1000.

There must be something else going on.
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2.2 Why Stress Crowds Around Obstacles

Here’s a better way to think about it. Imagine you’re looking at stress

from above, watching how it “flows” through a material. This isn’t

quite right physically—stress isn’t a fluid—but the mental picture is

useful.

In a uniform plate under tension, the stress flows straight through,

like water in a wide, smooth channel. Now put an obstacle in the

way—a hole, a notch, a crack. The stress can’t flow through the ob-

stacle; there’s nothing there to carry it. So it has to go around.

Figure 2.1: Stress “flow lines” around a
circular hole.

When the stress goes around, it has to squeeze into a smaller re-

gion. Think of a river with an island: the water speeds up as it passes

the island because the same volume has to flow through a narrower

channel. Similarly, the same “amount” of stress has to pass through a

narrower region of material, so the stress magnitude increases.

But there’s more to it than just squeezing. The geometry matters

enormously. A smooth, rounded obstacle causes moderate stress

concentration. A sharp corner causes severe concentration. And a

mathematically sharp crack—infinitely sharp—causes infinite stress

concentration.

This is not just hand-waving. We can calculate it.

2.3 The Circular Hole: A Factor of Three

The simplest case is a circular hole in an infinite plate under uniform

tension. This problem was solved in the 19th century, and the answer

is elegant: the maximum stress occurs at the edge of the hole, on

the “equator” (perpendicular to the loading direction), and it equals

exactly 3 times the applied stress far from the hole.

σmax = 3σ∞ (circular hole) (2.1)

Let’s appreciate what this means. A simple round hole—nothing

sharp about it—triples the local stress. If you design a structure to

carry 100 MPa average stress, the material near any holes experiences

300 MPa. You’d better account for that.

Why specifically 3? It comes from solving the elasticity equa-

tions in polar coordinates around the hole. The mathematics isn’t

trivial, but the factor of 3 emerges cleanly from the boundary condi-

tions. You might think it depends on the hole size, but remarkably, it

doesn’t. A pinhole and a porthole both give a factor of 3, as long as

the hole is small compared to the plate dimensions.1 1 The stress concentration factor does
depend on finite-size effects when the
hole diameter is comparable to the
plate width, but for small holes in large
plates, it’s always 3.

The factor of 3 is bad enough, but real flaws aren’t circular. They’re

elongated, crack-like. What happens then?
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2.4 Inglis and the Elliptical Hole

In 1913, C.E. Inglis, a British naval architect, solved the problem of

an elliptical hole in an infinite plate.2 He was motivated by practical 2 Inglis, “Stresses in a Plate Due to the
Presence of Cracks and Sharp Corners,”
Trans. Inst. Naval Arch., 1913.

concerns—understanding stress around rivet holes and plate edges in

ships—but his solution turned out to have far-reaching implications.

An ellipse has two characteristic dimensions: the semi-major axis a

(the long direction) and the semi-minor axis b (the short direction). A

circle is just an ellipse with a = b. By making b smaller while keeping

a fixed, we can make the ellipse more and more crack-like.

a/b = 1 a/b = 2 a/b = 7 a/b = 25

Figure 2.2: Ellipses with the same
length a but decreasing width b.

Inglis found that the maximum stress at the tips of the ellipse is:

σmax = σ∞

(

1 +
2a

b

)

(2.2)

Let’s make a table to see what this predicts. The aspect ratio a/b

tells us how elongated the ellipse is (a is the half-length along the

crack direction, b is the half-width perpendicular to it). The stress

concentration factor Kt = σmax/σ∞ tells us how much the local stress

exceeds the applied stress:

a/b Kt Shape

1 3 circle

2 5 mild ellipse

5 11 elongated

10 21 crack-like

50 101 very sharp

100 201 knife-edge

Table 2.1: Stress concentration factor
Kt = 1 + 2a/b for an elliptical hole.
Higher a/b means a more crack-like
shape; higher Kt means the local stress
is that many times greater than the
far-field stress.

Now we’re getting somewhere! As the ellipse becomes more crack-

like, the stress concentration factor shoots up. An ellipse with a/b =

100 gives a stress concentration of 201—the local stress is 200 times

the average. This is the kind of amplification that can explain why

small cracks are so dangerous.

But notice something troubling. As b → 0 (infinitely sharp ellipse),

the stress concentration goes to infinity. What does that mean?

2.5 Rewriting in Terms of Tip Radius

Before confronting the infinity, let’s rewrite Inglis’s formula in a more

illuminating form.

The tip of an ellipse has a radius of curvature ρ. For an ellipse

with semi-axes a and b:

ρ =
b2

a
(2.3)

This ρ is physically meaningful: it’s how “sharp” the tip is. A large

ρ means a blunt, rounded tip. A small ρ means a sharp tip.
a

ρ

Figure 2.3: The tip radius ρ character-
izes sharpness.
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From ρ = b2/a, we get b =

√
aρ, and therefore:

a

b
=

√

a

ρ
(2.4)

Substituting into Inglis’s formula:

σmax = σ∞

(

1 + 2

√

a

ρ

)

(2.5)

For a sharp crack where a ≫ ρ, the “1” is negligible:

σmax ≈ 2σ∞

√

a

ρ
(2.6)

This is an important formula. It tells us that stress concentration

depends on two things:

• How long the crack is (a)

• How sharp the tip is (ρ)

And the dependence is through the square root of their ratio.

2.6 Numbers for Real Cracks

Let’s put in realistic numbers.

A crack in glass might be 1 mm long (so a = 0.5 mm, since a is

the half-length). How sharp is its tip? In a brittle material like glass,

cracks can be atomically sharp. The tip radius might be on the order

of an atomic spacing, roughly 0.3 nm. Let’s use ρ = 1 nm to be

slightly conservative.

√

a

ρ
=

√

0.5 × 10−3 m

1 × 10−9 m
=

√

5 × 105 ≈ 700 (2.7)

The stress concentration factor is about 2 × 700 = 1400.

If the glass is under an average stress of 50 MPa (a typical break-

ing stress for window glass), the stress at the crack tip is:

σmax ≈ 1400 × 50 MPa = 70,000 MPa = 70 GPa (2.8)

Now compare this to the theoretical strength. For glass, E ≈ 70

GPa, so σth ≈ E/10 ≈ 7 GPa.

The stress at the crack tip exceeds the theoretical strength by a

factor of 10!

This is remarkable. Even at a modest applied stress—well below

what a flaw-free specimen could sustain—the local stress at a crack

tip exceeds the strength of atomic bonds. Something has to give.
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2.7 The Mathematical Crack: Infinite Stress

Let’s push the mathematics further. What happens as we make the

crack infinitely sharp—ρ → 0?

According to our formula:

σmax = 2σ∞

√

a

ρ
→ ∞ as ρ → 0 (2.9)

The stress becomes infinite.

Now, you might object: “That’s ridiculous. Nothing physical is

infinite. You’ve taken an idealization too far.”

And you’d be partly right. Real cracks have some finite tip radius,

even if it’s only an atomic spacing. But the mathematical idealization

of a perfectly sharp crack—a crack with ρ = 0—turns out to be

enormously useful.

Here’s why. When we model a “mathematical crack” (a line where

the material is discontinuous), we can solve the elasticity equations

exactly. The solution shows that stress varies near the tip as:

σ ∼
1√
r

(2.10)

where r is the distance from the tip.

At r = 0, this is indeed infinite. But for any r > 0, it’s finite.

And here’s the key: the form of the field—the 1/
√

r dependence—is

universal. It’s the same for any crack in any linear elastic material

under any loading. What changes is only the amplitude of the field.

This amplitude has a name: the stress intensity factor, denoted K.

We’ll develop it properly in Chapter 5, but for now the essential point

is that we can characterize a crack’s “severity” by a single number, K,

that tells us how strong the singular field is.

2.8 A Philosophical Aside: Infinity in Physics

The appearance of infinity often troubles students. “How can we use

a theory that predicts infinite results?”

The answer is that physics is full of useful infinities. Consider

electrostatics: the electric field of a point charge goes to infinity at the

location of the charge. We don’t reject Coulomb’s law because of this.

We recognize that real charges have finite size, and the idealization of

a point charge is useful for distances large compared to that size.

Similarly, real cracks have finite tip radii, and the “infinite stress”

of the mathematical crack is useful for distances large compared

to that radius. Inside some small “process zone” near the tip, the

idealized solution breaks down. But outside that zone, the 1/
√

r
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field accurately describes the stress, and the stress intensity factor K

meaningfully characterizes the crack.

The crucial observation is that although stress is infinite at the

tip, the stress intensity factor K is finite. And fracture criteria, as

we’ll see, are formulated in terms of K, not in terms of the infinite tip

stress. The infinity is, in a sense, tamed by extracting from it a finite,

physically meaningful quantity.

This is a general pattern in physics: singular solutions often con-

tain finite, meaningful information, which is extracted by looking

at the “coefficient of the singularity” rather than the singular value

itself.

2.9 Seeing Stress Concentration

These aren’t just theoretical predictions. You can actually see stress

concentration.

One beautiful technique is photoelasticity. Certain transparent

materials—some plastics and glasses—become birefringent (optically

anisotropic) when stressed. If you view them between crossed po-

larizers, you see colored fringes that map out lines of constant stress

difference.

Near a crack or notch, the fringes crowd together dramatically.

Far from the stress concentration, they’re widely spaced. Close to it,

they’re packed tight. The pattern directly visualizes the 1/
√

r field.

crack

Figure 2.4: Schematic of photoelastic
fringes near a crack tip. Each fringe is a
contour of constant stress. The fringes
crowd together near the tip because
stress rises steeply there—a direct
visualization of the 1/

√
r singularity.

Another technique is digital image correlation: paint a speckle

pattern on a surface, photograph it before and after loading, and

use computer algorithms to track how the speckles move. From the

displacements, you can calculate strains and hence stresses. The

results confirm the theoretical predictions beautifully.

These experimental validations give us confidence that the theory,

despite its mathematical idealizations, captures something real about

how materials behave.

2.10 Other Geometries: The Role of Sharpness

The ellipse/crack is the most important case, but stress concentration

occurs in many geometries. Some examples:

The pattern is clear: rounder is better, sharper is worse. Any fea-

ture with a 90◦ or sharper internal corner creates a stress singularity—

not as strong as a crack (the exponent in r−α is less than 1/2), but still

potentially dangerous.

This has practical implications. When you drill a hole in a struc-

ture, the stress concentration is 3 regardless of the hole size. You

can’t avoid it; you can only design for it. But if you have to machine a
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Geometry Max. stress concentration

Circular hole 3

Semicircular notch 3

U-shaped notch (semicircular bottom) ≈ 3

V-shaped notch, 90◦ angle ≈ 3.5

V-shaped notch, 60◦ angle ≈ 4

Sharp corner, 90◦ angle ∞ (singular)

Crack (0◦ angle) ∞ (singular)

Table 2.2: Stress concentration factors
for various geometries.

corner, round it. A fillet (a rounded corner) can reduce stress concen-

tration from infinity to a manageable factor of 2 or 3.

Engineers have developed extensive handbooks of stress concen-

tration factors for common geometries. Before finite element analysis

was routine, these handbooks were essential for structural design.

They’re still useful for quick estimates and sanity checks.

2.11 The Paradox: Why Doesn’t Everything Break?

We’ve established that crack tips experience enormous stresses—

often exceeding the theoretical strength of the material. This seems to

lead to a paradox.

If the stress at a crack tip always exceeds the bond strength (which

our calculations suggest), why doesn’t the crack always grow? Ev-

ery piece of glass has microscopic cracks. Every piece of metal has

internal defects. According to our stress analysis, these should all

propagate, tearing the material apart.

Yet materials survive. Your coffee mug doesn’t spontaneously

shatter. The window holds against the wind.

Something must be limiting crack growth, and it can’t be stress—

we’ve shown that local stresses are always huge at sharp cracks.

Griffith’s great insight, which we’ll develop in the next chapter, was

that energy provides the right perspective.

A crack might have enormous stress at its tip, but that doesn’t

mean it will grow. Growth requires the crack tip to actually move,

and that requires energy. Specifically, creating new crack surface

requires energy (the surface energy of the material). This energy has

to come from somewhere—it comes from the elastic strain energy

stored in the loaded material.

The crack grows only if the energy released by advancing exceeds

the energy required to create new surface. This energy balance, not

the local stress, determines whether fracture occurs.

But we’re getting ahead of ourselves. The next chapter will de-

velop Griffith’s energy criterion in detail. For now, the key messages
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from this chapter are:

1. Flaws cause stress concentration—enormously so for sharp cracks

2. The local stress at a crack tip can far exceed the theoretical strength

of the material

3. The stress field near a crack tip has a universal 1/
√

r form, charac-

terized by the stress intensity factor K

4. Despite infinite stresses in the idealized theory, K is finite and

physically meaningful

5. The stress picture alone creates a paradox, suggesting we need a

different approach (energy)

Inglis’s 1913 paper appeared in a journal for naval architects, not physicists. He was solving a practical problem

in shipbuilding, not trying to found a new field. Yet his solution to the elliptical hole problem turned out to be the

mathematical foundation for understanding cracks. Sometimes the most far-reaching theoretical insights come from

the most practical motivations. Griffith, who built on Inglis’s work, was similarly motivated by practical concerns—

understanding why aircraft fabric cracked. The theory of fracture mechanics emerged not from abstract speculation

but from engineers trying to build things that wouldn’t break.
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Griffith’s Criterion

We arrive now at one of the most beautiful and consequential ideas

in materials science. Griffith’s energy criterion for fracture is one of

those insights that, once you understand it, seems almost obvious—

yet it took decades for anyone to think of it, and decades more for it

to be widely accepted.

The problem we face is this: we’ve established that stress at a crack

tip can be enormous, theoretically infinite for a mathematically sharp

crack. If the local stress exceeds the theoretical strength of the mate-

rial (which our calculations say it should), why doesn’t every crack

grow immediately? How can a window with microscopic surface

scratches survive for years? How can a steel beam with internal flaws

carry load?

The stress-based picture has led us to a paradox. Griffith’s resolu-

tion was to abandon stress and think about energy instead.

3.1 Why Stress Fails Us

Let me be more explicit about why focusing on stress leads to trou-

ble.

In Chapter 2, we calculated that the stress at a crack tip in glass,

under typical breaking conditions (50 MPa average stress, 1 mm

crack), exceeds 70 GPa—ten times the theoretical strength. This cal-

culation assumed an atomically sharp crack, which is a reasonable

approximation for brittle materials.

Now, you might say: “Fine, so the bonds at the crack tip break.

The crack advances by one atomic spacing. But then there’s a new

tip, also atomically sharp, also with infinite stress. Why doesn’t it

keep going?”

And that’s exactly the puzzle. If infinite (or very large) stress is the

criterion for crack growth, then once growth starts, it should never

stop. Every loaded piece of glass should shatter instantly. Every

metal with an internal flaw should fail catastrophically.
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But they don’t. Materials are much more tolerant of cracks than a

stress analysis would suggest.

Here’s another way to see the problem. Consider two cracks in

glass:

• Crack A: length 0.1 mm, under stress 200 MPa

• Crack B: length 1 mm, under stress 63 MPa

Both have the same value of σ
√

a (roughly 63 MPa·mm1/2). The

stress concentration factor, and hence the tip stress, is essentially

the same for both. If stress controls fracture, they should behave the

same.

And in fact they do behave the same—both are at about the critical

condition for glass. But the stress-based explanation doesn’t tell us

why. We need a different framework.

3.2 Griffith’s Insight: Energy

Griffith’s key realization was that growing a crack requires creating

new surface. The material has to actually separate. This isn’t just

a matter of atoms being stressed; they have to come apart, perma-

nently.

Creating surface costs energy. Every material has a surface energy

γ—the energy required to create a unit area of new surface. For

glass, γ ≈ 0.5 J/m2. This might seem small, but it’s not negligible

when you’re creating square meters of new surface (as happens in a

propagating crack).

Where does this energy come from? It has to come from somewhere—

energy is conserved. The only available source is the elastic strain

energy stored in the loaded material. When a solid is under stress,

it stores energy, just like a compressed spring. If the crack grows,

the material near the crack relaxes somewhat, releasing some of this

stored energy.

So there’s a competition:

• Growing the crack releases elastic energy (favorable)

• Growing the crack requires creating surface, which costs energy

(unfavorable)

The crack will grow only if the energy released exceeds the energy

required. This is Griffith’s criterion.

3.3 Setting Up the Calculation

Let’s make this quantitative. Consider an infinite plate with a central

crack of length 2a (so a is the half-length), under uniform tension σ
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far from the crack. We want to calculate how the total energy of the

system depends on crack length.

2a

σ

Figure 3.1: A cracked plate under
tension.

The total energy has three parts:

1. Elastic strain energy. In an uncracked plate under stress σ, the

strain energy per unit volume is σ2/2E. With a crack present, some

of this energy is released because the material near the crack can

relax—it’s no longer carrying load.

How much is released? This requires solving the elasticity prob-

lem for a cracked plate. The full solution is beyond our scope, but

the result is famous: the presence of a crack of half-length a releases

elastic energy (per unit thickness) equal to:

∆Uelastic =
πσ2a2

E
(plane stress) (3.1)

For plane strain (thick plate), replace E with E/(1 − ν2), where ν is

Poisson’s ratio. The difference is typically 10-20%.

The key feature is that released energy is proportional to a2—it

grows quadratically with crack length.

2. Surface energy. The crack has two faces, each of length 2a (per

unit thickness). Creating these surfaces costs:

Usurface = 2 × 2a × γ = 4aγ (3.2)

This grows linearly with crack length.

3. Work done by external loads. This depends on the loading

conditions. For “fixed grip” loading (constant displacement at the

boundaries), no external work is done as the crack grows. For “fixed

load” loading (constant stress), the boundaries move as the plate

becomes more compliant, and the external forces do work. The two

cases give the same criterion for crack growth—the energy balance

works out identically—so we’ll assume fixed grips for simplicity.

3.4 The Total Energy Curve

The total energy (relative to an arbitrary constant) is:

U(a) = −
πσ2a2

E
+ 4aγ (3.3)

The first term is negative (energy released by the crack); the sec-

ond is positive (energy required for surface). Let’s understand this

graphically.

For small a, the linear term dominates. Increasing a increases total

energy—the energy cost of creating surface outweighs the energy

released. The crack is stable.
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a

U

4aγ

−πσ2a2/E

ac

total

Figure 3.2: Energy versus crack length.
Surface energy is linear; released elastic
energy is quadratic.

For large a, the quadratic term dominates. Increasing a decreases

total energy—the energy released exceeds the surface energy cost.

The crack is unstable; it will grow spontaneously.

The transition occurs at a critical crack length ac where the curve

has a maximum.

3.5 The Griffith Criterion

The condition for the crack to be at the critical point is dU/da = 0:

dU

da
= −

2πσ2a

E
+ 4γ = 0 (3.4)

Solving for the critical crack length:

ac =
2Eγ

πσ2
(3.5)

Or equivalently, solving for the critical stress given a crack of

length a:

σc =

√

2Eγ

πa
(3.6)

This is the Griffith equation. It’s worth memorizing.

Let me rewrite it to emphasize what depends on what:

σc

√
πa =

√

2Eγ (3.7)

The left side involves loading (σ) and geometry (a). The right side

involves only material properties (E, γ). The crack becomes critical

when the left side equals the right side.

The combination σ
√

πa will appear again and again in fracture

mechanics. It’s closely related to the stress intensity factor K, which

we’ll develop in Chapter 5.
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3.6 Testing the Prediction

Griffith tested his criterion experimentally using glass, the archetypal

brittle material. He prepared glass tubes with controlled cracks and

measured the stress at which they failed.

For glass, the relevant material properties are:

• Young’s modulus: E = 70 GPa

• Surface energy: γ ≈ 0.5 J/m2

The predicted critical stress is:

σc =

√

2 × 70 × 109 × 0.5

πa
=

√

7 × 1010

πa
(3.8)

Let’s compute this for several crack lengths:

a (mm) a (m) σc predicted (MPa) σc measured (MPa)

0.1 10−4 14.9 ∼ 14

0.2 2 × 10−4 10.5 ∼ 10

0.5 5 × 10−4 6.7 ∼ 6.5

1.0 10−3 4.7 ∼ 4.5

2.0 2 × 10−3 3.3 ∼ 3.2

5.0 5 × 10−3 2.1 ∼ 2.0

Table 3.1: Griffith’s predictions versus
experimental measurements for glass.

The agreement is remarkable—within 10% across a factor of 50

in crack length. This wasn’t a fit; these are genuine predictions from

independently measured values of E and γ.

This was strong evidence that the energy approach was fundamen-

tally correct. The stress at the crack tip might be infinite (or at least

very large), but that’s not what matters. What matters is the energy

balance.

3.7 Understanding the Result

Let me try to give some physical intuition for the Griffith criterion.

Why σ2 in the numerator? Elastic energy is proportional to stress

squared (think of the area under a stress-strain curve, which is trian-

gular: 1
2 σε = 1

2 σ2/E). So the energy available for crack growth scales

as σ2.

Why a in the denominator of σc? Longer cracks release more

energy when they grow (the quadratic dependence on a). So less

applied stress is needed to reach the critical condition.

Why the square root? It comes from the competition between the

quadratic released energy (∝ σ2a2) and the linear surface energy cost

(∝ a). Balancing them gives σ2a ∝ constant, hence σ ∝ 1/
√

a.
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Why Eγ appears together? Stiffer materials (E high) store more

energy at a given strain, providing more energy for crack growth.

But the energy goes into creating surface, so higher surface energy (γ

high) makes growth harder. The product Eγ measures the “resistance

to fracture” of the material.

3.8 What About Metals?

Here’s where Griffith’s original theory runs into trouble. Let’s try

applying it to steel.

For steel:

• Young’s modulus: E = 200 GPa

• Surface energy: γ ≈ 2 J/m2

For a 1 mm crack (a = 0.5 mm):

σc =

√

2 × 200 × 109 × 2

π × 0.5 × 10−3
=

√

8 × 1011

1.57 × 10−3
=

√

5.1 × 1014 ≈ 23 MPa

(3.9)

This predicts that steel with a 1 mm crack should fail at only

about 23 MPa—far below the yield stress of most steels, which can

be 300–1500 MPa. But experiments show that steel can tolerate 1

mm cracks at stresses many times higher than this. The prediction is

badly wrong.

What went wrong?

The problem is that steel isn’t brittle. When you load steel, it

doesn’t just deform elastically and then suddenly fracture. Before

fracture, extensive plastic deformation occurs near the crack tip. The

material yields, dislocations move, the crack tip blunts.

All this plastic deformation requires energy—much more energy

than creating the bare surface. For steel, the energy consumed in

fracturing a unit area might be 10,000 to 100,000 J/m2, compared to

the surface energy of about 2 J/m2. The “true” cost of growing the

crack is dominated by plastic work, not surface energy.

Griffith’s criterion remains conceptually correct: the crack grows

when the energy released exceeds the energy consumed. But the

consumed energy isn’t just 2γ; it’s 2γ plus a much larger plastic

dissipation term.

3.9 The Irwin-Orowan Modification

In the late 1940s and 1950s, George Irwin and Egon Orowan inde-

pendently recognized how to fix this. The solution is simple but pro-



griffith’s criterion 31

found: replace the surface energy 2γ with a general “fracture energy”

Gc that includes all energy dissipation at the crack tip.

The modified criterion becomes:

σc =

√

EGc

πa
(3.10)

where Gc is the critical energy release rate, also called the fracture

toughness. For brittle materials like glass, Gc ≈ 2γ. For ductile

materials like steel, Gc can be 1000 to 100,000 times larger.

Material 2γ (J/m2) Gc (J/m2)

Glass ∼ 1 1–10

Ceramics ∼ 1 10–100

Epoxy ∼ 0.1 100–500

PMMA ∼ 0.1 500–1000

Aluminum ∼ 2 10,000–30,000

Steel (tough) ∼ 4 50,000–200,000

Table 3.2: Surface energy versus frac-
ture energy. Ductile materials have
Gc ≫ 2γ.

The beauty of this approach is that we don’t need to understand

the detailed mechanisms at the crack tip. Whether the energy goes

into surface creation, plastic work, microcracking, or any other pro-

cess, it’s all captured in a single number Gc that can be measured

experimentally.

3.10 A Philosophical Aside: Why Energy?

Why should energy be the right quantity to consider, rather than

stress?

There’s a deep reason, connected to thermodynamics. Equilibrium

in thermodynamics is determined by energy minimization (or, more

precisely, free energy minimization). A system will spontaneously

change from one state to another only if the change reduces the total

energy.

A crack at length a is in one state; a crack at length a + da is in

another. The crack will grow if—and only if—the second state has

lower energy. This is a general principle, independent of the specific

mechanism of growth.

Stress, by contrast, is a local quantity. It tells you about forces at a

point. But a crack involves changes over a finite region, and whether

the change happens depends on global energetics, not local forces.

There’s also a practical reason. Stress is singular at a crack tip—

mathematically infinite. Energy release rate is finite. You can measure

Gc in a well-defined way; you can’t measure “the stress at the crack

tip” because it’s not a meaningful quantity for a sharp crack.
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This shift from local stress to global energy was Griffith’s con-

ceptual breakthrough. It transformed fracture from an intractable

problem (how do you deal with infinite stress?) to a tractable one

(measure Gc and compare with G).

3.11 Stable and Unstable Cracks

The energy curve we drew earlier has a maximum at a = ac. Let’s

think about what this means for crack stability.

For a < ac, the energy increases with crack length. If the crack

were to grow slightly, energy would increase—this would require

external work. Without that work being supplied, the crack won’t

grow. Small cracks are stable.

For a > ac, the energy decreases with crack length. If the crack

grows slightly, energy decreases. The excess energy has to go somewhere—

into kinetic energy of the separating surfaces, into heat, into acoustic

emission. Once started, the crack runs away. Large cracks are unsta-

ble.

At a = ac exactly, the crack is in unstable equilibrium, like a ball

balanced on top of a hill. The slightest perturbation sends it one way

or the other.

This explains a puzzling feature of fracture: the abruptness of fail-

ure. A structure can operate safely for years with a slowly growing

crack. The crack might extend by corrosion, fatigue, or other slow

mechanisms. As long as a < ac, nothing catastrophic happens.

But one day, the crack reaches ac. Suddenly, it becomes unstable.

Growth that was barely perceptible becomes runaway. The structure

fails in milliseconds.

This is why fracture failures are so dangerous—they give little

warning. The transition from stable to unstable is sharp.

3.12 Load Control vs. Displacement Control

I glossed over something earlier. Whether we hold load constant or

displacement constant during crack growth affects the details, though

not the final criterion.

Under load control (constant σ), as the crack grows, the material

becomes more compliant and the boundaries move. The external

forces do positive work: W = σ × ∆δ > 0. But this work exactly com-

pensates for the additional strain energy stored in the now-longer

sample. The energy available for crack growth is the same as under

displacement control.

Under displacement control (constant δ), the boundaries can’t

move, so the external forces do no work. The energy for crack growth
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comes entirely from releasing stored strain energy.

In both cases:

G = −
∂Utotal

∂A
=

πσ2a

E
(3.11)

where A = 2a × thickness is the crack area (factor of 2 for both

faces) and the derivative is taken appropriately for each loading

condition.

The criterion G = Gc is the same either way. The energy release

rate G depends on the current state (crack length, stress), not on how

you got there.

3.13 What We Don’t Fully Understand

Griffith’s criterion, with the Irwin-Orowan modification, is remark-

ably successful. But there are things it doesn’t explain.

What happens at the crack tip? The criterion treats the crack tip

as a black box that consumes energy Gc per unit area. But what’s ac-

tually happening? Bonds breaking, dislocations moving, microcracks

forming—the details depend on the material and aren’t captured by a

single number.

Why does Gc vary so much? Glass has Gc ∼ 10 J/m2; steel has

Gc ∼ 100, 000 J/m2. That’s four orders of magnitude. What makes

steel so much tougher? The answer involves plastic deformation, but

the details are complex.

Rate and temperature effects. In some materials, Gc depends

on how fast you load and what temperature you’re at. This isn’t

captured by the simple energy balance.

Initiation vs. propagation. It often takes more energy to start a

crack than to keep it going. The initial Gc for nucleation can exceed

the steady-state Gc for propagation.

These are active research areas. The Griffith-Irwin framework is

the foundation, but the full story is richer.

3.14 Practical Implications

What does all this mean for engineering practice?

1. Cracks matter, but only above a critical size. Small cracks

are stable. Large cracks are dangerous. The critical size depends on

loading and material toughness.

2. Tougher materials tolerate larger cracks. High Gc means you

can have bigger flaws before failure. This is why we use tough mate-

rials for critical applications.

3. σ
√

a is the key quantity. Doubling the stress is equivalent to

quadrupling the crack length. Engineers track both.



34 lectures on fractures
4. Failure can be sudden. The transition from stable to unstable

is abrupt. Inspection programs aim to find cracks before they reach

critical size.

5. The energy approach works even when stress doesn’t. For

sharp cracks, stress is singular. Energy release rate is well-defined

and measurable.

Griffith’s 1921 paper was published in the Philosophical Transactions of the Royal Society—one of the oldest and most

prestigious scientific journals in the world. Yet it was largely ignored for three decades. Engineers continued using

empirical stress-based methods. It took the catastrophic failures of World War II (Liberty Ships breaking in half, air-

craft crashes from fatigue) to force a reconsideration of fracture. Irwin, working at the Naval Research Laboratory in

the 1950s, developed the stress intensity factor K and connected it to Griffith’s energy approach. This finally made

fracture mechanics practical for engineering. Today, the aircraft you fly in, the bridges you drive over, and the pres-

sure vessels that store energy all rely on fracture mechanics for their safe design.
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Energy Release Rate

In the last chapter, we derived Griffith’s criterion for a specific geom-

etry: a central crack in an infinite plate under uniform tension. The

result was elegant:

σc =

√

2Eγ

πa
(4.1)

But there’s a problem. Engineering structures aren’t infinite plates

with central cracks. They have edges, holes, stiffeners, varying thick-

ness, multiple cracks, complex loading. The derivation we did as-

sumed a specific stress field (uniform tension in an infinite plate with

a crack), and that stress field came from solving a particular elasticity

problem.

Do we need to redo the entire calculation for every new geometry?

That would be impractical. What we need is a general framework—a

way to characterize “how hard the crack is being driven” that works

for any configuration.

That framework is the energy release rate, denoted G. It’s one of

the most useful concepts in fracture mechanics.

4.1 The Problem with Geometry-Specific Solutions

Let me make the problem concrete. Suppose you have three different

cracked structures:

1. A large plate with a central crack (the Griffith geometry)

2. An edge-cracked plate

3. A beam with a crack growing from a surface

Each has different stress fields. The elastic energy depends on

geometry in complicated ways. If we had to re-derive the energy

balance for each case from scratch, fracture mechanics would be a

catalog of special solutions, not a coherent theory.
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What saves us is a key observation: for any geometry, we can

define the energy release rate G as the energy released per unit area

of new crack surface. This G can be calculated (or measured) for any

geometry, and the fracture criterion is always the same:

G ≥ Gc (4.2)

The critical value Gc depends only on the material, not on the

geometry. The driving force G depends on the geometry and loading.

Separating these is what makes fracture mechanics practical.

4.2 Defining G Precisely

The energy release rate is defined as:

G = −
dUtotal

dA
(4.3)

where Utotal is the total potential energy of the system (elastic

strain energy minus work done by external forces), and dA is an

increment of crack surface area.

The minus sign is there because energy is released when the crack

grows—Utotal decreases, so dUtotal < 0, and we want G to be positive.

For a through-crack in a plate of thickness B, growing by length da

creates area dA = B · da on each face, or 2B · da total. Conventions

vary about whether to count one face or two; I’ll use dA = B · da (one

face) to match common notation, but be careful when comparing

formulas from different sources.

With this convention:

G = −
1

B

dUtotal

da
(4.4)

G has units of energy per area: J/m2, which is the same as N/m

(force per length). You can think of it as the “force” driving the crack

forward, per unit length of crack front.

4.3 Why G Works

Here’s the key insight. Suppose you have two completely different

structures—different shapes, different loadings—but they happen

to have the same value of G at their crack tips. Then they have the

same “driving force” for fracture. If one is at the critical condition

(G = Gc), so is the other.

This is the principle of similitude. It means we can:

• Test small laboratory specimens and apply the results to large

structures
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• Use handbook solutions for G in standard geometries

• Compare different designs on a common basis

The fracture criterion G = Gc is universal. What varies from

geometry to geometry is how G depends on load and crack length.

But once you know G for your specific configuration, the criterion is

the same.

4.4 Calculating G: The Compliance Method

How do we actually calculate G for a given geometry? There are

several approaches. The most intuitive is the compliance method.

The compliance C of a cracked structure is defined as:

C =
δ

P
(4.5)

where δ is the displacement at the point where load P is applied.

A cracked structure is more compliant (flexible) than an uncracked

one. As the crack grows, compliance increases.

a

C

Figure 4.1: Compliance increases with
crack length.

Now, the stored elastic energy in a linear elastic body loaded by

force P is:

U =
1

2
Pδ =

1

2
CP2 (4.6)

Let’s work out the energy balance when the crack grows by da,

under fixed load P.

Before growth: stored energy is U = 1
2 CP2.

After growth: compliance is C + dC, so stored energy is U + dU =
1
2 (C + dC)P2.

Change in stored energy: dU = 1
2 P2dC.

But we also need the work done by the external load. The dis-

placement increases by:

dδ = P · dC (4.7)

Work done by load: W = P · dδ = P2dC.

The energy released for crack growth is:

Energy for crack = W − dU = P2dC −
1

2
P2dC =

1

2
P2dC (4.8)

This equals G · B · da (energy per area times crack area created).

Therefore:

G =
P2

2B

dC

da
(4.9)

This is the compliance formula for G. It’s powerful because com-

pliance can be measured experimentally: load the specimen, measure

displacement, calculate C = δ/P. Do this for several crack lengths

and you have C(a). The slope dC/da gives you G.
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4.5 Example: The Double Cantilever Beam

Let’s work through a concrete example: the double cantilever beam

(DCB) specimen. This is a classic fracture test geometry, consisting

of two arms bonded together except at one end, where they’re sepa-

rated by a crack.

crack

crack tip

bonded

P

P

a

harm 1

arm 2

Figure 4.2: Double cantilever beam
(DCB) specimen. Two arms are bonded
together from the crack tip to the right
end; the crack of length a separates
them on the left. Loads P pull the arms
apart at the cracked end.

Each arm is a cantilever of length a, thickness h, and width B.

From beam theory, the tip deflection of a cantilever under point load

P is:

δarm =
Pa3

3EI
(4.10)

where I = Bh3/12 is the moment of inertia.

Since both arms deflect, the total opening is:

δ = 2δarm =
2Pa3

3EI
=

8Pa3

EBh3
(4.11)

The compliance is:

C =
δ

P
=

8a3

EBh3
(4.12)

Taking the derivative:

dC

da
=

24a2

EBh3
(4.13)

Using the compliance formula:

G =
P2

2B

dC

da
=

P2

2B
·

24a2

EBh3
=

12P2a2

EB2h3
(4.14)

Let’s check this with numbers. Suppose:

• P = 100 N

• a = 50 mm = 0.05 m

• B = 25 mm = 0.025 m
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• h = 5 mm = 0.005 m

• E = 70 GPa (aluminum)

Then:

G =
12 × 1002 × 0.052

70 × 109 × 0.0252 × 0.0053
=

12 × 104 × 2.5 × 10−3

70 × 109 × 6.25 × 10−4 × 1.25 × 10−7

(4.15)

Let me compute the denominator: 70 × 109 × 6.25 × 10−4 × 1.25 ×
10−7 = 5.47. Numerator: 12 × 104 × 2.5 × 10−3 = 300. So G =

300/5.47 ≈ 55 J/m2.

This is quite low for aluminum alloys (the table later in this chap-

ter gives 8,000–40,000 J/m2), indicating that this particular loading is

far from critical—the crack is very stable. To approach fracture, we

would need a much higher load or longer crack.

4.6 G for the Griffith Problem Revisited

Let’s verify that our general definition of G gives the same answer as

Chapter 3 for the Griffith geometry.

For a central crack of half-length a in an infinite plate under stress

σ, we found that the elastic energy released by the crack is:

∆U =
πσ2a2

E
(per unit thickness) (4.16)

The crack area per unit thickness is 2a (length of crack, both faces

counting as one). Taking the derivative:

G =
d(∆U)

d(2a)
=

1

2

d

da

(

πσ2a2

E

)

=
πσ2a

E
(4.17)

Wait—this doesn’t match what I had before! Let me be more care-

ful about conventions.

The issue is whether we count crack area as a (half-length) or 2a

(full length). If we define G as energy per unit area of one crack face,

then for growth da at one tip:

G =
d(∆U)

da
=

2πσ2a

E
(4.18)

Hmm, there’s a factor-of-2 issue that depends on whether you

have one tip or two growing. Let me just quote the standard result:

for a central crack of length 2a in an infinite plate under stress σ:

G =
πσ2a

E′ (4.19)

where E′ = E for plane stress and E′ = E/(1 − ν2) for plane

strain.1 1 The factor of 2 conventions are a
notorious source of confusion. Different
books use different definitions. The
physics is always consistent; you just
have to be careful about what’s being
counted.
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The fracture criterion G = Gc then gives:

σc =

√

E′Gc

πa
(4.20)

For brittle materials where Gc = 2γ, this matches Griffith’s result.

4.7 Fixed Load vs. Fixed Displacement

You might wonder: does it matter whether we hold load constant or

displacement constant during crack growth?

The answer is: not for the value of G, but yes for the stability of

crack growth.

Under fixed load, when the crack grows, the compliance increases,

so the displacement increases. The external load does positive work,

and this work provides energy for crack growth. We showed that

G = (P2/2B)(dC/da).

Under fixed displacement, when the crack grows, the compliance

increases, so to maintain the same displacement, the load must de-

crease. No external work is done; all the energy for crack growth

comes from releasing stored strain energy. You can show that:

G =
δ2

2BC2

dC

da
(4.21)

But since δ = PC, this gives exactly the same G as the fixed-load

case. The energy release rate depends on the current state (crack

length, load or displacement), not on how we control the loading.

However, stability is different. Under fixed load, as the crack

grows, G often increases (because C increases with a). If G exceeds

Gc, it keeps exceeding it as the crack grows—unstable propagation.

Under fixed displacement, as the crack grows, the load drops, and

G may decrease. The crack might grow a bit, then arrest when G

drops below Gc—stable (controlled) propagation.

This difference matters for testing. If you want to study crack

growth in a controlled way, use displacement control. Load control

tends to give catastrophic propagation once the crack starts.

4.8 Measuring Gc

The critical energy release rate Gc is a material property. How do we

measure it?

The basic procedure:

1. Prepare a specimen with a known crack of length a

2. Load the specimen until the crack just starts to grow
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3. Record the load P (or displacement δ) at initiation

4. Calculate G using the formula for that geometry

5. That G equals Gc

The double cantilever beam is one standard specimen. Others

include:

Compact tension (CT) specimen: A thick block with a machined

notch and holes for loading pins. Widely used for metals.

Single edge notched bend (SENB): A beam loaded in three-point

bending with a notch on one side.

Center cracked tension (CCT): A plate with a central crack under

tensile load (the Griffith geometry).

Each has a formula relating G (or equivalently, K) to load and

crack length. Test standards (ASTM, ISO) specify specimen dimen-

sions, preparation methods, and testing procedures.

Material Gc (J/m2)

Glass 1–10

Epoxy 100–300

PMMA 500–1000

Aluminum alloys 8,000–40,000

Steels (mild) 20,000–100,000

Steels (tough) 100,000–300,000

Rubber 10,000–100,000

Table 4.1: Typical Gc values for various
materials.

The range is enormous—from 1 J/m2 for glass to 300,000 J/m2

for tough steels. This reflects the different mechanisms of energy

dissipation in different materials, which we’ll explore in Chapter 6.

4.9 What Determines Gc?

For a perfectly brittle material, Gc = 2γ, where γ is the surface

energy. Creating crack surfaces is all you have to pay for.

For real materials, Gc includes everything that dissipates energy

during fracture:

• Surface energy (always present, but often small)

• Plastic deformation near the crack tip (dominant in metals)

• Crazing and microcracking (in polymers and ceramics)

• Friction between crack faces

• Fiber pullout and bridging (in composites)
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• Microstructural effects (grain boundaries, second phases)

All these mechanisms are swept into the single number Gc. This is

convenient for engineering—you don’t need to understand the micro-

scopic details to use fracture mechanics. But it’s also a limitation: Gc

may depend on temperature, loading rate, specimen thickness, and

other factors that affect the microscopic mechanisms.

4.10 The J-Integral

There’s another way to calculate energy release rate that’s particu-

larly powerful: the J-integral, developed by Jim Rice in 1968.2 2 Rice, “A Path Independent Integral
and the Approximate Analysis of Strain
Concentration by Notches and Cracks,”
J. Appl. Mech., 1968. This paper is one
of the most cited in fracture mechanics.

The J-integral is defined as a line integral around any path encir-

cling the crack tip:

J =
∮

Γ

(

W dy − T ·
∂u

∂x
ds

)

(4.22)

where:

• W =
∫ εij

0 σij dεij is the strain energy density (energy per unit

volume stored in the deformed material)

• T = σ · n is the traction vector acting on the contour (stress tensor

dotted with outward normal)

• u is the displacement vector

• ds is an element of arc length along the contour Γ

• The integral is taken counterclockwise around the crack tip

• The x-direction is along the crack, pointing in the direction of

propagation

Why is this integral useful? The remarkable property of J is that

it’s path-independent: you get the same value whether you integrate

close to the crack tip or far away. This follows from the divergence

theorem, provided the material inside the contour has no body forces

and the crack faces are traction-free.

Path independence is powerful because:

• You can evaluate J on a convenient path where the fields are

known, rather than trying to compute stress and strain right at

the singular tip

• In finite element analysis, you can use a contour far from the crack

tip where numerical accuracy is better

• Experimental techniques can measure J from far-field quantities
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Physical interpretation. The J-integral represents the rate of de-

crease of potential energy with respect to crack advance—exactly

what G represents. In fact, for linear elastic materials:

J = G (4.23)

But J has a crucial advantage: it remains well-defined even when

plasticity is significant near the crack tip. The G definition (−dU/dA)

assumes reversible energy release, which isn’t true when plastic

deformation occurs. The J-integral, being a path integral evaluated in

the elastic region far from the tip, sidesteps this problem.

This makes J the preferred fracture parameter for ductile materials

like structural steels. The fracture criterion becomes J ≥ Jc, where Jc

(or JIC for mode I) is the critical value measured in testing.

Computing J. For complex geometries, J is typically computed

using finite element analysis. Most FE codes have built-in J-integral

evaluation. For simple geometries, analytical solutions exist. The

DCB result we derived earlier, for instance, can be verified using the

J-integral.

For a deeper treatment of the J-integral, including its derivation

and applications to elastic-plastic fracture, see Rice’s original paper

or textbooks like Anderson’s Fracture Mechanics.

4.11 Limitations and What We Don’t Know

The energy release rate framework is powerful, but it has limitations:

Rate independence. The simple theory assumes Gc is a material

constant. In reality, Gc can depend on loading rate—fast loading

often gives lower toughness.

Temperature dependence. Many materials, especially steels, show

dramatic changes in Gc with temperature. Below a brittle-ductile

transition temperature, Gc drops sharply.

Environment effects. Corrosive environments, hydrogen, moisture—

all can reduce Gc or cause slow crack growth even when G < Gc

(stress corrosion cracking).

Small-scale behavior. The energy approach averages over the

crack tip region. It doesn’t tell us what’s happening at the nanometer

or micrometer scale where bonds actually break.

R-curve effects. In some materials, Gc isn’t constant but increases

as the crack grows (due to crack bridging, process zone development,

etc.). The “toughness” depends on crack extension.

These complications are important in practice and are subjects of

ongoing research. But the basic framework—define G, measure Gc,

check if G ≥ Gc—remains the foundation.
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4.12 Practical Use

In engineering practice, you typically:

1. Identify the crack geometry (shape, location, loading)

2. Look up or calculate G as a function of load and crack length

3. Get Gc from handbooks or testing

4. Determine the critical condition (G = Gc) and what it implies

(maximum load, critical crack size, etc.)

For standard geometries, formulas for G (or the equivalent stress

intensity factor K) are tabulated in handbooks. For unusual geome-

tries, you might use finite element analysis to compute G numeri-

cally.

The ability to separate the “driving force” (G) from the “material

resistance” (Gc) is what makes this framework so useful. You can

analyze structures without knowing the material in advance; you can

select materials without knowing the final design.

The energy release rate concept emerged from Griffith’s work but was developed into a practical engineering tool

by Irwin and others in the 1950s and 60s. The compliance method, in particular, made it possible to measure frac-

ture toughness reliably and to calculate G for complex geometries. Today, fracture toughness testing is standardized

(ASTM E399 for KIC, ASTM E1820 for JIC), and values are tabulated for thousands of materials. This infrastructure

of testing standards and data makes fracture mechanics genuinely practical for design. You can look up Gc for your

material and calculate G for your structure, confident that the results are meaningful.
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Stress Intensity Factors

In this chapter we come to what may be the most practical single idea

in fracture mechanics. We have been approaching fracture from the

energy side: how much energy is released when a crack grows? That

led us to G, the energy release rate, which is beautiful and funda-

mental. But there’s another perspective that turns out to be equiva-

lent and, in many ways, more convenient for everyday calculations:

characterizing the stress field near the crack tip by a single number.

The idea is audacious when you think about it. The stress field

near a crack tip is complicated—it varies with distance, varies with

angle, has different components in different directions. How could

a single number possibly capture all of that? And yet it can. That

single number is the stress intensity factor K, and it has become

the workhorse of practical fracture mechanics. Structural engineers

use it daily. Handbooks are filled with K solutions for thousands of

geometries. It’s rare that such a clean simplification emerges from

such a messy-looking problem.

5.1 The Search for a Characterizing Parameter

Let’s think about what we’d like to have. We’ve established that

cracks are dangerous because of stress concentration. Near the tip,

stresses get very high—in fact, infinitely high in our idealized linear

elastic theory. The severity of a crack depends on the loading and

geometry, but in what way?

Here’s a naive first attempt: why not just characterize the crack by

the maximum stress? The problem, as we saw in Chapter 2, is that

the maximum stress is infinite. That’s not useful. We can’t compare

two cracks by asking which has the higher infinite stress.

Maybe we could look at the stress at some fixed small distance

from the tip? Say, the stress at r = 1 mm? But this is arbitrary. Why

1 mm and not 0.5 mm? Different choices would give different charac-

terizations, and none has any fundamental significance.
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What about the total force transmitted across some line near the

tip? This fails too. In the limit as we approach the tip, the stress

goes to infinity but the area goes to zero, and the product depends

sensitively on how we take the limit.

Let’s try yet another approach. We know that stress varies as 1/
√

r

near the tip. What if we define some parameter that captures the

coefficient in front of this singularity? The stress has the form:

σ ∼
(something)√

r

The “something” is finite and depends on the loading and geometry.

This is more promising. If we could extract that coefficient, we’d

have a well-defined finite number that characterizes how severe the

singularity is.

This is exactly what the stress intensity factor does.

5.2 The Crack Tip Stress Field

Consider a crack in a linear elastic material under load. Far from the

crack, the stress depends on the specific loading and geometry—it

could be anything. But very close to the crack tip, something remark-

able happens: the stress field takes a universal form. For the most

common case (Mode I: opening), the stress components are:

σxx =
KI√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)

(5.1)

σyy =
KI√
2πr

cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

(5.2)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
(5.3)

where (r, θ) are polar coordinates centered at the crack tip, with

θ = 0 along the crack plane ahead of the tip.

crack
x

y

θ

r

Figure 5.1: Polar coordinates at the
crack tip.

These formulas look complicated, but don’t let them intimidate

you. The key feature is simple: everything is proportional to KI/
√

r.

The angular functions—all those sines and cosines of half-angles—

just describe how the stress varies as you go around the crack tip at

fixed r. These angular functions are the same for all Mode I cracks,

regardless of geometry or loading. The only thing that changes from

one crack to another is KI .

Let’s check this makes sense. If KI doubles, all the stresses double.

If we move twice as far from the tip (double r), the stresses decrease

by a factor of
√

2. The singularity is there—stresses go to infinity as

r → 0—but it’s a gentle infinity, an inverse square root. The coeffi-

cient KI tells us how fast we’re approaching infinity.
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KI is called the Mode I stress intensity factor. Its units are unusual:

stress times square root of length. In SI units, that’s MPa
√

m. In

American engineering practice, you’ll often see ksi
√

in.1 1 To convert: 1 ksi
√

in ≈ 1.10 MPa
√

m.

Why the factor of
√

2π in the denominator? This is a convention,

chosen so that certain formulas come out nicely. Some older texts use

a different convention without the π, so be careful when comparing

sources. The factor of
√

2π has become standard in modern fracture

mechanics.

5.3 A Worked Example: How Big Are These Stresses?

Let’s put in actual numbers to see what we’re dealing with. Consider

an aluminum plate with a small edge crack under tension. The plate

is 10 mm thick, 100 mm wide, loaded at σ = 100 MPa. The crack is 5

mm long.

For an edge crack, KI = 1.12σ
√

πa. Plugging in:

KI = 1.12 × 100 MPa ×
√

π × 0.005 m = 14.0 MPa
√

m

Now let’s compute the stress at various distances from the crack

tip, directly ahead (θ = 0). At θ = 0, the angular functions simplify:

σyy = KI/
√

2πr.

Distance from tip r Stress σyy

1 mm 177 MPa

0.1 mm 559 MPa

0.01 mm (10 µm) 1,770 MPa

0.001 mm (1 µm) 5,590 MPa

Table 5.1: Stress ahead of the crack tip
for KI = 14.0 MPa

√
m.

Look at those numbers. At 1 mm from the tip, the stress is nearly

twice the applied stress of 100 MPa. At 10 micrometers, it’s 1,770

MPa—far exceeding the yield stress of aluminum (around 300 MPa).

At 1 micrometer, we’re predicting 5,590 MPa, which is absurd. No

material can sustain such stress.

This tells us something important: the elastic K-field is only valid

down to some distance from the tip. Closer than that, other physics

takes over—plasticity in metals, crazing in polymers, microcracking

in ceramics. We’ll discuss this “process zone” in detail in Chapter

6. For now, the point is that K characterizes the elastic field in an

annular region around the tip: far enough that we’re outside the

process zone, but close enough that the K-field dominates over the

background stress.
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5.4 The Three Modes of Fracture

There are three independent ways to load a crack. You can think

of these as three types of motion of the crack faces relative to each

other:

Mode I
(opening)

Mode II
(sliding)

⊙

⊗

Mode III
(tearing)

Figure 5.2: The three modes of crack
loading.

Mode I (opening): The crack faces move directly apart, perpendic-

ular to the crack plane. This is like prying open a book. It’s the most

common mode in engineering failures—tensile loading of a cracked

component typically produces Mode I.

Mode II (sliding or in-plane shear): The crack faces slide past

each other in the plane of the crack, perpendicular to the crack front.

Think of sliding two cards past each other. Earthquake faults often

operate in Mode II.

Mode III (tearing or anti-plane shear): The crack faces slide par-

allel to the crack front. Imagine a stack of papers and sliding the top

half of the stack horizontally relative to the bottom half.

Each mode has its own stress intensity factor: KI, KII, KIII. Each

has its own angular distribution of stresses, though all share the

1/
√

r singularity. For a general loading, the total near-tip field is the

superposition of all three modes.

Why these three and only these three? It comes from symmetry.

The crack plane defines a mirror symmetry. Mode I is symmetric

about the crack plane (both sides pull apart equally). Mode II is

antisymmetric in-plane. Mode III is antisymmetric out-of-plane.

These exhaust the possibilities.2 2 Mathematically, these correspond
to the symmetric and antisymmetric
parts of the displacement field, decom-
posed into in-plane and out-of-plane
components.

In practice, most engineering applications involve primarily Mode

I, so that’s what we’ll focus on. But the other modes matter in situa-

tions like: inclined cracks under tension (mixed I/II), torsion of shafts

with longitudinal cracks (Mode III), and frictional sliding on faults

(Mode II).
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5.5 K for Standard Geometries

For simple geometries, K can be calculated analytically. Let me show

you the key results, and then we’ll work through some numbers.

Central crack in infinite plate:

KI = σ
√

πa (5.4)

where 2a is the total crack length. This is the simplest case and serves

as a reference for everything else. Notice that K depends on
√

a, not

a. A crack twice as long has K larger by only
√

2 ≈ 1.41.

Edge crack in semi-infinite plate:

KI = 1.12σ
√

πa (5.5)

The factor 1.12 accounts for the free surface. An edge crack is more

severe than a central crack of the same length because there’s less

material to carry the load.

Penny-shaped (circular) crack in infinite solid:

KI =
2

π
σ
√

πa (5.6)

where a is the crack radius. The factor 2/π ≈ 0.64 means penny

cracks are less severe than edge cracks of the same radius—the 3D

geometry provides more constraint.

For more complex cases, the stress intensity factor is written as:

KI = Yσ
√

πa (5.7)

where Y is a dimensionless geometry factor. This Y can be found in

handbooks, computed numerically, or measured experimentally.3 3 The classic reference is Tada, Paris
& Irwin’s “Stress Analysis of Cracks
Handbook,” which contains K solutions
for hundreds of geometries. It’s an
indispensable resource for practicing
engineers.

Let’s work out an example. Suppose we have a plate 200 mm wide

with a central crack of total length 20 mm (so a = 10 mm), loaded

at σ = 150 MPa. The plate is finite, so we need a correction. For a

central crack in a finite plate, Y depends on a/W:

Y ≈
√

sec
(πa

W

)

Here a/W = 10/200 = 0.05, giving Y ≈ 1.006—almost exactly 1. The

finite width barely matters for such a small crack.

KI = 1.006 × 150 MPa ×
√

π × 0.01 m = 26.8 MPa
√

m

Now consider the same crack length but in a narrower plate, W =

60 mm. Then a/W = 10/60 ≈ 0.17, giving Y ≈
√

sec(0.17π) =√
1.16 ≈ 1.08. The stress intensity factor becomes:

KI = 1.08 × 150 MPa ×
√

π × 0.01 m = 28.7 MPa
√

m
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The finite-width correction increased K by about 7%. For an even

narrower plate with W = 40 mm, we get a/W = 0.25, Y ≈ 1.19, and

KI ≈ 31.6 MPa
√

m—an 18% increase. When the crack is a significant

fraction of the width, the remaining material carries much more

stress.

5.6 The Connection Between K and G

Here’s something beautiful. We’ve developed two ways of think-

ing about fracture: the energy approach (Chapter 4) with G, and the

stress approach with K. They look like completely different perspec-

tives. One asks about energy release, the other about stress amplifica-

tion. Yet they’re intimately connected.

For Mode I loading in plane strain:

G =
K2

I

E′ (5.8)

where E′ = E/(1 − ν2) for plane strain and E′ = E for plane stress.

Why should this be true? Here’s an intuitive argument. Both G

and K characterize the same physical situation—a crack about to

grow. G is an energy per area (dimensions of J/m2 = Pa · m). K has

dimensions of Pa
√

m. If we square K, we get Pa2 · m. Dividing by a

modulus E (in Pa) gives Pa · m—the same as G. The relationship G =

K2/E′ is almost forced by dimensional analysis; only the numerical

factor needs to be determined.

Let’s verify this for the central crack in an infinite plate. We had:

G =
πσ2a

E′ and KI = σ
√

πa

Computing K2
I /E′:

K2
I

E′ =
σ2πa

E′ = G X

It works! This wasn’t guaranteed by dimensional analysis alone—

the factor of π had to come out right. That it does reflects deep math-

ematical structure: both K and G are fundamentally characterizing

the same singular field.

For mixed-mode loading, the generalization is:

G =
K2

I

E′ +
K2

I I

E′ +
K2

I I I

2µ
(5.9)

where µ is the shear modulus. The energies from the three modes

simply add.



stress intensity factors 51

5.7 The Fracture Criterion: K vs KIC

Armed with the K-G relationship, we can rewrite Griffith’s criterion

G ≥ Gc in terms of stress intensity:

KI ≥ KIC (5.10)

where KIC =
√

E′Gc is the critical stress intensity factor, or fracture

toughness.

KIC is a material property. Just as yield stress σY tells you when

plastic flow begins, KIC tells you when crack growth begins. It’s

measured in the same peculiar units as K: MPa
√

m.

Material KIC (MPa
√

m) Gc (J/m2)

Window glass 0.7–0.8 7–9

Alumina ceramic 3–5 30–80

PMMA (Plexiglass) 1.0–1.5 350–700

Aluminum 7075-T6 24 8,000

Mild steel 50–100 12,000–50,000

High-toughness steel 100–200 50,000–200,000

Table 5.2: Fracture toughness and
critical energy release rate for various
materials.

The spread is enormous. Glass fractures at KIC ≈ 0.7 MPa
√

m;

tough steels require KIC ≈ 200 MPa
√

m. That’s a factor of almost 300.

And this directly translates to how large a crack can be tolerated at a

given stress, or how high a stress can be applied with a given crack.

5.8 The Power of Superposition

Here’s why the K approach is so useful in practice. The crack tip

stress field is linear in the applied load.4 This means that stress inten- 4 This follows from linearity of elasticity.
Double the loads, double the stresses,
double K.

sity factors superpose.

Suppose you have a cracked plate under combined loading: a

tensile stress σ1 plus a bending stress that varies across the section.

You don’t need to solve the complete combined problem. Instead:

1. Find K for the tensile stress alone (from a handbook)

2. Find K for the bending stress alone (from another handbook en-

try)

3. Add them: Ktotal = Ktension + Kbending

This is tremendously powerful. Complex loading can be built

up from simple cases. The handbook becomes a library of building

blocks.

As an example, consider an edge-cracked beam under pure bend-

ing with moment M. The bending stress at the cracked surface is
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σb = 6M/tW2 for a rectangular section of thickness t and width W.

For an edge crack:

KI = Ybσb

√
πa

where Yb depends on a/W. If the beam is also under tension P:

Ktotal = Yt
P

tW

√
πa + Yb

6M

tW2

√
πa

The geometry factors Yt and Yb are different (tension vs. bending),

but the total K is just their sum.

5.9 Measuring KIC: A Delicate Business

How do we actually measure fracture toughness? The procedure

sounds simple: apply load to a cracked specimen until it breaks,

compute K at failure. But the details matter enormously.

First, you need a sharp crack—not a machined notch. A notch has

a finite radius, which blunts the stress concentration. The standard

approach is to machine a notch and then grow a sharp fatigue crack

from its tip by cyclic loading at low stress. This fatigue precrack

mimics natural cracks.

Second, you need to be in plane strain. This is crucial. Under

plane stress (thin specimens), the material near the crack tip can flow

plastically in the thickness direction. This extra freedom for plastic

deformation increases the apparent toughness. Under plane strain

(thick specimens), this out-of-plane flow is constrained, the stress

state is more severe, and fracture occurs at lower K.

crack

P

P

Figure 5.3: Compact tension (CT)
specimen for measuring KIC .

The compact tension (CT) specimen has become standard. It’s

economical with material, and the K calibration is well established.

The specimen has a machined notch, a fatigue precrack, and holes for

pin loading. You load it, record load versus displacement, and look

for the load at which the crack begins to grow.

Here’s where it gets subtle. How do you define “the load at which

the crack begins to grow”? If the load-displacement curve is linear

up to sudden fracture, it’s clear. But many materials show some

nonlinearity before fracture—plasticity, slow crack growth, or both.

The ASTM standard specifies procedures: draw a line from the origin

with slope 5% less than the initial elastic slope; the load at which

this line intersects the load-displacement curve is taken as the critical

load.5 5 This “5% secant” method has been
debated, but it provides a reproducible
definition.

Even after all this care, the test may be invalid if the specimen was

too small. The standard requires:

B, a, (W − a) > 2.5

(

KIC

σY

)2
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where B is thickness, a is crack length, and σY is yield stress. If your

specimen doesn’t meet these criteria, the measured K is higher than

the true plane strain KIC, and you need a larger specimen.

For a tough material like a high-strength steel with KIC = 100

MPa
√

m and σY = 1000 MPa, the required dimensions are:

B, a, (W − a) > 2.5 × (0.1)2 m = 25 mm

That’s manageable. But for a moderate-strength aluminum with

KIC = 30 MPa
√

m and σY = 300 MPa:

B, a, (W − a) > 2.5 × (0.1)2 m = 25 mm

Still 25 mm—not a coincidence; I chose examples with the same

KIC/σY ratio. For a really tough, low-strength material, the required

specimen can become impractically large.

5.10 Design Against Fracture

With KIC known, we can design structures to avoid fracture. The

criterion is:

KI = Yσ
√

πa < KIC (5.11)

This can be rearranged in three ways, depending on what question

you’re asking:

What’s the maximum allowable stress?

σ <
KIC

Y
√

πa

What’s the maximum tolerable crack size?

a <
1

π

(

KIC

Yσ

)2

What toughness is required?

KIC > Yσ
√

πa

Let’s work through a design example. A pressure vessel is made

from steel with KIC = 80 MPa
√

m. The hoop stress under operating

pressure is 200 MPa. What’s the largest crack that can be tolerated?

Assume a surface crack with Y = 1.12:

a <
1

π

(

80

1.12 × 200

)2

=
1

π
(0.357)2 = 0.041 m = 41 mm

A 41 mm crack is quite large—easily detected by inspection. This

material-stress combination is tolerant of substantial damage.

Now suppose we switch to a high-strength steel with yield stress

1500 MPa, allowing us to increase operating stress to 500 MPa.
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But this steel has KIC = 50 MPa

√
m (toughness often decreases as

strength increases). The tolerable crack is now:

a <
1

π

(

50

1.12 × 500

)2

=
1

π
(0.089)2 = 2.5 mm

Only 2.5 mm! This crack might be missed in routine inspection.

The high-strength design is operating much closer to the edge.

This tradeoff between strength and damage tolerance is one of the

central dilemmas of structural design. High-strength materials allow

lighter structures, but they’re less forgiving of defects.

5.11 A Philosophical Aside: What Does K Really Mean?

Let’s step back and ask what we’ve actually done. We started with

a complicated stress field that varies with position. We extracted a

single number, K, that somehow captures the “severity” of the crack.

What entitles us to do this?

The answer lies in the universality of the near-tip field. Very close

to the tip—but not so close that plasticity or other nonlinear effects

dominate—the stress field has the same angular distribution for all

Mode I cracks. Only the amplitude varies. That amplitude is K.

This is actually a statement about the mathematics of the elasticity

equations. Near a crack tip, the solution must have certain singular

behavior dictated by the local geometry (a mathematical branch

cut). The strength of that singularity is determined by the boundary

conditions far away, but its form is universal.

You might object: “But every real crack has a process zone where

the K-field breaks down. So where exactly is this K-field valid?” This

is a fair point. The K-field is strictly valid only in an annular region:

not too close (process zone), not too far (other terms in the series

become significant). This is called the “K-dominated region.”

For the approach to work, this annular region must exist—the

process zone must be small compared to crack length and specimen

dimensions. When it is, we say we have “small-scale yielding,” and

K makes sense. When the process zone becomes comparable to other

length scales, we’re in “large-scale yielding,” and we need more

sophisticated approaches (like the J-integral, which we won’t cover

here).

The remarkable thing is that small-scale yielding holds for most

engineering situations with metals, ceramics, and brittle polymers.

That’s what makes K so useful.
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5.12 What We Don’t Fully Understand

The K-approach is remarkably successful, but there are aspects we

don’t fully understand or that remain subjects of research:

Mixed-mode fracture. When KI , KI I , and KI I I are all present, how

do we predict fracture? Simply adding the energies (G = K2
I /E′ + ...)

gives the total energy release rate, but the crack may not grow in the

plane of maximum G. It might turn to become pure Mode I. Various

criteria have been proposed—maximum tangential stress, minimum

strain energy density—but none is universally accepted.

The KIC thickness transition. We know K measured in thin spec-

imens exceeds the plane strain KIC. But the detailed shape of this

transition and how to predict it from first principles is still not fully

resolved.

Loading rate effects. Many materials show rate-dependent tough-

ness. Some are tougher at high rates (viscous effects), others are more

brittle (adiabatic heating, insufficient time for plasticity). Predicting

this from microstructure remains challenging.

Why KIC varies so much between materials. We can measure KIC,

but predicting it from fundamental material properties is difficult.

Why does iron have KIC ≈ 50 MPa
√

m while copper has KIC ≈ 100

MPa
√

m? The answer involves dislocation motion, grain boundaries,

and other microstructural features that are hard to compute.

These aren’t just academic puzzles. They affect how confidently

we can apply fracture mechanics to new situations or new materials.

The honest answer is: we have a powerful framework that works

extraordinarily well in many cases, but its foundations are empirical

as much as theoretical.

On plane strain vs. plane stress. Fracture toughness depends on specimen thickness. In thin specimens (plane

stress), the material near the crack tip can deform freely in the thickness direction, allowing more plastic

energy dissipation and higher apparent toughness. In thick specimens (plane strain), this out-of-plane

deformation is constrained, leading to a more brittle response and lower toughness. The “true” KIC is

the plane strain value—the lower, more conservative number. Test standards specify minimum thickness

requirements to ensure plane strain conditions. This thickness effect confused researchers for years before

Irwin clarified the distinction in the 1950s.





6

The Process Zone

We’ve built up a beautiful theory. We have K, the stress intensity

factor, which characterizes the severity of a crack in a single number.

We have G, the energy release rate, which tells us the driving force

for crack growth. We have KIC and Gc, material properties that tell us

when fracture will occur. The mathematics is elegant. The predictions

are testable. Engineers use these tools daily.

But buried in this elegant theory is an embarrassing secret: it pre-

dicts infinite stress at the crack tip. As you approach the tip, the

stress goes as 1/
√

r, which blows up as r → 0. We’ve been quietly ig-

noring this because the rest of the theory works so well. But at some

point we have to face it: nothing is actually infinite. No material can

sustain infinite stress. Something has to give.

This chapter is about what really happens at the crack tip—the

region where our elegant linear elastic theory breaks down, and

where the actual business of material separation takes place. This is

where the action is. This is where fracture actually happens.

6.1 Coming to Terms with Infinity

Let’s be precise about what our theory says. According to the elastic

solution, the stress at distance r from the crack tip is:

σ ∼
K√
2πr

(6.1)

What numbers does this give? Let’s take a typical case with K =

10 MPa
√

m and work out the stress at various distances:

Look at the progression. At 1 mm, the stress is 126 MPa—perfectly

reasonable, well below yield for most structural materials. At 1 mi-

crometer, we’re at 4,000 MPa, which exceeds the yield stress of even

the strongest steels. At 1 nanometer, we’re predicting 126,000 MPa,

which is roughly half the elastic modulus of steel.

But recall Chapter 1: we calculated that the theoretical strength
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Distance r Stress σ Comment

1 mm 126 MPa Reasonable

100 µm 400 MPa Still plausible

10 µm 1,260 MPa Higher than most yield stresses

1 µm 4,000 MPa Exceeds yield stress of any metal

100 nm 12,600 MPa Approaching theoretical strength

10 nm 40,000 MPa About E/5 for steel

1 nm 126,000 MPa About 60% of E for steel

Table 6.1: Elastic stress prediction at
various distances from the crack tip.

of a perfect crystal is about E/10 to E/5. That’s the stress at which

atomic bonds should break catastrophically. So our elastic solution is

predicting stresses, at nanometer scales, that approach or exceed the

theoretical cohesive strength.

In a strange way, this is reassuring. It means the elastic solution is

telling us: “At very small scales, the stress gets high enough to break

atomic bonds.” Which is what has to happen for fracture to occur!

The infinity in the mathematical solution is signaling the physics:

bonds are breaking near the tip.

But the elastic solution can’t be correct all the way down to r = 0,

because the material will fail first. Somewhere—call it r = rp—the

material’s actual response deviates from linear elasticity. Inside this

region, something else happens. This region is called the process

zone.

6.2 What Could Happen in the Process Zone?

Before examining what actually does happen, let’s think about what

could happen. As stress increases toward the crack tip, what re-

sponses might the material exhibit?

Possibility 1: The material remains elastic up to atomic spac-

ing, then bonds break. This would be perfectly brittle fracture—the

elastic 1/
√

r field all the way down to the atomic scale, then atomic

separation. This is approximately what happens in very brittle mate-

rials like silica glass.

Possibility 2: The material yields plastically before bonds break.

In metals, dislocations move when shear stress exceeds a critical

value. The material flows, deforms permanently, and the stress is

limited to roughly the yield stress. The crack tip blunts as material

flows away from the sharp tip.

Possibility 3: Microcracks form. The high stress might cause

small cracks to nucleate around the main crack tip. The material

develops a cloud of damage that shields the main crack from some of

the stress.
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Possibility 4: Molecules untangle or align. In polymers, high

stress might cause long-chain molecules to disentangle, stretch, and

orient. This creates a network of stretched fibrils that can bridge the

crack.

Possibility 5: Phase transformation occurs. In some ceramics,

high stress can trigger a crystal structure change that absorbs energy

and creates compressive stresses near the crack.

All of these actually happen in various materials. The common

theme is: the material responds to high stress in some nonlinear way

that prevents the stress from actually reaching infinity.

6.3 Plastic Zones in Metals: A Quantitative Treatment

Let’s work out what happens in a metal, where plastic yielding is the

dominant response. This is the best-understood case and gives us a

framework for thinking about process zones in general.

Consider a Mode I crack with stress intensity KI . Along the line

directly ahead of the crack (θ = 0), the elastic solution gives:

σyy =
KI√
2πr

(6.2)

This stress increases without bound as r → 0. But metals yield

when the stress exceeds the yield stress σY. So there must be some

distance rp where the elastic stress equals the yield stress, and inside

that region, the material is plastic.

Setting σyy = σY and solving:

KI
√

2πrp
= σY ⇒ rp =

1

2π

(

KI

σY

)2

(6.3)

Let’s put in numbers. For a steel with σY = 500 MPa and KI = 50

MPa
√

m:

rp =
1

2π

(

50

500

)2

m =
1

2π
(0.01) m = 1.6 mm

So the plastic zone extends about 1.6 mm ahead of the crack.

That’s a macroscopic distance—visible to the naked eye.

crack

elastic

region

plastic

rp

Figure 6.1: Plastic zone (shaded) at a
crack tip in a metal. Within this zone,
the stress is limited to approximately
the yield stress.

Now, here’s a subtlety that took researchers some years to sort out.

The estimate above is too simple. If the material inside the plastic

zone yields, the stress there doesn’t just freeze at σY. The stress dis-

tribution changes entirely. The stress that would have been carried by

the yielded region has to go somewhere—it gets redistributed to the

surrounding elastic material.

Think of it like a bucket brigade passing water: if one person

(the yielded region) can only carry so much (the yield stress), the
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extra load gets passed along to the next person (the elastic region

just outside). This means the elastic stresses just outside the plastic

zone are higher than our naive estimate, which means more material

yields, which enlarges the plastic zone.

A more careful analysis (first done by Irwin) accounts for this

redistribution and roughly doubles the estimate:

rp ≈
1

π

(

KI

σY

)2

(plane stress) (6.4)

Under plane strain conditions (thick specimens), the stress state is

different—there’s an additional constraint in the thickness direction

that suppresses yielding. The plastic zone is smaller:

rp ≈
1

3π

(

KI

σY

)2

(plane strain) (6.5)

Let’s redo our calculation for both cases with KI = 50 MPa
√

m and

σY = 500 MPa:

Condition Formula coefficient rp

First estimate 1/2π ≈ 0.16 1.6 mm

Plane stress (corrected) 1/π ≈ 0.32 3.2 mm

Plane strain 1/3π ≈ 0.11 1.1 mm

Table 6.2: Plastic zone sizes for different
estimates.

The plane strain plastic zone is about three times smaller than

the plane stress zone. This explains why thick specimens have lower

apparent toughness: less plastic work is done per unit crack advance.

The shape of the plastic zone isn’t circular, by the way. A more

detailed analysis shows it’s roughly butterfly-shaped, with lobes

extending at angles to the crack plane. The formulas above give the

extent directly ahead of the crack; the zone extends further in other

directions. But for engineering estimates, the circular approximation

usually suffices.

6.4 A Digression on Why This All Matters

You might wonder: why are we spending so much effort on some-

thing that our theory says doesn’t exist (the process zone is where

our K-field breaks down, after all)? Here’s why it matters:

This is where toughness lives. The material property KIC or Gc

is determined by what happens in the process zone. A material with

a larger process zone that dissipates more energy will have higher

toughness. Understanding the process zone is understanding tough-

ness.

This determines when our theory is valid. We can only use K

and G when the process zone is small compared to other dimensions.
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Knowing the process zone size tells us when linear elastic fracture

mechanics applies.

This explains material differences. Why is steel tough and glass

brittle? Why does toughness depend on temperature? Why do load-

ing rate effects exist? The answers all lie in the process zone.

6.5 Small-Scale Yielding: When K Still Works

Here’s the crucial question: if there’s a plastic zone, can we still char-

acterize the crack by K?

The answer is yes, provided the plastic zone is small compared

to other relevant dimensions. This condition is called small-scale

yielding.

Why does this work? The key insight is that the K field is an inter-

mediate asymptotic solution. It’s valid in an annular region:

• Not too close to the tip: r ≫ rp (outside the process zone)

• Not too far from the tip: r ≪ a, (W − a) (small compared to crack

length and ligament)

crack

process zone

K-dominated

far field

Figure 6.2: The three regions near a
crack tip: (1) the process zone where
nonlinear effects dominate, (2) the K-
dominated annular region where the
1/

√
r field is valid, and (3) the far field

where the full geometry matters.

If this annular region exists—if there’s a zone where the 1/
√

r

field is valid—then K still characterizes the severity of the crack.

Two cracks with the same K have the same stress field in this region,

hence the same driving force acting on the process zone, hence the

same behavior.

This is the principle of similitude, and it’s what makes fracture

mechanics useful in practice. A small laboratory specimen can pre-
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dict the behavior of a large structure, as long as both have the same K

and both are in the small-scale yielding regime.

6.6 When Small-Scale Yielding Fails

Consider loading a cracked specimen. As the load increases, K in-

creases, and rp grows with it (remember rp ∝ K2). Eventually, the

plastic zone might become comparable to the crack length or liga-

ment.

At this point, the K-dominated region shrinks to nothing. The

elastic solution is no longer valid anywhere. We’re in the regime of

large-scale yielding or general yielding.

The test standards for measuring KIC include size requirements

precisely to prevent this:

a, (W − a), B ≥ 2.5

(

KIC

σY

)2

(6.6)

Let’s see what this requires for different materials:

Material KIC σY KIC/σY Min dimension

(MPa
√

m) (MPa) (m1/2) (mm)

High-strength steel 50 1500 0.033 2.8

Structural steel 100 350 0.29 204

Aluminum 7075-T6 25 500 0.050 6.3

Tough titanium 100 800 0.125 39

Table 6.3: Minimum specimen dimen-
sions for valid KIC testing.

Look at the structural steel: valid KIC testing requires specimens

at least 204 mm (8 inches) in each critical dimension. That’s a sub-

stantial piece of steel—expensive to machine, requiring large testing

machines. For some tough, low-strength materials, the required spec-

imens can be meters thick!

This practical difficulty motivated the development of elastic-

plastic fracture mechanics, which uses parameters like the J-integral

that remain valid under large-scale yielding. But that’s beyond our

scope here.

6.7 The Cohesive Zone: A Different Perspective

There’s another way to think about the process zone that avoids

the stress singularity entirely. It was developed independently by

Barenblatt in the USSR and Dugdale in England in the early 1960s,

during the period of limited scientific exchange between East and

West.
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The idea is elegant: instead of trying to model the complicated me-

chanics inside the process zone, replace it with a simplified model—a

zone where cohesive stresses act between the separating surfaces.

open crack

cohesive zone
intact

Figure 6.3: The cohesive zone model.
In the cohesive zone, stresses (arrows)
resist separation until a critical opening
is reached.

Think of it this way: ahead of the visible crack, there’s a zone

where the material is damaged but not fully separated. The surfaces

are pulling apart, but they’re still connected—by atomic bonds in

glass, by bridging ligaments in ceramics, by stretched fibrils in poly-

mers. As the separation increases, this cohesive stress eventually

drops to zero, and the material is fully cracked.

The cohesive zone model is specified by a traction-separation

law: a relationship between the stress σ acting across the zone and

the separation δ between the surfaces. The simplest version is the

Dugdale model:

σ =







σY δ < δc

0 δ ≥ δc

(6.7)

The material resists separation with constant stress σY until the

surfaces are δc apart, then releases completely. The fracture energy in

this model is just the area under the traction-separation curve:

Gc = σYδc (6.8)

More realistic models use smooth curves: the stress rises to a peak

as separation begins, then gradually decreases to zero. The shape of

this curve captures different failure mechanisms. A sharp peak with

rapid decay represents brittle cleavage. A lower, broader curve repre-

sents ductile tearing. A very extended tail represents fiber bridging.

The beautiful thing about the cohesive zone approach is that

it removes the stress singularity entirely. The stress is bounded

everywhere—by the cohesive strength. Yet it reproduces all the pre-

dictions of K-based fracture mechanics in the limit of small process

zones. It’s a physically motivated regularization of the theory.

6.8 Crack Tip Opening Displacement

As long as we’re discussing alternatives to K, let’s mention an-

other characterizing parameter: the crack tip opening displacement

(CTOD), usually denoted δt.

The idea is appealingly direct: even if we can’t calculate the stress

at the tip (because the material is plastic there), we can measure how

much the crack faces have separated at the tip. This opening reflects

the deformation in the process zone and correlates with fracture.

δt

tip

Figure 6.4: Crack tip opening displace-
ment δt.

Under small-scale yielding (plane stress), CTOD relates to our

other parameters:

δt =
K2

EσY
=

G

σY
(6.9)
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(For plane strain, replace E with E/(1 − ν2) in the first expression;

the second equality δt = G/σY holds generally since G already

accounts for the stress state.)

This makes sense dimensionally: G has units of energy per area,

σY has units of force per area, so G/σY has units of length—the open-

ing displacement.

The fracture criterion becomes δt ≥ δc, where δc is the critical

CTOD. This is equivalent to K ≥ KIC under small-scale yielding,

but CTOD remains meaningful even when the plastic zone is large.

It’s particularly useful for structural steels, where KIC testing would

require impractically large specimens.

6.9 What Determines Toughness?

We can now answer a fundamental question: why are some materials

tough and others brittle?

The answer lies in the process zone. A material is tough when it

dissipates a lot of energy in the process zone before the crack ad-

vances. This requires:

Easy plastic deformation: Materials with low yield stress and high

ductility develop large plastic zones. Each increment of crack ad-

vance requires plastically deforming a substantial volume of material,

which absorbs energy. Copper, aluminum, and low-carbon steel are

tough for this reason.

Energy-absorbing mechanisms beyond simple plasticity: Craz-

ing in polymers, fiber bridging in composites, microcracking in

transformation-toughened ceramics, void growth and coalescence

in ductile metals—all dissipate energy and increase toughness.

A large process zone: The bigger the region where energy is dissi-

pated, the more total energy is absorbed per unit crack advance.

Conversely, a material is brittle when:

Plastic deformation is suppressed: High yield stress, limited dis-

location mobility, or strong tendency toward cleavage. Ceramics have

very high yield stresses (if they yield at all), so cracks can propagate

with minimal plasticity.

Easy cleavage: Some materials have crystallographic planes where

bonds are weak. Cracks follow these planes with minimal energy

dissipation in surrounding material.

A small process zone: In glasses, the process zone may be only a

few nanometers wide. Essentially all the energy goes into breaking

bonds at the atomic scale.

The range in Gc—five orders of magnitude from glass to tough

steel—reflects the range of process zone sizes and the efficiency of

energy dissipation mechanisms. The “surface energy” of Griffith’s
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Material Gc (J/m2) Zone size Mechanism

Silica glass 5–10 nm bond breaking

Alumina 30–50 µm microcracking

Silicon 3 nm cleavage

PMMA 300–700 0.1–1 mm crazing

Epoxy 100–500 10–100 µm plasticity

Al alloy 8k–15k 1–5 mm void growth

Mild steel 50k–100k 1–10 mm plasticity

Tough steel 100k–300k 5–20 mm plasticity

Table 6.4: Fracture energy and process
zone size for various materials. The
five-order-of-magnitude range in Gc

reflects differences in energy dissipation
mechanisms.

theory is really the total energy dissipated in the process zone, di-

vided by the new crack area. For glass, this is perhaps 5–10 times the

true thermodynamic surface energy (2γ ∼ 0.6–1 J/m2), reflecting

some energy dissipation even in this nearly ideal brittle material. For

steel, Gc is dominated by plastic work and can be 100,000 times larger

than the surface energy.

6.10 Temperature and Rate Effects

The process zone is where all the interesting materials physics hap-

pens, so it’s not surprising that its character depends on temperature

and loading rate.

Temperature effects in metals: Dislocation motion is thermally

activated—easier at high temperatures, harder at low temperatures.

At elevated temperatures, plastic zones are larger, more energy is

dissipated, and toughness is higher. At low temperatures, yielding is

suppressed, plastic zones shrink, and materials become more brittle.

Many steels exhibit a dramatic ductile-to-brittle transition (DBT)

over a narrow temperature range. Above the transition, fracture

is ductile with high energy absorption. Below it, fracture is brittle

cleavage with low energy. The transition temperature depends on

composition, grain size, and loading rate. For structural steels, it

might be around −20◦C, which has serious implications for winter

operation of bridges and ships.

Rate effects: Plastic deformation takes time—dislocations must

nucleate and move, which involves thermally activated processes.

Under fast loading, there isn’t time for extensive plastic flow. The

plastic zone is smaller, less energy is dissipated, and the material

appears more brittle.

This is why impact toughness is different from quasi-static tough-

ness. A steel that’s perfectly tough in a slow laboratory test might

shatter under impact loading. The Charpy impact test, with its

swinging hammer, measures the behavior under dynamic conditions.

For safety-critical applications, both static and dynamic properties
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matter.

6.11 A Philosophical Aside: What Is “the Crack Tip”?

We’ve been talking about “the crack tip” as if it were a well-defined

point. But is it?

In our mathematical idealization, the crack tip is a singular point

where the displacement field has a discontinuity. But in a real ma-

terial, made of discrete atoms, what does “the crack tip” mean? Is

it the last pair of broken bonds? The last atom that’s still bonded to

atoms on the other crack face? The center of the process zone?

For practical purposes, this ambiguity doesn’t usually matter.

We’re interested in the far-field behavior, which is characterized by

K regardless of the detailed tip structure. But when we try to un-

derstand fracture at the atomic scale—through molecular dynamics

simulations, for instance—these questions become pressing.

There’s a deeper philosophical point here. Continuum mechanics

is an approximation. It replaces the discrete atomic structure with a

continuous medium, which is wonderfully tractable mathematically

but is always an approximation. The stress singularity at the crack

tip is an artifact of this continuum approximation. In a real atomic

material, there are no infinite stresses—just atoms at various levels of

strain.

The cohesive zone model can be seen as a partial remedy: it reg-

ularizes the singularity by acknowledging that atomic-scale pro-

cesses have a characteristic length and strength. But even this is an

approximation—real atomic fracture is messier than any traction-

separation law.

6.12 What We Don’t Fully Understand

Despite decades of research, several aspects of process zone behavior

remain incompletely understood:

Predicting toughness from first principles. We can measure KIC,

and we can explain qualitatively why some materials are tough and

others brittle. But predicting KIC quantitatively from fundamental

material properties (crystal structure, bond energies, dislocation

behavior) remains extremely difficult. Why exactly does nickel have

higher toughness than iron? We have qualitative stories, but not

predictive theories.

The ductile-to-brittle transition. We know that many metals be-

come brittle at low temperatures, and we can identify contributing

factors (reduced dislocation mobility, cleavage competition). But

predicting the transition temperature from microstructure, or fully
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understanding the transition mechanism, remains an active research

area.

Process zone evolution during crack growth. The process zone

isn’t static—it changes as the crack advances. In some materials,

the zone reaches a steady state that propagates with the crack. In

others, it evolves throughout the fracture process. Understanding this

dynamic behavior is crucial for fatigue and subcritical crack growth.

Scale bridging. We have atomic-scale simulations of bond break-

ing, and we have continuum theories of crack fields. Connecting

these scales—understanding how atomic events lead to macroscopic

toughness—is one of the grand challenges in mechanics of materials.

Environment effects. Many materials show dramatically differ-

ent toughness in different environments. Stress corrosion cracking,

hydrogen embrittlement, and liquid metal embrittlement all involve

complex chemistry in the process zone. The interactions between me-

chanical stress and chemical reactions at the crack tip are not fully

understood.

These aren’t just academic puzzles. The inability to predict tough-

ness from first principles means that new materials must be tested

extensively before use in critical applications. The uncertainty in

ductile-to-brittle transitions contributed to the Liberty ship failures in

World War II, where welded steel ships broke apart in cold water.

The cohesive zone concept traces back to a fundamental question: what holds materials together, and how does that

connection fail? Barenblatt, working in Moscow in the late 1950s, argued that the stress singularity in elasticity is

an artifact of the continuum approximation. At atomic scales, atoms attract each other at moderate separations and

repel at close approach. This leads naturally to a finite cohesive strength and a characteristic separation distance.

Dugdale, working independently in Cambridge, developed a similar model for plastic yielding at crack tips. Neither

was aware of the other’s work until later—a common occurrence in the Cold War era of limited scientific exchange.

Today we recognize both approaches as special cases of a general cohesive zone framework that has become central to

computational fracture mechanics.
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Fatigue

Here is one of the most insidious problems in all of engineering.

You build a structure. You test it. It holds the design load with a

comfortable margin. You put it in service. Years pass. The structure

performs perfectly. Then one day, without warning, it breaks.

The load that day was nothing special—well below what the struc-

ture had carried thousands of times before. There was no defect, no

abuse, no obvious cause. And yet it failed.

This is fatigue. It’s responsible for the majority of mechanical fail-

ures in service. It killed the passengers on the de Havilland Comet

aircraft. It brings down bridges. It cracks turbine blades. It is, in

some sense, the fundamental limit on the life of any structure that

experiences repeated loading.

Understanding fatigue means understanding how damage accu-

mulates invisibly, how cracks grow slowly under loads that would

never cause immediate failure, and why the millionth loading cycle

can break what the first cycle could not.

7.1 The Puzzle of Subcritical Loading

Here’s what makes fatigue so strange. Consider a steel bar with yield

stress 500 MPa. Load it to 200 MPa in tension. Nothing happens—

we’re well below yield, so the deformation is elastic. Unload it. The

bar returns exactly to its original state. The atoms are back where

they started. No damage, no change, no memory of the loading.

Do it again. And again. A hundred times, a thousand times. Still

nothing—elastic deformation is perfectly reversible.

But keep going. After a million cycles, or ten million, something

has changed. A tiny crack has appeared. It wasn’t there before.

Where did it come from?

The crack nucleates at some stress concentration—a surface

scratch, an inclusion, a grain boundary. Each loading cycle does a

tiny amount of plastic deformation at this local stress raiser, even
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though the bulk stress is below yield. Over millions of cycles, this

localized damage accumulates. Slip bands form, harden, crack. A

microcrack appears, then grows.

The bulk of the material is still perfectly elastic. But at the mi-

croscale, irreversible damage is occurring with every cycle. The mate-

rial is “remembering” each load application, even though macroscop-

ically it appears unchanged.

This is why fatigue is so dangerous: it’s invisible until it’s too late.

7.2 Wöhler and the Discovery of Fatigue

The first systematic study of fatigue was conducted by August Wöh-

ler, a German railway engineer, in the 1850s and 1860s. Railway axles

were failing in service—not immediately, but after years of satisfac-

tory operation. The failures were sudden and catastrophic, often

causing derailments.

Wöhler designed rotating-bending tests and ran them for millions

of cycles. He established several fundamental facts:

1. The number of cycles to failure decreases as stress amplitude

increases

2. Failure occurs at stresses far below the static strength

3. For steel, there appears to be a stress level below which failure

doesn’t occur, no matter how many cycles (the endurance limit)

The result of such testing is an S-N curve: stress amplitude versus

number of cycles to failure.

log N

S

steel

aluminum

Se

104 106 108

Figure 7.1: S-N curves for steel and
aluminum alloys.

Wöhler’s data looked something like this for steel axles:

The endurance limit for this steel is around 250 MPa—about 40%

of the ultimate tensile strength. Below this stress, the axle could

rotate forever without failing.
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Stress amplitude (MPa) Cycles to failure

400 10,000

350 100,000

300 500,000

275 2,000,000

250 10,000,000+ (no failure)

225 50,000,000+ (no failure)

Table 7.1: Typical S-N data for a carbon
steel.

Aluminum alloys, unfortunately, show no true endurance limit.

The S-N curve keeps decreasing. Given enough cycles, failure occurs

at any stress level. For these materials, we define a fatigue strength at

a specified life (often 107 or 108 cycles).

Wöhler’s work was empirical and phenomenological—he estab-

lished what happens without explaining why. The mechanistic un-

derstanding would come later, with fracture mechanics.

7.3 From S-N Curves to Crack Growth

S-N curves treat the specimen as a black box. You apply stress, count

cycles, record failure. But what’s happening inside?

From a fracture mechanics perspective, fatigue is subcritical crack

growth. The process has three stages:

Stage I: Crack initiation. A microcrack nucleates at a stress

concentration—a surface defect, inclusion, or grain boundary. This

can take most of the fatigue life, especially at low stresses.

Stage II: Stable crack propagation. The crack grows through the

material, advancing a small amount with each loading cycle. This is

the regime where fracture mechanics applies.

Stage III: Final fracture. The crack reaches critical size and the

component fails rapidly, often in a single cycle.

The transition from S-N thinking to crack growth thinking was a

major conceptual advance. Instead of asking “how many cycles to

failure?” we ask “how fast does a crack grow, and how do we predict

it?”

7.4 Stress Intensity Factor Range

The key insight is that crack growth rate should depend on the “driv-

ing force” for crack extension during each cycle. What characterizes

this driving force?

For static fracture, we use K or G. For fatigue, the natural parame-

ter is the range of stress intensity during each cycle:

∆K = Kmax − Kmin (7.1)
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We also define the load ratio:

R =
Kmin

Kmax
(7.2)

For loading between zero and some maximum (tension-tension),

R = 0. For fully reversed loading (tension-compression), R is nomi-

nally −1, though in practice when the applied stress goes compres-

sive, the crack closes and Kmin is effectively zero. For constant tension

with superimposed cyclic stress, R might be 0.5 or higher.

Why should ∆K control crack growth? Think about what happens

at the crack tip during one cycle. As load increases from Kmin to

Kmax, the stress field near the tip intensifies. Plastic deformation

occurs, the crack blunts and advances slightly. As load decreases

back to Kmin, reversed plastic deformation occurs. The amplitude of

this back-and-forth deformation is controlled by ∆K.

7.5 The Paris Law

In 1963, Paul Paris and Frank Erdogan proposed a remarkably simple

relationship:

da

dN
= C(∆K)m (7.3)

where da/dN is the crack growth per cycle, and C and m are mate-

rial constants.1 1 Paris and Erdogan’s paper was ini-
tially rejected by several journals. The
idea that such a complex phenomenon
could be characterized by a simple
power law seemed too good to be true.
It turned out to be mostly true—at least
in the intermediate growth rate regime.

On a log-log plot, this is a straight line with slope m:

log

(

da

dN

)

= log C + m log(∆K) (7.4)

Typical values for metals:

Material m C (SI units) Units

Aluminum alloys 3.0–3.5 10−11 to 10−10 m/cycle, MPa
√

m

Steels 2.5–4.0 10−12 to 10−11 m/cycle, MPa
√

m

Titanium alloys 3.0–5.0 10−11 to 10−10 m/cycle, MPa
√

m

Table 7.2: Typical Paris law parameters.

Let’s work through an example. Consider an aluminum alloy with

C = 5 × 10−11 m/cycle (in SI units with ∆K in MPa
√

m) and m = 3.

A component has a crack with ∆K = 10 MPa
√

m.

The growth rate is:

da

dN
= 5 × 10−11 × 103 = 5 × 10−8 m/cycle = 50 nm/cycle

Fifty nanometers per cycle. That’s about 200 atomic spacings. Tiny,

but relentless. After a million cycles, the crack has grown 50 mm.
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Now suppose the load increases so that ∆K = 20 MPa
√

m. The

growth rate becomes:

da

dN
= 5 × 10−11 × 203 = 4 × 10−7 m/cycle = 400 nm/cycle

Doubling ∆K increased the growth rate by a factor of 23 = 8. The

exponent m makes ∆K very influential.

7.6 The Three Regimes

The Paris law works well in the intermediate regime, but the full

fatigue crack growth curve has three distinct regions:

log ∆K

log da
dN

I

II
III

∆Kth
KIC

slope = m

Figure 7.2: The three regimes of fatigue
crack growth.

Region I: Near-threshold. At low ∆K, the crack growth rate drops

precipitously. Below a threshold value ∆Kth, no measurable growth

occurs. For steels, ∆Kth is typically 3–6 MPa
√

m; for aluminum al-

loys, 1–3 MPa
√

m.

The threshold is enormously important for design. If you can

keep ∆K < ∆Kth for all potential cracks, fatigue crack growth won’t

occur—in principle, infinite life.

Region II: Paris regime. The Paris law applies. Growth is stable

and predictable. A component might spend 90% of its fatigue life in

this regime, with the crack slowly lengthening cycle by cycle.

Region III: Near-failure. As Kmax approaches KIC, growth acceler-

ates. The crack is becoming critical. This regime is short-lived—once

you enter Region III, failure is typically only thousands of cycles

away.
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7.7 What Happens During Each Cycle?

Let’s trace through one loading cycle at the crack tip to understand

the mechanism:

Loading phase (increasing K): The stress field intensifies. The

plastic zone grows. Material near the tip yields, with dislocations

moving and slip occurring. The crack tip blunts as material flows

away from the sharp tip. The crack may advance slightly by ductile

tearing.

Peak load (K = Kmax): Maximum plastic zone size. Maximum

crack opening. The blunted tip is at its most open state.

Unloading phase (decreasing K): The surrounding elastic ma-

terial compresses the plastically deformed zone. Reversed yielding

occurs—dislocations move back, but not all the way. Some irre-

versible damage accumulates.

Minimum load (K = Kmin): The crack has partially closed. If

R < 0, the crack faces may be in compression.

Each cycle leaves a small increment of damage. Over many cycles,

this accumulates as crack extension.

The crack advance per cycle is often visible as striations on the

fracture surface—parallel markings perpendicular to the growth di-

rection, each representing one cycle. Under ideal conditions, striation

spacing matches the macroscopic growth rate predicted by the Paris

law. This correspondence between microscopic observation and con-

tinuum prediction is one of the satisfying confirmations of fracture

mechanics.
origin

growth

1 cycle

Figure 7.3: Fatigue striations (top-down
view of fracture surface). The crack
originated at the marked point and
grew outward. Each arc is one loading
cycle.

7.8 Crack Closure: A Subtlety

Here’s a complication that took decades to recognize and that still

causes confusion.

Consider a crack that has grown some distance. The material

behind the current crack tip—the “wake”—has been plastically de-

formed during previous cycles. This stretched material doesn’t fit

neatly back together when the load is removed.

The result: the crack faces may contact before the applied load

reaches zero. The crack “closes” at some positive stress intensity Kop,

called the opening stress intensity.

time

K

Kop

∆Ke f f

Figure 7.4: Only the shaded portion
of the cycle (above Kop) drives crack
growth. ∆Ke f f = Kmax − Kop.

Only the portion of the cycle when the crack is actually open con-

tributes to growth. This leads to an effective stress intensity range:

∆Ke f f = Kmax − Kop (7.5)

A modified Paris law using ∆Ke f f often correlates data better than

nominal ∆K, especially for different R-ratios.
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Crack closure explains several observations:

• Higher R gives faster growth at the same ∆K (less closure, more of

the cycle is effective)

• An overload can retard subsequent growth (it enlarges the plastic

wake, increasing closure)

• Growth rate depends on history (the wake depends on previous

cycles)

The closure concept has been controversial. Some researchers ar-

gue it’s been overemphasized; others consider it essential. What’s

clear is that the simple Paris law with nominal ∆K is an approxima-

tion, and real behavior is more complex.

7.9 Fatigue Life Prediction: A Worked Example

Given the Paris law, we can predict the life of a cracked component.

If a crack grows from initial size a0 to critical size ac, the number of

cycles is:

N =
∫ ac

a0

da

C(∆K)m
(7.6)

Let’s work through a complete example. An aluminum plate has

a central crack of initial half-length a0 = 2 mm. The plate is loaded

cyclically with stress range ∆σ = 100 MPa. The material has C =

5 × 10−11 m/cycle (SI units), m = 3, and KIC = 30 MPa
√

m.

First, find the critical crack size. At failure:

KIC = σmax
√

πac

If R = 0, then σmax = ∆σ = 100 MPa:

ac =
1

π

(

KIC

σmax

)2

=
1

π

(

30

100

)2

= 0.029 m = 29 mm

For a central crack in an infinite plate, K = σ
√

πa, so ∆K =

∆σ
√

πa. The Paris law becomes:

da

dN
= C(∆σ

√
πa)m = C(∆σ)mπm/2am/2

Rearranging and integrating:

N =
∫ ac

a0

da

C(∆σ)mπm/2am/2

For m = 3:

N =
1

C(∆σ)3π3/2

∫ ac

a0

a−3/2da =
1

C(∆σ)3π3/2
×

−2

a1/2

∣

∣

∣

ac

a0
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N =
2

C(∆σ)3π3/2

(

1
√

a0
−

1
√

ac

)

Substituting values:

N =
2

5 × 10−11 × (100)3 × π3/2

(

1√
0.002

−
1√

0.029

)

N =
2

5 × 10−11 × 106 × 5.57
(22.4 − 5.9) =

2 × 16.5

2.78 × 10−4
= 1.19× 105 cycles

About 120,000 cycles. Let’s check: most of this life is spent with

the crack small. At a = 2 mm:

∆K = 100
√

π × 0.002 = 7.9 MPa
√

m

da

dN
= 5 × 10−11 × 7.93 = 2.5 × 10−8 m/cycle

At a = 20 mm (near failure):

∆K = 100
√

π × 0.02 = 25.1 MPa
√

m

da

dN
= 5 × 10−11 × 25.13 = 7.9 × 10−7 m/cycle

The growth rate near the end is 30 times faster than at the begin-

ning! This is why finding cracks early is so valuable—most of the life

has been consumed by the time a crack becomes large.

7.10 Damage Tolerance Philosophy

The modern approach to fatigue in aerospace is called damage tol-

erance. It represents a philosophical shift from “design to prevent

cracks” to “design assuming cracks exist.”

The principles:

1. Assume flaws exist—because they do, from manufacturing, han-

dling, or service damage

2. Size those flaws at the limit of detectability

3. Predict how long they take to grow to critical size

4. Set inspection intervals to catch cracks before they become danger-

ous

This approach was developed after catastrophic failures in the

1950s and 1960s. The de Havilland Comet, the first commercial jet

airliner, suffered multiple fuselage failures from fatigue cracks that

grew from rivet holes. The failures occurred after thousands of pres-

surization cycles, at stresses well below the design limit.

The lesson was profound: you cannot prevent fatigue cracks by

careful design alone. You must assume they will occur and manage

them through inspection and maintenance.
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flight hours

a

ac

adet

a0

inspect inspect

Figure 7.5: Damage tolerance: inspec-
tions scheduled to catch cracks while
they’re still safe.

7.11 A Philosophical Aside: The Nature of Fatigue

Fatigue raises interesting questions about the nature of damage and

memory in materials.

An elastic solid, by definition, has no memory. Each loading cy-

cle leaves it unchanged. Yet fatigue clearly involves memory—the

material “remembers” previous cycles, accumulating damage until

failure.

The resolution is that fatigue damage occurs at the microscale, in

regions of local stress concentration, even while the bulk remains

elastic. The material is simultaneously elastic (macroscopically) and

plastic (locally). This multi-scale character makes fatigue inherently

complex.

There’s also a philosophical question about the endurance limit.

For steels, we say there’s a stress below which fatigue failure won’t

occur. But how do we know? We’ve tested to 107 or 108 cycles, but

what about 1012? Some recent research suggests that very-high-cycle

fatigue can occur even below the classical endurance limit, through

different mechanisms (internal crack initiation rather than surface

initiation).

The endurance limit may be less absolute than we thought. Or

perhaps it’s real for surface-initiated fatigue but not for internally-

initiated fatigue. The honest answer is: we’re not entirely sure.

7.12 What We Don’t Fully Understand

Despite over 150 years of study, fatigue retains mysteries:

Why m ≈ 3? The Paris exponent is remarkably consistent across

metals—typically 2 to 4. Why? If m = 2, growth would be propor-

tional to plastic zone size (rp ∝ K2). But most metals show m > 2.

Various models have been proposed, but none provides a complete

first-principles prediction of m.
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The threshold phenomenon. Why is there a ∆Kth below which

cracks don’t grow? Is it truly zero growth, or just immeasurably

slow? The threshold appears related to microstructural features

(grain size, oxide debris, roughness-induced closure), but the detailed

mechanism remains debated.

Environment effects. Fatigue in air is different from fatigue in

vacuum, in seawater, in hydrogen. Corrosion-fatigue can dramatically

reduce the threshold and increase growth rates. The interplay be-

tween mechanical cycling and environmental chemistry at the crack

tip is complex and not fully understood.

Small crack behavior. Very small cracks (micrometers in size)

often grow faster than predicted by the Paris law extrapolated from

long-crack data. They can grow even below the long-crack threshold.

The small-crack problem has practical importance for predicting

initiation life but remains theoretically challenging.

Sequence effects. Real loading isn’t constant amplitude. Over-

loads can retard subsequent growth (through increased closure).

Underloads can accelerate it. Block loading produces different lives

than random loading of the same spectrum. These interaction effects

are captured empirically but not from first principles.

Variability. Fatigue life shows large scatter—factors of 10 be-

tween nominally identical specimens are common. This reflects the

stochastic nature of crack initiation, microstructural variability, and

sensitivity to surface condition. Predicting not just mean life but the

distribution of lives remains challenging.

7.13 The Importance of Inspection

Let me emphasize something practical. The entire damage tolerance

approach depends on inspection. You must find cracks before they

reach critical size.

For aircraft, this means:

• Non-destructive evaluation (NDE): ultrasonic, eddy current, X-ray,

dye penetrant

• Regular inspection intervals based on crack growth analysis

• Retirement of parts that can’t be adequately inspected

The detection limit is crucial. If your NDE method can reliably

find 2 mm cracks but not 1 mm cracks, you must assume 2 mm

cracks exist at any location you can’t prove is crack-free.

This is conservative, which is appropriate for safety-critical appli-

cations. But it also means that better inspection technology directly

enables longer intervals and lighter designs: if you can detect smaller
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flaws, you can catch cracks earlier in their growth, allowing either

longer inspection intervals or the use of higher-strength (but less

damage-tolerant) materials.

The interplay between fracture mechanics, inspection technology,

and structural design is at the heart of modern aerospace engineer-

ing.

Fatigue is the patient enemy. It does its work slowly, invisibly, one cycle at a time. The crack grows a few atoms with

each loading cycle, year after year, until one day it reaches critical size. Then, in an instant, what took millions of

cycles to prepare happens in a fraction of a second. The structure that held load yesterday fails catastrophically today.

This is why damage tolerance matters—not because we can prevent fatigue, but because we can manage it. With

proper inspection and analysis, fatigue cracks can be found and addressed before they become fatal. The price of safe

operation is eternal vigilance.
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Dynamic Fracture

So far we’ve treated fracture as a quasi-static process. The crack

inches forward; we compute stresses; we check whether K exceeds

KIC; if so, the crack grows. Time doesn’t really enter, except as a

sequence of equilibrium states.

But this picture breaks down when cracks become unstable. A

crack that starts growing in a highly stressed material doesn’t stop—

it accelerates. And once a crack is moving fast, everything changes.

The stress field is different. The energy balance is different. Inertia

matters. Waves propagate.

This chapter is about what happens when cracks run. It turns out

there’s a speed limit, but reaching it is surprisingly hard. And along

the way, strange things happen.

8.1 The Question of Speed

How fast can a crack go?

Let’s start with dimensional analysis. A crack propagating through

a material must be controlled by the material properties: density

ρ, elastic modulus E (or shear modulus µ), and fracture energy Gc.

From these, we can form a characteristic speed:

c ∼

√

E

ρ

This is (roughly) the speed of elastic waves in the material. Infor-

mation about stress propagates at this speed. It would be strange if a

crack could go faster than the stress field that drives it—how would

the material ahead “know” to break?

So we expect: crack speed should be bounded by some elastic

wave speed.

What wave speed, exactly? In an isotropic elastic solid, there are

several:
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Dilatational (P) wave speed:

cd =

√

λ + 2µ

ρ
=

√

E(1 − ν)

ρ(1 + ν)(1 − 2ν)

This is the fastest wave, involving compression and extension. For

ν = 0.3, cd ≈ 1.9cs.

Shear (S) wave speed:

cs =

√

µ

ρ
=

√

E

2ρ(1 + ν)

This is slower, involving shearing without volume change.

Rayleigh (R) wave speed:

cR ≈
0.87 + 1.12ν

1 + ν
cs ≈ 0.92cs (ν = 0.3)

Rayleigh waves are surface waves that travel along free surfaces—

like the crack faces.

Material E (GPa) ρ (kg/m3) cs (m/s) cR (m/s)

Steel 200 7800 3200 2950

Aluminum 70 2700 3100 2850

Soda-lime glass 70 2500 3400 3100

PMMA 3 1180 1000 920

Natural rubber 0.002 1100 27 25

Table 8.1: Wave speeds in various
materials.

For a Mode I crack (opening), energy arguments suggest the

Rayleigh speed cR is the limiting velocity. The crack tip is essentially

a propagating free surface, and Rayleigh waves are the characteristic

waves of free surfaces.

So we might expect cracks in steel to reach speeds around 3000

m/s—about 10 times the speed of sound in air, or roughly Mach 9!

That’s extraordinarily fast.

8.2 The Disappointing Reality

Here’s what experiments actually find: cracks are much slower than

cR.

In brittle materials like glass and PMMA, carefully measured

terminal velocities are typically 0.4–0.6cR. In tougher materials like

metals, they’re even lower.

Why the discrepancy? This is one of the classic puzzles of dy-

namic fracture. Several factors contribute:

The fracture energy increases with velocity. As a crack speeds

up, the process zone doesn’t have time to develop fully. More energy
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Material cR (m/s) Observed vmax (m/s) vmax/cR

Soda-lime glass 3100 1500–1800 0.48–0.58

PMMA 920 400–500 0.43–0.54

Homalite-100 1250 400–500 0.32–0.40

Steel 2950 500–1500 0.17–0.51

Table 8.2: Observed limiting crack
velocities compared to Rayleigh wave
speed.

goes into creating rough surfaces, microbranches, and secondary

damage. The effective Gc rises with velocity.

Instabilities develop. Fast cracks become unstable. They oscillate,

wobble, and eventually branch. These instabilities consume energy

and prevent smooth, fast propagation.

The stress field changes unfavorably. At high velocities, the an-

gular distribution of stress near the tip shifts. The maximum stress

moves away from the forward direction, encouraging the crack to

turn or branch rather than run straight.

Let me elaborate on each of these.

8.3 Velocity-Dependent Fracture Energy

The quasi-static fracture energy Gc is a material property. But it’s

really the energy dissipated per unit crack area under quasi-static

conditions. Under dynamic conditions, this can change.

Consider what happens at the crack tip. In quasi-static fracture,

the process zone has time to develop: plastic flow occurs, microcracks

form, the stress field relaxes. All these processes take time.

At high speeds, there isn’t time. The crack tip outruns some of

these relaxation processes. The result: a different (usually higher)

effective fracture energy.

We can write:

Γ(v) = Gc · f (v/cR)

where f is an increasing function, with f (0) = 1. Various measure-

ments suggest f increases by factors of 2–5 as v approaches typical

terminal velocities.

This velocity dependence creates a stabilizing feedback. As the

crack speeds up, Γ increases, consuming more of the available energy.

The crack slows until energy supply matches the velocity-dependent

demand.
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8.4 The Dynamic Energy Release Rate

For a moving crack, the energy release rate is not simply G = K2/E′.

The relationship becomes velocity-dependent:

G =
(Kd)2

E′ A(v) (8.1)

where Kd is the dynamic stress intensity factor and A(v) is a func-

tion that goes to 1 as v → 0 and to 0 as v → cR.

The function A(v) captures the effect of inertia. As the crack

moves faster, more energy goes into accelerating material near the

tip (kinetic energy), leaving less for actually extending the crack. At

v = cR, all available energy goes into kinetic energy—none is left for

the crack to advance.

An approximate form for A(v) is:

A(v) ≈
1 − v/cR

(1 − v2/c2
d)

1/2(1 − v2/c2
s )

1/2

This has the right qualitative behavior: A → 1 as v → 0, and

A → 0 as v → cR.

Let’s compute an example. Take PMMA with cR = 920 m/s,

cs = 1000 m/s, cd = 1850 m/s. At v = 460 m/s (half the Rayleigh

speed):

A(v) ≈
1 − 0.5

(1 − 0.062)1/2(1 − 0.21)1/2
=

0.5

0.97 × 0.89
= 0.58

Even at half the theoretical limit, over 40% of the available energy

is going into kinetic energy rather than fracture.

8.5 The Equation of Motion

Combining these effects gives an equation of motion for a running

crack. At steady state:

G(K, v) = Γ(v) (8.2)

The left side is the available energy (depending on the loading

through K and on velocity through the A(v) function). The right side

is the energy consumed (increasing with velocity).

For a given loading level (given K), this equation determines the

crack velocity. Higher K gives higher v, but there’s an upper limit

where the increasing Γ(v) absorbs everything the decreasing A(v)

makes available.

Let’s sketch this graphically. Plot both G(v) and Γ(v) against ve-

locity:

Higher loading gives higher velocity, but the velocities pile up well

below cR because Γ(v) is rising rapidly while G(v) is falling.
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v/cR

energy rate

1

high K

med K

low K

Γ(v)

1

Figure 8.1: Energy available (solid
curves, for different K) and energy con-
sumed (dashed) versus crack velocity.
Intersections give steady-state velocities.

8.6 Instabilities and Branching

Fast cracks don’t stay straight. As velocity increases, the crack begins

to oscillate, its path becoming wavy. At higher velocities still, the

crack branches—splitting into two or more diverging paths.

growth Figure 8.2: Crack branching: one crack
becomes many.

Why does branching occur? There’s a beautiful analysis by Yoffe

(1951) that gives insight. She calculated the stress field around a mov-

ing crack and found that the angular distribution of stress changes

with velocity.

At low velocities, the maximum tensile stress is directly ahead

of the crack (θ = 0). This favors straight propagation—the crack

“wants” to continue in its current direction.

As velocity increases, the maximum stress moves to an angle away

from θ = 0. Above a critical velocity (around 0.6cs, or roughly 0.65cR,

in Yoffe’s analysis), the maximum is no longer ahead. The crack

“wants” to turn, or to split into branches that can follow the maxi-

mum stress directions.

Yoffe’s analysis was idealized (a steady-state crack in an infinite

medium), and the detailed mechanics of branching are more com-

plex. But the basic insight holds: the stress field at high velocities

destabilizes straight propagation.

Branching is energetically favorable when there’s excess energy. If

G > 2Gc, there’s enough energy to drive two cracks instead of one.

Each branch has lower K than the parent crack, but together they can
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consume more energy.

8.7 Fracture Surface Signatures

The fracture surface tells the story of dynamic fracture. In brittle

materials like glass, a characteristic sequence of features appears:

Mirror: Near the origin, the surface is smooth and flat. This is

where the crack was slow, well below the instability threshold.

Mist: As the crack accelerated, the surface becomes slightly

rough—a fine texture that scatters light, creating a misty appearance.

The crack is beginning to oscillate.

Hackle: Further from the origin, distinct elongated markings ap-

pear, radiating from the origin. These hackle marks indicate more

severe oscillations and incipient branching.

Branching: Beyond the hackle zone, the crack may split into multi-

ple branches, each creating its own fracture surface.

mirror (smooth)

mist (fine texture)

hackle (radial marks)

branching

Figure 8.3: Fracture surface zones in
brittle materials. The crack originated at
the central point. As velocity increases
outward: the smooth mirror zone,
the fine-textured mist zone, the radi-
ally marked hackle zone, and finally
branching.

The radii of these zones are related to the stress at fracture. An

empirical relationship (the mirror constant) relates the mirror radius

rm to the failure stress σf :

σf
√

rm ≈ Am

where Am is a material constant. This is useful in fractography: by

measuring the mirror radius, you can estimate the stress that caused

the fracture.

8.8 Crack Arrest

A running crack can be stopped if it enters a region where the driv-

ing force drops below the resistance. This is crack arrest, and it’s

crucial for damage-tolerant design.

Arrest can occur because:
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Stress decreases: The crack outruns the highly stressed region. K

drops, and if it falls below a critical arrest value, the crack stops.

Toughness increases: The crack enters tougher material—perhaps

a weld, a different alloy, or a compressively prestressed zone. Local

KIC exceeds K, and the crack arrests.

Geometric features: Crack arrestor strips, rivet holes, or stiffeners

can locally reduce K or increase energy absorption.

The arrest criterion is:

K(aarrest) ≤ KIa

where KIa is the crack arrest toughness. Importantly, KIa is often

different from the initiation toughness KIC. For many steels, KIa <

KIC, sometimes significantly.

Why the difference? A running crack experiences high strain rates

at the tip. Many materials are less tough under dynamic loading

than under quasi-static loading. The practical consequence is that K

must drop to a lower value (KIa) to arrest a running crack than the

value (KIC) needed to prevent initiation of a stationary crack. In other

words, a running crack will continue propagating through regions

where a stationary crack would not have initiated.

This has sobering implications. If K at some location is between

KIa and KIC, a stationary crack won’t grow, but a running crack

won’t stop. You can have stable configurations that are unstable to

perturbations.

8.9 A Historical Aside: The Liberty Ships

The importance of dynamic fracture was driven home by disaster.

During World War II, the United States built thousands of Liberty

Ships—welded steel cargo vessels, produced quickly and in vast

numbers to supply the war effort.

Some of these ships broke in half.

Not from enemy action. Not from storms. They broke in calm

seas, sometimes while sitting at dock. The fractures were catas-

trophic: the entire hull would split, typically starting from a hatch

corner or other stress concentration.

What was happening? The ships were made from steel that was

perfectly adequate under quasi-static testing. But they were operating

in cold North Atlantic waters, and the steel had a ductile-to-brittle

transition temperature above the service temperature. Under dy-

namic loading (wave impacts, cargo shifts), cracks initiated at stress

concentrations and ran through the brittle steel at high speed.

About 1,500 Liberty Ships experienced significant brittle fractures.

Twelve broke completely in half. The deaths and material losses
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prompted intensive research into fracture mechanics, leading directly

to many of the concepts we’ve discussed.

The Liberty Ship failures demonstrated that dynamic fracture

is not just an academic topic. It’s a matter of life and death, and it

requires careful attention to material properties, temperature, loading

rate, and the possibility of crack arrest.

8.10 Intersonic Cracks: Breaking the Speed Barrier

Can cracks ever exceed cR? The answer, surprisingly, is yes—but only

in Mode II (shear).

In Mode II, the crack faces slide past each other rather than pulling

apart. The relevant wave speed turns out to be cs rather than cR. And

under certain conditions, Mode II cracks can propagate at speeds

between cs and cd—the intersonic regime.

Intersonic cracks have been observed in laboratory experiments

and are believed to occur in some earthquakes. An earthquake fault

rupture is essentially a giant Mode II crack propagating along a

preexisting fault plane.

The mechanics of intersonic cracks is exotic. The crack tip is mov-

ing faster than shear waves can propagate, so there’s a Mach cone

of shear waves trailing behind—like the sonic boom behind a super-

sonic aircraft. The stress field has a different character, with disconti-

nuities along the Mach cone.

Mode I cracks, on the other hand, seem to be firmly limited to

sub-Rayleigh speeds. The energy arguments and instability analyses

all point to cR as an insurmountable barrier for tensile cracks. No

reproducible observations of supersonic Mode I cracks exist.

This Mode I / Mode II asymmetry is not fully understood. Why

should shear cracks be able to break the barrier while tensile cracks

cannot? The detailed answer involves the different stress fields and

energy flows for the two modes, but a complete intuitive explanation

remains elusive.

8.11 A Philosophical Aside: What Is “Fast”?

We’ve been discussing “fast” cracks—but how fast is fast?

In absolute terms, crack speeds in glass can exceed 1500 m/s.

That’s about Mach 4.5, or one mile every three seconds. A crack can

traverse a meter-scale structure in a millisecond.

But from the material’s perspective, what matters is the ratio v/cR.

A crack at 0.5cR is dynamically significant regardless of whether

that’s 1500 m/s (glass) or 12 m/s (rubber).

The time scale for dynamic effects is set by the transit time of
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waves across the process zone. If the process zone is a few millime-

ters and the wave speed is a few thousand meters per second, the

relevant time is microseconds. Any crack that traverses the process

zone in less than this time is “fast” in the sense that dynamic effects

matter.

This connects to the strain rate sensitivity of materials. At high

strain rates, materials often behave differently—typically becoming

stronger but more brittle. The transition from quasi-static to dynamic

behavior isn’t sharp, but somewhere in the range of 103 to 106 per

second strain rate, dynamic effects become important for most mate-

rials.

8.12 What We Don’t Fully Understand

Dynamic fracture remains an active research area with several open

questions:

The terminal velocity mystery. Why is the maximum crack

speed typically 0.4–0.6cR and not closer to cR? We have explana-

tions (velocity-dependent toughness, instabilities), but can we predict

the terminal velocity from first principles for a given material? Not

reliably.

The branching threshold. Branching occurs at some combination

of velocity and loading, but predicting exactly when is difficult. Is

there a universal criterion, or does it depend on material-specific

details?

Crack path selection. When a crack branches, what determines the

angles of the branches? What determines which branches dominate

and which arrest? The full dynamics of branching are complex and

not fully understood.

Intersonic Mode II propagation. Under what conditions do shear

cracks become intersonic? What stabilizes intersonic propagation

when it occurs? How does this apply to earthquake ruptures?

The transition from quasi-static to dynamic. When a crack accel-

erates from rest, how does the process zone evolve? How does the

velocity-dependent toughness develop? The transient regime is less

understood than steady-state propagation.

Three-dimensional effects. Most analysis assumes 2D (plane

strain or plane stress). Real cracks are 3D, with curved fronts and

varying conditions along the front. How do dynamic effects vary

along a 3D crack front?

These questions matter practically. Improving predictions of dy-

namic fracture would help design safer structures, better understand

natural phenomena like earthquakes, and develop materials opti-

mized for impact resistance.
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8.13 Implications for Design

What should engineers take away from dynamic fracture?

Unstable crack growth is catastrophic. Once a crack becomes

unstable, it propagates in microseconds to milliseconds. There’s no

time for warning or intervention. The entire fracture event is over

before you can react.

Arrest features are essential. Since fast cracks can’t always be

prevented, structures should be designed to arrest cracks before

they cause total failure. Crack arrestor strips, redundant structural

members, and tough regions can limit damage.

Temperature and rate matter. Many materials are less tough under

dynamic loading and at low temperatures. A material that passes

quasi-static tests at room temperature might fail catastrophically

under impact at low temperature. Both conditions must be tested.

Fractography reveals the history. The features on fracture surfaces—

mirror, mist, hackle, branching—record what happened. Learning to

read these features is valuable for failure analysis.

There is something awe-inspiring about a running crack. In a fraction of a second, it travels the length of a struc-

ture, converting stored elastic energy into kinetic energy, surface energy, and noise. The sound of fracture—the crack

of a breaking window, the report of a snapping cable—is the sonic signature of this violent energy transformation.

The crack tip moves at speeds approaching a mile per second, faster than most bullets. Yet it follows precise physical

laws, its speed and path determined by the interplay of stress, material, and geometry. Understanding these laws has

prevented countless failures. Not understanding them has caused disasters.
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A Bestiary of Materials

We’ve developed fracture mechanics from general principles: energy

balance, stress fields, the K singularity, the process zone. These prin-

ciples apply to all materials—that’s part of their power. But how they

manifest depends on the specific material: its bonding, its structure,

its defects, its available deformation mechanisms.

This chapter is a tour through the zoo of materials, each with

its own fracture character, its own tricks, its own failure modes. By

the end, you’ll see why there’s no universal theory of fracture—

and why the general framework we’ve developed is nevertheless

indispensable.

9.1 Glasses: The Ideal Brittle Material

Let’s start with glass, because glass is where fracture mechanics

began and where the theory works most cleanly.

Glass is an amorphous solid—atoms arranged in a disordered

network, like a liquid frozen in place. There are no crystal planes, no

dislocations, no easy modes of plastic deformation. When you stress

glass, bonds stretch. When the stress gets high enough, bonds break.

That’s it.

The process zone in glass is tiny: perhaps 1–10 nanometers, barely

more than a few atomic spacings. Almost all the fracture energy goes

into creating the new surfaces. The measured Gc values—typically 5–

10 J/m2—are close to, but somewhat higher than, the thermodynamic

fracture surface energy (2γ ≈ 3–5 J/m2 for freshly fractured silica),

indicating that even in this nearly ideal brittle material, some energy

dissipation occurs beyond simple bond breaking.

This makes glass almost perfectly brittle. The Griffith theory was

developed for glass, and glass behaves almost exactly as the theory

predicts.

But here’s the catch: glass strength is all about flaws.

The theoretical strength of silica glass (calculated from bond en-
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ergies) is about 7–14 GPa—roughly E/10 to E/5. In practice, com-

mercial window glass breaks at 50–100 MPa. That’s 200–400 times

weaker than the theoretical limit.

The difference is surface flaws. Microscopic scratches, handling

damage, impact sites from dust particles, chemical attack—all create

stress concentrations that nucleate fracture at stresses far below the

theoretical strength.

This explains several facts about glass:

Glass type Typical strength (MPa) Why

Window pane (handled) 30–50 Many flaws from use

Fresh glass rod 200–500 Few flaws

Fire-polished surface 500–1000 Flaws healed

Pristine fiber 3000–5000 Minimal surface area

Table 9.1: Glass strength depends on
surface condition.

Griffith’s original insight came from exactly this observation. He

noticed that thin glass fibers were much stronger than thick ones, and

he reasoned (correctly) that thinner fibers have smaller surface area

and hence fewer flaws.

Glass optical fibers—the kind that carry internet traffic—are ex-

traordinarily strong because they’re drawn quickly, immediately

coated with polymer, and never touched by anything that could

create flaws. Their strength approaches a significant fraction of the

theoretical limit.

9.2 Ceramics: Brittle but Crystalline

Ceramics are like glass in their brittleness but different in structure.

They’re crystalline, with atoms arranged in regular lattices. Alu-

mina (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), zirconia

(ZrO2)—these are the workhorses of structural ceramics.

Why are ceramics brittle despite being crystalline? The bonding

is ionic or covalent, which makes dislocation motion very difficult.

In metals (metallic bonding), dislocations glide easily. In ceramics,

they don’t—the energy barriers are too high. Without dislocation-

mediated plasticity, there’s no way to relieve stress concentrations,

and fracture occurs in a brittle manner.

Ceramic toughnesses are higher than glass but still modest:

The somewhat higher toughness of ceramics compared to glass

comes from small-scale mechanisms: microcracking ahead of the

crack, grain boundary effects, and crack deflection at grain bound-

aries. These create a small process zone that dissipates some energy.

Transformation toughening: a clever trick.
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Material KIC (MPa
√

m) Gc (J/m2)

Silica glass 0.7–0.8 5–10

Alumina (Al2O3) 3–5 30–80

Silicon carbide (SiC) 3–4 25–50

Silicon nitride (Si3N4) 4–7 40–100

Zirconia (ZrO2), unstabilized 2–3 15–30

Table 9.2: Fracture properties of com-
mon ceramics.

Some ceramics have a trick up their sleeve. Zirconia undergoes a

phase transformation from tetragonal to monoclinic crystal structure

under stress. This transformation involves a volume expansion of

about 4%.

crack transformed

Figure 9.1: Transformation toughening:
zirconia particles (circles) near the crack
tip transform and expand under stress
(filled), creating compressive stresses
that shield the crack.

Near a crack tip, the high stress triggers this transformation in

a zone surrounding the tip. The expanding transformed particles

create compressive stresses that partially close the crack, resisting

its growth. The transformation also absorbs energy. Together, these

effects can increase KIC by a factor of 3–5.

Transformation-toughened zirconia (TZP) has KIC values of 8–

15 MPa
√

m—approaching the range of some metals. It’s used in

applications demanding both wear resistance (ceramic hardness) and

some damage tolerance.

9.3 Metals: The Triumph of Plasticity

Metals are fundamentally different. They have metallic bonding—a

“sea” of electrons shared among positive ions—which allows disloca-

tions to move easily. This changes everything about fracture.

When a crack tip approaches in a metal, the stress concentration

triggers yielding before brittle fracture can occur. Plastic deformation

blunts the tip, spreads the stress over a larger volume, and dissi-

pates energy. The process zone is not nanometers but millimeters—

sometimes centimeters.

The result: metal toughnesses are enormous compared to ceram-

ics:

Material KIC (MPa
√

m) Gc (J/m2)

Aluminum 7075-T6 24–30 8,000–12,000

Titanium 6Al-4V 50–100 15,000–50,000

4340 Steel (quenched) 50–80 12,000–30,000

A533B Steel (reactor vessel) 150–200 100,000–200,000

Pure copper 100–150 100,000+

Table 9.3: Fracture properties of com-
mon metals.

The contrast with ceramics is stark. Copper has toughness 10,000

times higher than glass. This is entirely due to the plastic zone.
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How metals actually fracture: void growth and coalescence.

The mechanism of ductile fracture in metals is beautiful in its

complexity. It’s not just “atoms pulling apart.” Instead:

1. As the crack tip region deforms plastically, voids nucleate at in-

clusions (sulfides, oxides) or second-phase particles. These hard

particles can’t deform with the matrix, so the interface debonds.

2. Under continued straining, the voids grow—the material between

them stretches and thins.

3. Adjacent voids eventually link up (coalesce), creating new crack

surface.

4. The main crack advances by this process of void growth and coa-

lescence.

inclusions voids grow coalescence

Figure 9.2: Void nucleation, growth, and
coalescence in ductile metals.

The fracture surface of a ductile metal shows dimples—each dim-

ple is the half of a void. Dimple size correlates with inclusion spac-

ing, confirming the void mechanism.

The strength-toughness tradeoff.

Here’s a sobering fact: making a metal stronger often makes it less

tough.

Higher strength typically means smaller plastic zones (since rp ∝

(K/σY)
2). Smaller plastic zones mean less energy dissipation. The

result is lower toughness.

Condition σY KIC Comment

(MPa) (MPa
√

m)

Annealed 400 150 Soft, tough

Q&T (300◦C) 1200 60 Strong, moderate

Q&T (200◦C) 1500 35 Very strong, brittle

Table 9.4: Strength-toughness trade-
off in medium-carbon steel (Q&T =
quenched and tempered).

This tradeoff is one of the fundamental constraints in structural

design. You want high strength (to save weight) but high toughness

(to tolerate flaws). You can’t maximize both. Material selection in-

volves finding the best compromise for your application.

9.4 The Brittle-to-Ductile Transition

Many materials that are ductile at room temperature become brit-

tle when cold. This brittle-to-ductile transition (BDT) has caused
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catastrophic failures and remains one of the most important consider-

ations in structural engineering.

What happens: As temperature drops, thermal activation de-

creases, and dislocation motion becomes harder. The yield stress

rises. At some temperature, yielding becomes so difficult that cleav-

age fracture (brittle breaking along crystal planes) becomes easier

than plastic deformation. Below this transition temperature, the ma-

terial fractures in a brittle manner at much lower energy.

T

KIC

brittle

ductile

TDBT

Figure 9.3: Brittle-to-ductile transition
in toughness.

The transition is not sharp—it occurs over a temperature range.

And it’s not a fixed material property; it depends on:

• Composition (carbon, nitrogen, and phosphorus raise the transi-

tion; nickel lowers it)

• Grain size (finer grains lower the transition)

• Loading rate (faster loading raises the effective transition tempera-

ture)

• Constraint (thicker sections have higher transitions due to plane

strain effects)

Engineering disasters. The BDT was implicated in the Liberty

Ship failures of World War II. Welded steel ships broke apart in cold

North Atlantic waters. The steel was adequate at normal tempera-

tures but became brittle in the cold, and stress concentrations at weld

defects initiated fast fracture.

The Titanic’s hull steel has been analyzed and found to have a

transition temperature around 25–35◦C—far above the −2◦C water

temperature at the time of the collision. The steel was significantly

more brittle than modern steels would be at that temperature, likely

contributing to the extent of the damage.

Modern structural steels are specified with transition temperatures

well below their service range. But the threat remains, especially

under impact loading where high strain rates effectively raise the

transition.
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9.5 Polymers: A Different World

Polymers are neither crystalline ceramics nor dislocation-mediated

metals. They’re long-chain molecules—sometimes tangled randomly

(amorphous), sometimes partially ordered (semi-crystalline). Their

fracture behavior is governed by molecular motion and chain interac-

tions.

Temperature and rate matter enormously.

Polymers have a glass transition temperature Tg. Below Tg, molec-

ular motion is frozen out, and the polymer is glassy—stiff, often

brittle. Above Tg, chains can move more freely, and the polymer is

rubbery—soft, tough.

But here’s the subtlety: what matters is not just temperature but

the ratio of observation time to molecular relaxation time. A polymer

can behave glassy at low temperatures or high rates, and rubbery

at high temperatures or low rates. The same material can be brittle

under impact and tough under slow loading.

This complicates fracture testing. The measured KIC depends on

loading rate. For design, you need data at the relevant rates and

temperatures for your application.

Crazing: a polymer-specific mechanism.

Many glassy polymers (PMMA, polystyrene, polycarbonate) de-

velop crazes before fracturing. A craze looks like a crack but isn’t—

it’s a planar zone of highly stretched material containing fibrils and

voids. fibrils

Figure 9.4: A craze: fibrils bridge the
opening.

The fibrils bridge the craze and carry load. As the craze opens,

fibrils stretch and eventually break, but progressively—the craze tip

advances while material behind it is still carrying load. This crack

bridging increases toughness.

Crazed polymers like PMMA have Gc values of 300–1000 J/m2—

much higher than truly brittle materials like glass.

Rubber toughening.

A common strategy to toughen brittle polymers is to add rubber

particles. When stress concentrations develop around the particles,

they trigger either crazing or shear yielding in the surrounding ma-

trix. These mechanisms absorb energy and increase toughness.

High-impact polystyrene (HIPS) is polystyrene with rubber parti-

cles. ABS adds rubber to a styrene-acrylonitrile copolymer. Both are

much tougher than the base polymer.

9.6 Composites: Engineered Fracture Behavior

Fiber-reinforced composites are deliberately designed to control frac-

ture. The reinforcement (typically glass, carbon, or aramid fibers)
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provides strength and stiffness. The matrix (polymer, metal, or ce-

ramic) binds the fibers together. The interface between them is criti-

cal.

Fiber bridging and crack deflection.

When a crack in the matrix encounters a fiber, several things can

happen:

• The crack breaks the fiber (fiber fracture)—bad for toughness

• The crack goes around the fiber, which remains intact (fiber

bridging)—good for toughness

• The crack runs along the fiber-matrix interface (debonding)—

intermediate

applied

stress

matrix

fiber

crack tip

fibers bridge crack

Figure 9.5: Fiber bridging in a com-
posite: the matrix cracks, but intact
fibers spanning the crack resist opening.
This bridging significantly increases
toughness.

The optimal interface is neither too strong (fiber breaks) nor too

weak (easy debonding, poor load transfer). Interface design is a

major topic in composite engineering.

Delamination.

In laminated composites (layers of unidirectional fibers at different

angles), cracks often run between layers rather than through them.

This delamination is a characteristic failure mode.

Delamination can be good (it deflects cracks and absorbs energy)

or bad (it reduces stiffness and can grow progressively). Impact dam-

age often manifests as internal delamination that’s invisible from the

surface but significantly reduces strength.

Delamination resistance is characterized by interlaminar fracture

toughness, GIC for Mode I (opening) and GI IC for Mode II (shear).

These are typically measured with specialized specimen geometries

(double cantilever beam for GIC, end-notched flexure for GI IC).

9.7 Concrete and Rock: Quasi-Brittle Materials

Concrete, rock, ice, and some ceramics fall into a category called

quasi-brittle. They have process zones that are large compared to
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structural dimensions, which changes how fracture mechanics ap-

plies.

The process zone is distributed microcracking.

In concrete, ahead of a propagating crack, there’s a zone of dis-

tributed microcracks. These microcracks dissipate energy and shield

the main crack tip from the full applied stress. The process zone can

be centimeters in size—comparable to aggregate dimensions.

This leads to size effects. A small concrete beam and a geometri-

cally similar large beam don’t have the same nominal strength. The

larger beam is weaker (in terms of average stress at failure), because

the process zone is a smaller fraction of its dimensions.

R-curve behavior.

As a crack grows in concrete, its resistance to growth increases.

This rising R-curve reflects the development of the process zone and

crack bridging by aggregate particles.

∆a

GR

Figure 9.6: Rising R-curve in concrete.

The rising R-curve means that stability analysis is more complex.

A crack may be stable even if G > Gc initially, because GR rises as

the crack grows. This requires comparing the slope of the G-curve

(driving force) with the slope of the R-curve (resistance).

9.8 Fractures in the Earth

Fracture mechanics applies not just to engineered structures but to

the Earth itself.

Earthquakes. An earthquake is sudden slip on a fault—essentially,

rapid Mode II (shear) crack propagation. The rupture nucleates at a

point and spreads along the fault at speeds approaching the shear

wave velocity.

The seismic waves we feel are the elastic waves generated by

this dynamic fracture event. The energy released—the earthquake’s

magnitude—depends on stress drop, fault area, and slip, which are

analogous to G, crack area, and displacement in laboratory fracture.

Some earthquake ruptures propagate at intersonic speeds (faster

than the shear wave but slower than the P-wave), as we discussed in

Chapter 8. Understanding earthquake mechanics is fundamentally a

problem in dynamic fracture.

Hydraulic fracturing. In oil and gas extraction, fluid pumped into

rock at high pressure creates fractures. The competition between

fluid pressure (opening the crack) and rock toughness (resisting it)

governs the fracture geometry.

Glaciers. Ice is a quasi-brittle material. Crevasses form when

tensile stresses exceed ice strength. Iceberg calving is fracture on

a massive scale. Understanding ice fracture has implications for

predicting sea level rise.
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9.9 Biological Materials: Nature’s Solutions

Nature has evolved materials with remarkable fracture resistance.

Bone, wood, shell, tooth enamel—these achieve toughness through

hierarchical structure and clever design.

Bone combines mineral (hydroxyapatite, for stiffness) with protein

(collagen, for toughness) at multiple length scales. The microstruc-

ture is hierarchical: collagen molecules form fibrils, fibrils form fibers,

fibers form lamellae, lamellae form osteons.

Bone exhibits an R-curve—toughness increases with crack ex-

tension. The mechanisms include microcracking, crack bridging by

collagen fibers, and crack deflection at interfaces between structural

units.

Nacre (mother-of-pearl) arranges brittle aragonite platelets in a

brick-and-mortar structure with thin organic layers. Cracks must

navigate this tortuous path, with energy absorbed by platelet pullout

and organic layer deformation. The toughness is about 1,000 times

higher than pure aragonite (some studies report up to 3,000 times,

depending on the measure used).

These natural materials have inspired biomimetic design: engi-

neered materials that mimic nature’s strategies. Layered ceramics,

fiber-reinforced composites with controlled interfaces, and hierarchi-

cal structures all draw on biological precedents.

9.10 Why No Universal Fracture Theory?

After this tour, you might wonder: why isn’t there one theory that

explains fracture in all materials?

The answer is that fracture is not one phenomenon. It involves:

• Bond breaking (atomic scale)

• Defect behavior (dislocations, microcracks, voids)

• Microstructure (grains, fibers, phases)

• Time-dependent processes (diffusion, viscosity, creep)

• Environmental interactions (corrosion, hydrogen, water)

These operate differently in different materials. Glass fractures

by simple bond breaking. Metals fracture by void growth and co-

alescence. Polymers craze. Composites delaminate. Each requires

understanding the specific mechanisms at work.

What fracture mechanics provides is a framework—K, G, the en-

ergy balance, the process zone concept—that applies universally. The
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framework tells you what questions to ask. The answers are material-

specific.

This is why practicing engineers need both general principles

and material-specific knowledge. Knowing fracture mechanics isn’t

enough; you need to know how it applies to your particular steel al-

loy, your particular polymer grade, your particular composite layup.

9.11 What We Don’t Fully Understand

Even after a century of study, mysteries remain:

Predicting toughness from microstructure. We can measure KIC,

and we can explain qualitatively why some materials are tough.

But predicting KIC quantitatively from first principles—from crystal

structure, bond strengths, defect populations—remains extremely

difficult.

Environment-assisted cracking. Many materials fail unexpect-

edly in certain environments: stress corrosion cracking, hydrogen

embrittlement, liquid metal embrittlement. The interactions between

mechanical stress and environmental chemistry at the crack tip are

complex and not fully understood.

Small-scale fracture. As devices shrink to microscale and nanoscale,

fracture mechanics must be reformulated. Continuum assumptions

break down. Size effects appear. This frontier is active but incom-

plete.

Biological materials. Despite progress, we don’t fully understand

how natural materials achieve their remarkable properties. Mimick-

ing them in synthetic materials remains challenging.

The honest summary: we have a powerful framework that works

well in many situations, but the detailed connection between mi-

crostructure and macroscopic fracture behavior remains partly empir-

ical. New materials, new applications, and new questions continue to

push the field forward.

Every material has its own way of breaking. Glass shatters cleanly, metals tear, wood splinters, concrete crumbles,

composites delaminate. These differences reflect the underlying physics—bond types, crystal structures, available

deformation mechanisms. A good fracture mechanics practitioner knows not just the general theory but the particu-

lar behavior of the materials they work with. The theory provides the framework; the material provides the content.

Together, they give us the tools to predict, prevent, and—when necessary—understand failure.
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