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Preface

These notes attempt to explain quantum field theory and renormal-
ization in the way I wish they had been explained to me: with physi-
cal intuition at every step, honest acknowledgment of what’s strange,
and full derivations that don’t skip the hard parts.

The central puzzle of quantum field theory is this: when you try
to calculate anything beyond tree level, you get infinity. Not a large
number—actual infinity. And yet QED, the quantum theory of elec-
trons and light, agrees with experiment to better than one part in a
billion. How can a theory that produces infinities make such precise
predictions?

The answer is renormalization. But “renormalization” is one of
those words that gets used to mean several different things, and the
relationship between those things is not obvious. If you’ve learned
renormalization from a condensed matter perspective—starting with
a UV theory and integrating out high-energy modes—you may find
the particle physics treatment confusing. It seems to go the other
direction. These notes will clarify this confusion by showing that
both approaches describe the same physics from different viewpoints.

We focus on quantum electrodynamics in 3+1 dimensions. Not be-
cause other dimensions aren’t interesting, but because this is the real
world, and these techniques are how actual calculations get done.
We’ll compute the vacuum polarization, the electron self-energy, the
vertex correction, and culminate in the anomalous magnetic moment
of the electron—one of the great triumphs of theoretical physics.

The mathematical prerequisites are quantum mechanics (including
second quantization if you’ve seen it, though we’ll develop it from
scratch), special relativity, and comfort with contour integration. If
you know what a Hamiltonian is and can do a Gaussian integral,
you’re ready.

I’ve tried to write the kind of text I wanted when I was learning
this material: one where every equation has a “why” attached to
it, where the physical picture is never far from the formalism, and
where the reader emerges understanding not just how to compute,
but what the computation means.





1
From Particles to Fields

Something is deeply wrong with quantum mechanics. Not wrong
in a way you can patch over with cleverness—wrong in a way that
demands we rethink what particles even are.

The problem shows up the moment you try to make quantum
mechanics compatible with special relativity. Relativity allows energy
to convert into mass and mass into energy. An electron moving fast
enough can spontaneously create electron-positron pairs. A photon
hitting a nucleus can materialize into particles. Try to pin down
exactly where an electron is, and you discover you’ve created more
electrons. The number of particles refuses to stay fixed.

Single-particle quantum mechanics, which describes one parti-
cle evolving in time, simply cannot handle a world where particle
number changes. This isn’t a technical difficulty we can patch over.
It’s a fundamental clash that demands a completely new conceptual
framework. That framework is quantum field theory.

1.1 The Clash Between Quantum Mechanics and Relativity

Let’s start with the Schrödinger equation:

ih̄
∂ψ

∂t
= Ĥψ (1.1)

For a free particle, we usually take Ĥ = p̂2/2m, giving us

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ (1.2)

This equation treats time and space very differently. The left side
has a first derivative in time; the right side has a second derivative
in space. This asymmetry is fine for non-relativistic physics, where
time is absolute and space is just... space. But in relativity, space and
time are part of a unified spacetime, and any fundamental equation
should treat them on equal footing.

x

t

light cone

worldline

Figure 1.1: In relativity, a particle
traces out a worldline in spacetime.
Its trajectory must stay inside the light
cone.
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Here’s the first problem. The non-relativistic dispersion relation is
E = p2/2m. But the relativistic energy-momentum relation is

E2 = p2c2 + m2c4 (1.3)

or, taking the positive root,

E =
√

p2c2 + m2c4 (1.4)

If we try to build a wave equation from this by making the usual
substitutions E→ ih̄∂t and p→ −ih̄∇, we get

ih̄
∂ψ

∂t
=

√
−h̄2c2∇2 + m2c4 ψ (1.5)

That square root of a differential operator is a nightmare. What does
it even mean to take the square root of ∇2? You could try to define
it through a Fourier transform, but the result is a non-local operator:
the time evolution at one point depends on the wave function every-
where. This is ugly and, worse, it leads to problems with causality.

1.2 The Klein-Gordon Equation: A First Attempt

There’s a simpler approach. Instead of taking the square root, we can
square both sides of E = ih̄∂t before equating them:

E2 = p2c2 + m2c4 ⇒ −h̄2 ∂2ψ

∂t2 = −h̄2c2∇2ψ + m2c4ψ (1.6)

Rearranging (and setting h̄ = c = 1 for sanity), we get the Klein-
Gordon equation: (

∂2

∂t2 −∇
2 + m2

)
ψ = 0 (1.7)

or, in covariant notation,

(∂µ∂µ + m2)ψ = (�+ m2)ψ = 0 (1.8)

where � = ∂2
t −∇2 is the d’Alembertian.1 1 We’re using the “mostly mi-

nus” metric convention: gµν =
diag(+1,−1,−1,−1).

This is better. Space and time now appear symmetrically, as befits
a relativistic equation. The equation is Lorentz invariant—it has the
same form in every inertial frame.

But there are serious problems.

Problem 1: Negative Energy Solutions

The Klein-Gordon equation is second-order in time, so its general
solution requires two initial conditions: ψ(0, x) and ∂tψ(0, x). This is
unlike the Schrödinger equation, which only needs ψ(0, x).
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More troubling, plane-wave solutions ψ = e−iEt+ip·x exist for both
signs of E:

E = ±
√

p2 + m2 (1.9)

We have positive and negative energy solutions. What do the nega-
tive energy solutions mean?

In single-particle quantum mechanics, we could try to just ignore
them—declare that only positive-energy states are “physical.” But
this doesn’t work. Any localized wave packet will, over time, develop
negative-energy components. You can’t consistently exclude them.

p

E
E > 0

E < 0

2m

Figure 1.2: The relativistic dispersion
relation E = ±

√
p2 + m2 has two

branches separated by a gap of 2m.

Problem 2: Negative Probability

In ordinary quantum mechanics, |ψ|2 is the probability density, and
it’s always positive. We can derive a continuity equation

∂ρ

∂t
+∇ · j = 0 (1.10)

with ρ = |ψ|2 ≥ 0, ensuring that probability is conserved and non-
negative everywhere.

For the Klein-Gordon equation, the analogous conserved density
is2 2 You can verify this by computing

ψ∗(� + m2)ψ − ψ(� + m2)ψ∗ and
showing it equals a total divergence.ρ =

i
2m

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
(1.11)

This is not positive definite. For a negative-energy solution, ρ < 0. We
have negative probability densities.

This is catastrophic for the interpretation of ψ as a probability
amplitude. Whatever ψ is in the Klein-Gordon theory, it’s not a wave
function in the usual sense.

Problem 3: Causality

There’s an even more fundamental problem. In non-relativistic quan-
tum mechanics, if you localize a particle at position x = 0 at time
t = 0, the wave function will spread out, but it spreads instantly to
arbitrary distances. The probability of finding the particle at a point
arbitrarily far away becomes nonzero immediately.

This is fine non-relativistically—there’s no speed limit. But in
relativity, nothing can travel faster than light. A particle localized at
the origin should not be detectable at a distance r > ct until time t
has passed.

Can the Klein-Gordon equation respect this? Actually, it does bet-
ter than Schrödinger—the propagation speed is limited by c. But
there’s still a problem: the particle can propagate backward in time.
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The negative-energy solutions correspond to particles moving back-
ward in time, or equivalently (as we’ll see), to antiparticles moving
forward in time.

1.3 The Dirac Equation: A Heroic Attempt

Dirac tried a different approach. He wanted a relativistic wave equa-
tion that was first-order in time, like Schrödinger’s equation, hoping
this would fix the probability problem.

For the equation to be first-order in both space and time deriva-
tives, Dirac proposed

i
∂ψ

∂t
= (−iα · ∇+ βm)ψ (1.12)

where α = (α1, α2, α3) and β are some objects to be determined.
For this to be consistent with the relativistic dispersion relation, we

need (
i

∂

∂t

)2
= (−iα · ∇+ βm)2 (1.13)

Working this out (and demanding E2 = p2 + m2), Dirac found that αi

and β must satisfy

{αi, αj} = 2δij, {αi, β} = 0, β2 = 1 (1.14)

where {A, B} = AB + BA is the anticommutator. These relations
can’t be satisfied by ordinary numbers—αi and β must be matrices.

The smallest matrices that work are 4 × 4. This means ψ isn’t a
single component—it’s a four-component object called a spinor.

ψ1

ψ2

ψ3

ψ4

spin up/down

“large”/“small”

Figure 1.3: The Dirac spinor has four
components. For a slowly-moving
particle, two are large and two are
small.

The Dirac equation is a major success. It automatically incorpo-
rates spin- 1

2 —the electron’s spin emerges naturally from requiring
Lorentz invariance and first-order time evolution. It predicts the
electron’s magnetic moment to be g = 2 (we’ll see later how QED
corrects this slightly).

But it still has negative-energy solutions. The equation

(iγµ∂µ −m)ψ = 0 (1.15)

has solutions with E = ±
√

p2 + m2.

1.4 Dirac’s Sea and the Birth of Antiparticles

Dirac’s solution to the negative-energy problem was audacious. He
proposed that the vacuum isn’t empty. Instead, all the negative-
energy states are already filled with electrons. The Pauli exclusion
principle then prevents positive-energy electrons from falling into
these states.

gap

E > m

E < −m

Figure 1.4: The Dirac sea: negative-
energy states are filled (dots), positive-
energy states are empty.
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Now here’s the key insight: what if one of those negative-energy
electrons is excited—promoted to a positive-energy state? We’d see a
positive-energy electron appear, leaving behind a “hole” in the Dirac
sea. This hole would behave like a particle with positive energy and
positive charge—the opposite charge of the electron.

Dirac initially thought this hole might be the proton. But the pro-
ton is 1836 times heavier than the electron, and the hole should have
exactly the electron’s mass. In 1931, Dirac boldly predicted a new
particle: the positron, with the electron’s mass but opposite charge.

In 1932, Carl Anderson discovered the positron in cosmic ray ex-
periments, exactly as Dirac predicted. This was the first antiparticle.

1.5 Why Single-Particle Theory Cannot Work

The Dirac sea picture, while historically important, is conceptually
awkward. The vacuum is infinitely full? Every atom is surrounded
by an infinite sea of negative-energy electrons?

More seriously, the picture doesn’t generalize to bosons. The Pauli
exclusion principle only works for fermions. What stops a negative-
energy photon from falling to arbitrarily negative energy?

But the real problem is more fundamental. Let me show you why
no single-particle relativistic quantum theory can be consistent.

The Localization Problem

Consider trying to localize a particle to a region smaller than its
Compton wavelength λC = h̄/mc. By the uncertainty principle, this
requires a momentum uncertainty

∆p &
h̄

∆x
& mc (1.16)

The corresponding energy uncertainty is

∆E & c∆p & mc2 (1.17)

But mc2 is exactly the rest mass energy. If we have an energy uncer-
tainty this large, we can create particle-antiparticle pairs!

e−
e−

e+

∆x < λC

Figure 1.5: Localizing a particle to less
than its Compton wavelength provides
enough energy to create pairs.

This is the heart of the matter. In a relativistic theory, you cannot
have a fixed number of particles. The very act of trying to localize
one particle creates more particles. The one-particle Hilbert space is
inconsistent—we need a Hilbert space that accommodates arbitrary
numbers of particles.
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A Numerical Example

Let’s put in numbers. For an electron:

me = 9.11× 10−31 kg (1.18)

λC =
h̄

mec
=

1.05× 10−34 J · s
(9.11× 10−31 kg)(3× 108 m/s)

(1.19)

= 3.9× 10−13 m = 0.0039 Å (1.20)

This is about 100 times smaller than the Bohr radius. So for atomic
physics, we can usually ignore pair creation—the electron isn’t local-
ized tightly enough. But in high-energy physics, where particles are
probed at much smaller scales, pair creation is unavoidable.

1.6 Fields as the Fundamental Objects

The resolution is to abandon particles as fundamental. Instead, the
fundamental objects are fields.

Think about the electromagnetic field. We don’t ask “how many
photons are there?” when describing an electromagnetic wave—we
describe the E and B fields everywhere in space. Particles (photons)
emerge when we quantize the field. The number of photons is not
fixed; it changes when the field interacts with matter.

The same is true for electrons. Instead of thinking of an electron
as a little ball with a definite trajectory, we introduce an electron field
ψ(x) defined at every point in spacetime. When we quantize this
field, electron and positron particles emerge as excitations—quanta of
the field.

x

φ

Figure 1.6: A field assigns a value to
each point in space. A localized bump
in the field corresponds to a particle.

This shift in perspective—from particles to fields—is the core of
quantum field theory. The field is always there, defined at every
point. Particles are emergent: they’re localized excitations of the field.
Creating a particle means exciting the field; annihilating a particle
means letting the excitation dissipate.

1.7 Why Fields Fix the Problems

Let’s see how fields solve the difficulties we encountered.
Negative energy solutions become antiparticles. In field theory,

the negative-energy solutions of the Klein-Gordon or Dirac equation
don’t represent particles with negative energy. Instead, they represent
antiparticles with positive energy. The field operator naturally creates
both particles (positive frequency modes) and antiparticles (negative
frequency modes), each with positive energy.

Probability becomes particle number. The quantity that was
problematic as a probability density becomes, in field theory, a charge
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density. It can be positive or negative because particles have positive
charge and antiparticles have negative charge. The total charge (not
probability) is conserved.

Particle creation is built in. A field operator can create and de-
stroy particles. The state |0〉 with no particles—the vacuum—is not
boring; quantum fluctuations mean the field is always jittering. Inter-
actions allow particle number to change naturally.

Causality is preserved. This is subtle but crucial. In quantum
field theory, we impose that field operators at spacelike separation
commute (or anticommute for fermions):

[φ(x), φ(y)] = 0 for (x− y)2 < 0 (1.21)

This ensures that no measurement at x can affect a measurement at y
if they’re spacelike separated. Causality is built into the structure of
the theory.

1.8 An Analogy: Sound in a Crystal

There’s a useful analogy from condensed matter physics that illumi-
nates the particle-field relationship.

Consider a crystal lattice—atoms arranged in a regular grid, con-
nected by springs. The “fundamental” objects are the atoms. But
when you excite the crystal, you don’t track individual atoms. In-
stead, you describe collective oscillations: sound waves.

equilibrium

phonon

Figure 1.7: Atoms in a crystal (top: dis-
placed, bottom: equilibrium). Collective
oscillations are phonons.

When you quantize these oscillations, you get phonons—quanta
of sound. A phonon is a particle: it has energy, momentum, and can
scatter off other phonons and off defects. But there’s no “phonon”
sitting in the crystal when it’s not vibrating. The phonon is an emer-
gent excitation.

Moreover, the number of phonons isn’t fixed. Heat the crystal, and
you create more phonons. Cool it, and they disappear. The lattice
displacement field u(x) is always there; phonons come and go as
excitations of that field.

Electrons in quantum field theory are like phonons. The elec-
tron field ψ(x) is always there. Electrons and positrons are quanta—
excitations of the field. They can be created and destroyed.

The analogy isn’t perfect. Phonons eventually emerge from atoms,
which are the “real” constituents. But in fundamental physics, there
is no deeper level—fields are fundamental, not emergent. The elec-
tron field isn’t made of anything; it simply is.
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1.9 What We’re Building Toward

In the coming chapters, we’ll construct quantum field theory prop-
erly. We’ll start with the simplest possible field—a spinless, non-
interacting scalar—and see how quantizing it produces particles.
Then we’ll add interactions and develop the machinery of pertur-
bation theory. The calculations will get messy, so we’ll introduce
Feynman diagrams to organize them: pictures that turn directly into
numbers.

But here’s where things get interesting. When we try to compute
quantum corrections—the effects of virtual particles flickering in
and out of existence—we’ll get infinity. Not a big number, not an
approximation that breaks down, but actual mathematical infinity.
Understanding why this happens, and what to do about it, is really
the heart of these lectures. The resolution, called renormalization, is
one of the deepest ideas in twentieth-century physics.

1.10 A Note on Units

Throughout these lectures, we’ll use natural units:

h̄ = c = 1 (1.22)

This simplifies every formula enormously. In natural units:

• Energy, mass, and momentum all have the same units.

• Time and length have the same units (inverse energy).

• The electron mass is me = 0.511 MeV.

• Lengths are measured in inverse MeV, with 1 MeV−1 ≈ 197 fm.

To convert back to SI units, restore factors of h̄ and c by dimen-
sional analysis. But for the calculations themselves, natural units are
far cleaner.

1.11 Summary

We’ve seen that single-particle quantum mechanics clashes with
special relativity at every turn. The Klein-Gordon equation gives us
negative energies and probabilities that can go negative. The Dirac
equation still has negative-energy solutions, leading to the strange
picture of a filled sea. And most fundamentally, trying to localize
a particle to less than its Compton wavelength provides enough
energy to create pairs—so the very notion of “one particle” becomes
meaningless.
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The resolution is radical: particles aren’t fundamental. Fields are.
The electron field ψ(x) exists everywhere in spacetime, and what we
call “an electron” is just a quantized excitation of that field. Electrons
and positrons come and go as the field ripples and vibrates.

This might feel like we’ve traded something concrete (particles) for
something abstract (fields). But look at what we’ve gained: a frame-
work that naturally handles creation and annihilation, respects rela-
tivity, and—as we’ll see—makes predictions of astonishing precision.
The strangeness is worth it.

The transition from particles to fields represents one of the great conceptual shifts in physics. It took decades to work
out. Dirac’s equation appeared in 1928; the positron was predicted in 1931 and discovered in 1932. But a consis-
tent quantum field theory of electromagnetism wasn’t completed until the late 1940s, with the work of Tomonaga,
Schwinger, and Feynman, and Dyson’s proof that their apparently different approaches were equivalent. The diffi-
culties weren’t just technical—they involved deep questions about what kind of object a quantum field is, and how to
make sense of the infinities that appeared in calculations. We’ll confront these infinities head-on, because understand-
ing them is the key to understanding modern particle physics.





2
The Free Scalar Field

Why on earth would we spend a whole chapter on a theory where
nothing happens? “Free” means no interactions—the field just sits
there, rippling through space, never scattering, never creating any-
thing new. Boring, right?

But you can’t understand what’s complicated until you under-
stand what’s simple. The free theory is the foundation on which
everything else is built. And something genuinely surprising will
happen: we’ll start with a classical wave equation and end up with
particles. Honest-to-goodness particles, with definite energies and
momenta, that obey quantum statistics. They’ll emerge from the
mathematics without our putting them in by hand.

The program is this: take a classical field satisfying the Klein-
Gordon equation, expand it in plane waves (like vibrations of a
string), and then promote the expansion coefficients to operators.
When we impose the right commutation relations, the quanta of the
field turn out to be particles. By the end, “particle” will be a derived
concept, emerging naturally from the quantum theory of fields.

2.1 Classical Field Theory: A Lightning Review

Before quantizing, we need the classical theory. Just as point particles
are described by the Lagrangian L = T − V, fields are described by a
Lagrangian density L.

For a scalar field φ(x) = φ(t, x), the action is

S =
∫

d4xL(φ, ∂µφ) (2.1)

The field equations come from requiring δS = 0, which gives the
Euler-Lagrange equation

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
= 0 (2.2)

x

φ

Figure 2.1: A field φ(x) and its spatial
derivative. The Lagrangian depends on
both.
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For the free scalar field, the Lagrangian density is

L =
1
2
(∂µφ)(∂µφ)− 1

2
m2φ2 (2.3)

Let’s unpack this. In components:

L =
1
2

φ̇2 − 1
2
(∇φ)2 − 1

2
m2φ2 (2.4)

The first term is kinetic energy (involving time derivatives), the sec-
ond is “gradient energy” (it costs energy to have the field vary in
space), and the third is a “mass term” proportional to φ2.

Why this form? The Lagrangian is the simplest Lorentz-invariant
expression we can write with at most two derivatives.1 The mass 1 With no derivatives, we’d have L =

−V(φ), which gives no dynamics. With
first derivatives, we’d need a vector like
∂µφ, but contracting it with itself gives
(∂µφ)2, which has two derivatives.

term determines how the field oscillates in time when it’s uniform in
space.

Let’s derive the equation of motion. We have

∂L
∂(∂µφ)

= ∂µφ,
∂L
∂φ

= −m2φ (2.5)

So the Euler-Lagrange equation gives

∂µ∂µφ + m2φ = 0 (2.6)

This is the Klein-Gordon equation! Written out:

∂2φ

∂t2 −∇
2φ + m2φ = 0 (2.7)

or more compactly, (�+ m2)φ = 0.

2.2 Plane Wave Solutions

The Klein-Gordon equation is linear, so we can find solutions by
separation of variables. Try a plane wave:

φ(x) = e−ipx = e−ip0t+ip·x (2.8)

where px = pµxµ = p0t− p · x. Substituting:

[−(p0)2 + p2 + m2]e−ipx = 0 (2.9)

This vanishes when (p0)2 = p2 + m2, i.e., when

p0 = ±ωp, where ωp =
√

p2 + m2 (2.10)

We have solutions for both signs. Define the positive frequency
solution with p0 = +ωp and the negative frequency solution with
p0 = −ωp.
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The general solution is a superposition:

φ(x) =
∫ d3 p

(2π)3
1√
2ωp

[
a(p)e−iωpt+ip·x + b∗(p)e+iωpt−ip·x

]
(2.11)

The coefficients a(p) and b(p) are complex numbers determined by
initial conditions.

Why the factor 1/
√

2ωp? This is a normalization convention that
will make our formulas simpler later. It ensures that the measure
d3 p/(2π)3 · 1/(2ωp) is Lorentz invariant.

For a real scalar field (which we’ll focus on), φ = φ∗, which re-
quires b(p) = a(p). So:

φ(x) =
∫ d3 p

(2π)3
1√
2ωp

[
a(p)e−ipx + a∗(p)eipx

]
(2.12)

where now px = ωpt− p · x with the understanding that p0 = ωp.

x

Figure 2.2: A wave packet: a superposi-
tion of plane waves creates a localized
disturbance. The dashed lines show the
envelope.

2.3 The Hamiltonian

To quantize, we’ll need the Hamiltonian. The conjugate momentum
to φ is

π(x) =
∂L
∂φ̇

= φ̇ (2.13)

The Hamiltonian density is

H = πφ̇−L =
1
2

π2 +
1
2
(∇φ)2 +

1
2

m2φ2 (2.14)

All three terms are positive. This makes sense: the Hamiltonian is the
energy density, which should be positive for a stable system.

The total Hamiltonian is

H =
∫

d3xH =
∫

d3x
[

1
2

π2 +
1
2
(∇φ)2 +

1
2

m2φ2
]

(2.15)

2.4 Canonical Quantization

Now we quantize. The prescription is the same as in quantum me-
chanics: promote φ and π to operators and impose canonical commu-
tation relations.
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At equal times:

[φ(t, x), φ(t, y)] = 0 (2.16)

[π(t, x), π(t, y)] = 0 (2.17)

[φ(t, x), π(t, y)] = iδ(3)(x− y) (2.18)

The delta function appears because φ(t, x) and π(t, y) at different
spatial points are independent degrees of freedom—like qi and pj for
different particles in classical mechanics, where [qi, pj] = iδij.

What happens to the mode expansion? The coefficients a(p) and
a∗(p) become operators ap and a†

p:2 2 We’ll write ap rather than a(p) to
emphasize that it’s now an operator.

φ(x) =
∫ d3 p

(2π)3
1√
2ωp

[
ape−ipx + a†

peipx
]

(2.19)

The commutation relations (2.18) translate into commutation rela-
tions for a and a†. After some algebra (see below), we find:

[ap, a†
q] = (2π)3δ(3)(p− q) (2.20)

and

[ap, aq] = [a†
p, a†

q] = 0 (2.21)

Deriving the Commutation Relations

Let me show how (2.20) follows from (2.18). The key is to invert the
mode expansion.

From (2.12), taking π = φ̇:

φ(x) =
∫ d3 p

(2π)3
1√
2ωp

[
ape−ipx + a†

peipx
]

(2.22)

π(x) =
∫ d3 p

(2π)3
(−iωp)√

2ωp

[
ape−ipx − a†

peipx
]

(2.23)

We can solve for ap by taking appropriate Fourier transforms.
Using

∫
d3x ei(p−q)·x = (2π)3δ(3)(p− q), we find

ap =
∫

d3x eipx

[√
ωp

2
φ(x) +

i√
2ωp

π(x)

] ∣∣∣∣
t=0

(2.24)

(evaluated at any fixed time, say t = 0).
Now compute [ap, a†

q] using this expression. The [φ, φ] and [π, π]

terms vanish. The cross terms give:

[ap, a†
q] =

∫
d3x d3y eip·xe−iq·y i

2

(
−

ωq

ωp
+

ωp

ωq

)1/2
· [φ(x), π(y)] (2.25)
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Wait—that’s getting complicated. Let me just give the result: using
[φ(x), π(y)] = iδ(3)(x − y) and carefully tracking the factors, one
obtains

[ap, a†
q] = (2π)3δ(3)(p− q) (2.26)

The key point is that these are exactly the commutation relations
of the quantum harmonic oscillator! For each momentum p, we have
a raising operator a†

p and a lowering operator ap.

2.5 The Vacuum and Particle States

With the algebra of harmonic oscillators, we know what to do. Define
the vacuum |0〉 as the state annihilated by all lowering operators:

ap|0〉 = 0 for all p (2.27)

The vacuum is the state with no particles—the lowest-energy state of
the field.

A one-particle state is created by acting with a†:

|p〉 =
√

2ωp a†
p|0〉 (2.28)

The normalization factor ensures 〈p|q〉 = (2π)32ωp δ(3)(p − q),
which is Lorentz invariant.

|0〉

|p〉

|p, q〉

a†
p

a†
q

...

Figure 2.3: The Fock space: the vacuum,
one-particle states, two-particle states,
etc.

Multi-particle states are created by acting multiple times:

|p1, p2〉 ∝ a†
p1

a†
p2
|0〉 (2.29)

Since [a†
p, a†

q] = 0, these states are symmetric under exchange:

|p, q〉 = |q, p〉 (2.30)

The particles are bosons.
Notice what happened. We started with a classical field satisfying

a wave equation. We quantized it. And out pop particles—quanta
of the field—that automatically obey Bose-Einstein statistics. The
connection between spin and statistics (bosons are spin-0, spin-1,
spin-2, ...; fermions are spin-1/2, spin-3/2, ...) emerges naturally from
the structure of quantum field theory.

2.6 The Hamiltonian in Terms of Creation/Annihilation Opera-
tors

Let’s express the Hamiltonian in terms of a and a†. This will show
that particles carry energy, as they should.
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Substituting the mode expansion into H =
∫

d3xH and grinding
through the algebra (which is straightforward but tedious), we get:

H =
∫ d3 p

(2π)3 ωp

(
a†

pap +
1
2
[ap, a†

p]

)
(2.31)

The first term is ωp · a†
pap—the energy ωp times the number of

particles with momentum p. This is exactly what we want.
The second term is problematic:

1
2

∫ d3 p
(2π)3 ωp · (2π)3δ(3)(0) =

1
2

∫ d3 p
(2π)3 ωp ·V (2.32)

where V = (2π)3δ(3)(0) is the (infinite) volume of space. This is the
zero-point energy—the vacuum has infinite energy!

E0

E1

E2

E3

E4

zero-point
energy

Figure 2.4: Each oscillator contributes
1
2 ω to the vacuum energy.

Wait—the vacuum has infinite energy? What does that even mean?
Can you feel this energy? Can you extract it? And if you can’t, does it
matter?

This infinity is our first encounter with the divergences of quan-
tum field theory. It’s relatively benign, and we can deal with it by
normal ordering—but don’t let that reassure you too much. We’re
declaring by fiat that the vacuum energy is zero, sweeping an infin-
ity under the rug. It works, but it should make you uncomfortable.
Deeper infinities are coming.

For now, define the normal-ordered Hamiltonian by putting all a†s
to the left of all as:

: H :=
∫ d3 p

(2π)3 ωp a†
pap (2.33)

This gives 〈0| : H : |0〉 = 0. We’re declaring that the vacuum has zero
energy, and measuring all other energies relative to it.

Is this cheating? In a sense, yes—we’re sweeping an infinity under
the rug. But since we only ever measure energy differences, defining
the vacuum energy to be zero is physically sensible.3 3 There’s a subtlety here related to

gravity. The vacuum energy acts as a
cosmological constant. The fact that the
observed cosmological constant is tiny
(but nonzero) while QFT predicts an
enormous vacuum energy is one of the
great unsolved problems of physics.

With normal ordering, the Hamiltonian is

H =
∫ d3 p

(2π)3 ωp a†
pap (2.34)

and a one-particle state |p〉 has energy

H|p〉 = ωp|p〉 =
√

p2 + m2|p〉 (2.35)

This is exactly the relativistic energy-momentum relation! The quanta
of the field are relativistic particles of mass m.
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2.7 Momentum and Charge

Similarly, the momentum operator is

P = −
∫

d3x π∇φ =
∫ d3 p

(2π)3 p a†
pap (2.36)

A one-particle state |p〉 has momentum p, as expected.
For a complex scalar field φ 6= φ∗, there’s also a conserved charge.

The Lagrangian
L = ∂µφ∗∂µφ−m2φ∗φ (2.37)

has a U(1) symmetry: φ → eiαφ, φ∗ → e−iαφ∗. By Noether’s theorem,
this symmetry implies a conserved current and charge.

The mode expansion now has two sets of operators:

φ(x) =
∫ d3 p

(2π)3
1√
2ωp

[
ape−ipx + b†

peipx
]

(2.38)

Here a†
p creates a particle and b†

p creates an antiparticle. Both have
positive energy ωp, but they carry opposite charge. The conserved
charge is

Q =
∫ d3 p

(2π)3

(
a†

pap − b†
pbp

)
(2.39)

Particles contribute +1, antiparticles contribute −1. The vacuum has
Q = 0.

2.8 The Feynman Propagator

We now introduce one of the most important objects in quantum
field theory: the propagator. Physically, it describes how a disturbance
in the field propagates from one point to another.

Consider the vacuum expectation value of a time-ordered product:

∆F(x− y) = 〈0|Tφ(x)φ(y)|0〉 (2.40)

where the time-ordering symbol T puts the operator with the later
time to the left:

Tφ(x)φ(y) =

φ(x)φ(y) if x0 > y0

φ(y)φ(x) if y0 > x0
(2.41)

Why time ordering? Consider what 〈0|φ(x)φ(y)|0〉 means. Acting
on the vacuum, φ(y) can create a particle (via the a† part). Then φ(x)
can annihilate it (via the a part). This represents a particle being
created at y and propagating to x.

x

t

y

x

Figure 2.5: The propagator describes a
particle created at y and absorbed at x
(if x0 > y0).

But if y0 > x0, the φ(y) comes later. Then we need φ(x) to create
and φ(y) to annihilate. Time ordering handles this automatically.
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Let me compute ∆F for the case x0 > y0:

〈0|φ(x)φ(y)|0〉 =
∫ d3 p

(2π)3
d3q

(2π)3
1√

2ωp · 2ωq
(2.42)

× 〈0|(ape−ipx + a†
peipx)(aqe−iqy + a†

qeiqy)|0〉

The only term that survives is 〈0|apa†
q|0〉 = (2π)3δ(3)(p − q),

giving:

〈0|φ(x)φ(y)|0〉 =
∫ d3 p

(2π)3
1

2ωp
e−ip(x−y) (2.43)

where p0 = ωp > 0.
Similarly, for y0 > x0:

〈0|φ(y)φ(x)|0〉 =
∫ d3 p

(2π)3
1

2ωp
e−ip(y−x) =

∫ d3 p
(2π)3

1
2ωp

e+ip(x−y)

(2.44)
The Feynman propagator combines these. There’s a compact for-

mula that captures both cases:

∆F(x− y) =
∫ d4 p

(2π)4
i

p2 −m2 + iε
e−ip(x−y) (2.45)

where ε > 0 is infinitesimal.

Where Does the iε Come From?

This is worth understanding in detail. The integral in (2.45) is over all
four components of p. The denominator p2 − m2 = (p0)2 − p2 − m2

vanishes when
p0 = ±ωp (2.46)

So the p0 integral has poles on the real axis. We need to specify how
to go around them.

The iε prescription shifts the poles slightly:

p2−m2 + iε = (p0)2−ω2
p + iε = (p0−ωp + iε′)(p0 +ωp− iε′) (2.47)

where ε′ = ε/(2ωp).

Re p0

Im p0

−ω + iε′

+ω− iε′

Figure 2.6: The iε prescription pushes
poles off the real axis. For x0 > y0, we
close in the lower half-plane, picking up
the +ω pole.

The pole at p0 = +ωp is shifted slightly below the real axis. The
pole at p0 = −ωp is shifted slightly above.

Now do the p0 integral by contour integration. For x0 > y0, the
factor e−ip0(x0−y0) decays in the lower half-plane (since x0 − y0 > 0).
So we close the contour below, picking up the pole at p0 = +ωp − iε′:

∮ dp0

2π

i e−ip0(x0−y0)

(p0 −ω + iε′)(p0 + ω− iε′)
=

e−iω(x0−y0)

2ω
(2.48)

This gives exactly 〈0|φ(x)φ(y)|0〉.
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For y0 > x0, we close above, picking up the other pole, and get
〈0|φ(y)φ(x)|0〉.

The iε prescription encodes causality: positive-frequency modes
propagate forward in time, negative-frequency modes propagate
backward. Or equivalently: particles propagate forward, antiparticles
propagate backward.

2.9 Physical Interpretation of the Propagator

What does the propagator mean physically? Consider the amplitude
for a particle to be created at y and detected at x:

〈0|φ(x)|y〉 = 〈0|φ(x)φ(y)|0〉 · (creation factor) (2.49)

The propagator ∆F(x − y) is essentially this amplitude. It tells us
how the quantum field correlates disturbances at different spacetime
points.

In momentum space, the propagator is

∆̃F(p) =
i

p2 −m2 + iε
(2.50)

This has a pole when p2 = m2—exactly when p is the four-momentum
of a particle on its mass shell.

Think about what this means. If you Fourier transform to see the
contribution of a particular momentum p, the propagator is large
when p2 ≈ m2. The particle “wants” to be on-shell.

p2

|∆̃F|

m2

Figure 2.7: The propagator peaks
sharply at p2 = m2.

For virtual particles in Feynman diagrams, p2 6= m2 in general.
The propagator is still well-defined but smaller. The further off-shell
the virtual particle, the more suppressed its contribution. This is why
high-energy virtual particles contribute less than low-energy ones—a
fact that will be crucial when we discuss renormalization.

2.10 The Klein-Gordon Equation Revisited

Let’s verify that the propagator satisfies the right equation. Acting
with the Klein-Gordon operator:

(�x + m2)∆F(x− y) =
∫ d4 p

(2π)4
i(−p2 + m2)

p2 −m2 + iε
e−ip(x−y) (2.51)

= −i
∫ d4 p

(2π)4 e−ip(x−y) (2.52)

= −iδ(4)(x− y) (2.53)

So the Feynman propagator is a Green’s function for the Klein-
Gordon equation:

(�+ m2)∆F(x− y) = −iδ(4)(x− y) (2.54)
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This makes physical sense. The propagator describes how a field
disturbance—a delta-function source at y—spreads through space-
time.

2.11 Putting in Numbers

Let’s build some intuition with numbers. Consider a scalar particle of
mass m = 100 MeV (roughly a pion). Its Compton wavelength is

λC =
1
m

=
1

100 MeV
≈ 2× 10−15 m = 2 fm (2.55)

This is about the size of a proton.
The propagator falls off exponentially for spacelike separations

|x− y| � 1/m. So a pion’s influence is felt only within about 2 fm—
which is why the strong nuclear force (mediated by pions) has short
range.

Compare to the photon, which is massless. Its propagator falls off
as 1/|x − y|2 for large spacelike separations—it has infinite range.
This is why electromagnetism is a long-range force.

2.12 What We’ve Built

Look at what’s happened. We started with waves satisfying a classi-
cal equation, and out popped particles. Not because we put particles
in—we didn’t. We just quantized the field, imposing commutation
relations on the mode amplitudes, and the mathematics gave us cre-
ation and annihilation operators. The operator a†

p adds a quantum of
momentum p and energy ωp =

√
p2 + m2. That quantum is what we

call a particle.
The particles automatically obey Bose statistics—you can put as

many as you like in the same state. The Hamiltonian counts them,
weighted by their energies. The propagator describes how distur-
bances travel through the field, carrying correlations from one point
to another.

But we haven’t introduced any interactions yet. The particles fly
freely through space without ever colliding or scattering. To describe
real physics—the physics of electrons bouncing off each other, of
photons being absorbed and emitted—we need interactions. That’s
where things get interesting, and that’s the subject of the next chap-
ter.
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The quantization procedure we’ve followed—starting with a classical field, expanding in modes, promoting to operators—
is called canonical quantization. It’s the oldest and most intuitive approach. There’s another approach, the path
integral, which we’ll glimpse later. Both give the same physics, but they make different calculations easy. The path
integral is particularly natural for understanding gauge theories and non-perturbative effects. For our purposes,
canonical quantization provides the clearest conceptual foundation for understanding where particles come from and
what renormalization is doing.





3
Interactions and Perturbation Theory

A universe of free particles would be boring beyond description.
Nothing would happen—ever. Particles would fly past each other,
oblivious, never scattering, never combining, never creating anything
new. The fact that things happen—that electrons repel, that light gets
absorbed, that particles annihilate into other particles—is what makes
physics worth studying.

In the last chapter we built a quantum theory of a free field. Parti-
cles emerged as quanta, propagators described their motion through
spacetime, but the physics was trivial. Now we add interactions, and
everything changes.

But here’s the problem: interacting quantum field theories are
essentially impossible to solve exactly. The free theory was tractable
because it’s just a collection of harmonic oscillators, each with its
exact solution. Add interactions, and the oscillators are coupled in
complicated, nonlinear ways. Exact solutions don’t exist.

Our salvation is perturbation theory. If the interaction is “small”—
if there’s a small coupling constant λ or e or g—we can expand in
powers of that coupling. The leading term is the free theory. Correc-
tions come order by order, each calculable from the previous ones.

This chapter develops the machinery: the interaction picture, time
evolution, Wick’s theorem, and the structure of the perturbation
series. In the next chapter, we’ll see how this machinery gets encoded
in Feynman diagrams.

3.1 Adding Interactions to the Lagrangian

The simplest interacting theory is φ4 theory: a real scalar field with a
quartic self-interaction. The Lagrangian is

L =
1
2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 (3.1)

The first two terms are the free Klein-Gordon Lagrangian. The last
term is new.
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Why φ4 rather than, say, φ3? Several reasons:

• A φ3 term would make the potential unbounded below—there’d
be no ground state.

• The 1/4! is a convention that simplifies later formulas.

• φ4 is the simplest interaction that’s “renormalizable” in four di-
mensions (more on this later).

φ

V

Figure 3.1: The φ4 potential: V =
m2

2 φ2 + λ
4! φ4. The quartic term keeps it

bounded below.

The coupling constant λ is dimensionless (in four spacetime di-
mensions with h̄ = c = 1). We’ll assume λ � 1 so perturbation
theory makes sense.1

1 What counts as “small” here? The
expansion parameter turns out to be
roughly λ/(16π2), so even λ ∼ 1 can
give a reasonable expansion.

The equation of motion is now

(�+ m2)φ = − λ

3!
φ3 (3.2)

The right-hand side couples different modes—the equation is nonlin-
ear, and we can’t solve it exactly.

3.2 The Interaction Picture

To do perturbation theory systematically, we split the Hamiltonian:

H = H0 + Hint (3.3)

where H0 is the free Hamiltonian (which we can solve exactly) and
Hint is the interaction (which we treat perturbatively).

For φ4 theory:

H0 =
∫

d3x
[

1
2

π2 +
1
2
(∇φ)2 +

1
2

m2φ2
]

(3.4)

Hint =
∫

d3x
λ

4!
φ4 (3.5)

In the Schrödinger picture, states evolve and operators are fixed.
In the Heisenberg picture, operators evolve and states are fixed. The
interaction picture is a hybrid: states evolve due to Hint, operators
evolve due to H0.

Define interaction-picture operators:

φI(t, x) = eiH0tφS(x)e−iH0t (3.6)

where φS is the Schrödinger-picture operator. The subscript I for
“interaction picture” is often dropped when context is clear.

Schröd. Heisenberg

Interaction

H0 Hint

Figure 3.2: The interaction picture splits
evolution between operators (H0) and
states (Hint).

Since φI evolves with the free Hamiltonian H0, it satisfies the free
field equation and has the same mode expansion as in Chapter 2:

φI(x) =
∫ d3 p

(2π)3
1√
2ωp

[
ape−ipx + a†

peipx
]

(3.7)
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This is why the interaction picture is so useful: the operators are
simple (free fields), and all the complexity of interactions goes into
the states.

3.3 Time Evolution in the Interaction Picture

How do states evolve in the interaction picture? Define the interaction-
picture state:

|ψI(t)〉 = eiH0t|ψS(t)〉 (3.8)

where |ψS(t)〉 = e−iHt|ψS(0)〉 is the Schrödinger-picture state.
The equation of motion for |ψI(t)〉 is

i
d
dt
|ψI(t)〉 = HI(t)|ψI(t)〉 (3.9)

where HI(t) = eiH0tHinte−iH0t is the interaction Hamiltonian in the
interaction picture.

The solution is

|ψI(t)〉 = U(t, t0)|ψI(t0)〉 (3.10)

where the time-evolution operator U satisfies

i
∂U
∂t

= HI(t)U(t, t0), U(t0, t0) = 1 (3.11)

If HI were time-independent, we’d have U = e−iHI(t−t0). But HI(t)
depends on time (because the free-field operators do), so we need to
be more careful.

Why does time ordering appear? Think about what we’re comput-
ing: the state at time t given the state at t0. If the Hamiltonian were
constant, we’d just exponentiate: U = e−iH(t−t0). But HI(t) changes
with time—the free-field operators inside it are evolving—so we have
to be careful about the order in which things happen. An interaction
at time t2 happens before an interaction at t1 > t2, so HI(t2) should
act on the state first.

The formal solution is the time-ordered exponential:

U(t, t0) = T exp
(
−i
∫ t

t0

dt′ HI(t′)
)

(3.12)

where T is the time-ordering symbol that puts later operators to the
left. Expanded:

U(t, t0) = 1− i
∫ t

t0

dt1 HI(t1) (3.13)

+ (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2 HI(t1)HI(t2) + · · ·

The nested integrals automatically enforce the time ordering.
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3.4 The S-Matrix

We’re interested in scattering processes: particles come in from the
distant past, interact, and fly off to the distant future. The object that
encodes this is the S-matrix.

Define the S-matrix as the limit:

S = lim
t→+∞
t0→−∞

U(t, t0) (3.14)

In this limit, we can write

S = T exp
(
−i
∫ +∞

−∞
dt HI(t)

)
= T exp

(
−i
∫

d4xHI(x)
)

(3.15)

where HI =
λ
4! φ

4
I is the interaction Hamiltonian density.

t

interaction

in

out

Figure 3.3: Scattering: particles come in
from t → −∞, interact, and go out to
t→ +∞.

The S-matrix element between an initial state |i〉 and a final state
| f 〉 is 〈 f |S|i〉. This gives the probability amplitude for the transition
|i〉 → | f 〉.

In perturbation theory, we expand:

S = 1 + (−i)
∫

d4xHI(x) +
(−i)2

2!

∫
d4x d4y T[HI(x)HI(y)] + · · ·

(3.16)

= 1 + S(1) + S(2) + · · · (3.17)

where S(n) is the nth-order term, proportional to λn.

3.5 A Concrete Example: 2→ 2 Scattering

Let’s compute a scattering amplitude. Consider two particles with
momenta p1, p2 scattering into two particles with momenta p3, p4:

|i〉 = |p1, p2〉 =
√

2ω1
√

2ω2 a†
p1

a†
p2
|0〉 (3.18)

| f 〉 = |p3, p4〉 =
√

2ω3
√

2ω4 a†
p3

a†
p4
|0〉 (3.19)

The S = 1 term contributes only if | f 〉 = |i〉 (no scattering). For
actual scattering, we need S(1) at least.

The first-order term is

S(1) = −i
λ

4!

∫
d4x φ4

I (x) (3.20)

To compute 〈 f |S(1)|i〉, we need to evaluate

〈p3, p4|φ4
I (x)|p1, p2〉 (3.21)

Each φI can either create or annihilate a particle. We need to annihi-
late both incoming particles and create both outgoing particles. That
requires four field operators, which is exactly what we have!
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Working Out the Contractions

Expand φI(x) in creation and annihilation operators:

φI(x) =
∫ d3k

(2π)3
1√
2ωk

[
ake−ikx + a†

k eikx
]

(3.22)

Each of the four φs in φ4 can contribute an a or an a†.
To go from |p1, p2〉 to |p3, p4〉, we need:

• Two a’s to annihilate the incoming particles

• Two a†’s to create the outgoing particles

p1 p2

p3 p4

Figure 3.4: The tree-level 2 → 2 scatter-
ing diagram in φ4 theory: four particles
meet at a single vertex.

The calculation gives (after carefully counting factors):

〈p3, p4|S(1)|p1, p2〉 = −iλ
∫

d4x ei(p1+p2−p3−p4)·x (3.23)

= −iλ · (2π)4δ(4)(p1 + p2 − p3 − p4) (3.24)

The delta function enforces momentum conservation—no surprise,
since the interaction is translationally invariant.

We define the invariant amplitudeM by stripping off the momentum-
conserving delta function:

〈 f |S|i〉 = (2π)4δ(4)(p f − pi) · iM (3.25)

So at tree level in φ4 theory,M = −λ.
The cross-section is proportional to |M|2 = λ2. This is why the

coupling constant governs the strength of scattering.

3.6 Wick’s Theorem

The calculation above was manageable because we had just four
field operators. At higher orders, we have products of many fields,
and keeping track of all the ways to pair creation and annihilation
operators becomes tedious.

Wick’s theorem provides a systematic way to do this. It relates
time-ordered products to normal-ordered products (all a†s to the left)
plus contractions (propagators).

Define the contraction of two fields as the difference between the
time-ordered and normal-ordered products:

φ(x)φφ(x)φ(y) = T[φ(x)φ(y)]− : φ(x)φ(y) : (3.26)

Since normal-ordered products give zero in vacuum expectation
values, the contraction is just the propagator:

φ(x)φφ(x)φ(y) = 〈0|T[φ(x)φ(y)]|0〉 = ∆F(x− y) (3.27)
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Wick’s theorem: The time-ordered product of fields equals the
sum over all ways of contracting pairs:

T[φ1φ2φ3φ4] = : φ1φ2φ3φ4 : (3.28)

+ φ1φφ1φ2 : φ3φ4 : +(5 more single contractions)

+ φ1φφ1φ2φ3φφ3φ4 + (2 more double contractions)

Each contraction replaces two fields with a propagator. φ1 φ2 φ3 φ4

one pairing

Figure 3.5: One way to contract four
fields into two pairs. Each contraction
becomes a propagator.

When we take the vacuum expectation value 〈0| · · · |0〉, only the
fully contracted terms survive (normal-ordered terms with leftover
fields give zero). So:

〈0|T[φ1φ2φ3φ4]|0〉 = ∆F(x1− x2)∆F(x3− x4)+ 2 other pairings (3.29)

3.7 Scattering Amplitudes from Wick’s Theorem

For S-matrix elements between particle states, we get a mix of:

• External contractions: Fields paired with external particles (cre-
ation/annihilation).

• Internal contractions: Fields paired with each other (propagators).

Consider the second-order term in φ4:

S(2) =
(−iλ)2

2! · (4!)2

∫
d4x d4y T[φ4(x)φ4(y)] (3.30)

We have 8 fields. For a 2 → 2 process, 4 fields connect to external
particles and 4 form internal contractions (two propagators).

Different ways of making these pairings give different contri-
butions to the amplitude. Each pairing corresponds to a Feynman
diagram, which we’ll develop systematically in the next chapter.

3.8 The Structure of Perturbation Theory

Let me step back and describe the overall structure.
The S-matrix has the expansion

S = 1 +
∞

∑
n=1

S(n) (3.31)

where S(n) ∝ λn (or en or gn for other couplings).
For a given process (say, 2→ 2 scattering), S(n) involves an integral

over n spacetime points (where interactions occur) and a sum over all
ways to connect external particles and propagators.

O(λ):

O(λ2):

Figure 3.6: The perturbation series:
higher orders have more vertices.

Each term can be computed (in principle) using Wick’s theorem.
The result is a sum of integrals, one for each way to pair up fields.
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At low orders, there are only a few diagrams and the calculation is
tractable. At high orders, the number of diagrams explodes combina-
torially. For precision calculations in QED, people have computed to
order α5—thousands of diagrams.

3.9 Why Time-Ordering?

You might wonder: why is the S-matrix defined with time-ordering?
Why not just exp(−i

∫
HI)?

The answer involves causality. Physical processes respect causality:
the future cannot affect the past. Time-ordering builds this in at the
level of quantum amplitudes.

Consider the propagator. For x0 > y0, it describes a particle cre-
ated at y propagating to x. For y0 > x0, it describes a particle created
at x propagating to y. The propagator automatically handles both
cases.

But actually, there’s something deeper going on. The Feynman
propagator isn’t just time-ordered; it’s the specific combination that
treats positive-frequency modes (particles) propagating forward and
negative-frequency modes (antiparticles) propagating backward. This
combination is what ensures causality in the quantum theory.2 2 For spacelike separations, the propaga-

tor doesn’t vanish, but commutators of
fields do. This is enough to ensure that
measurements at spacelike separation
can’t influence each other.3.10 The LSZ Reduction Formula

There’s an important result that connects S-matrix elements to cor-
relation functions: the LSZ reduction formula (Lehmann-Symanzik-
Zimmermann).

The idea is: instead of working with in/out states explicitly, com-
pute the vacuum expectation value of a time-ordered product of
fields, then “amputate” the external propagators.

For a 2→ 2 process:

〈p3, p4|S|p1, p2〉 =
4

∏
i=1

[∫
d4xi e±ipixi (�xi + m2)

]
× 〈0|T[φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 (3.32)

The (� + m2) operators kill the external propagators (since (� +

m2)∆F(x) = −iδ(4)(x)), leaving only the “amputated” part.
This formula is powerful because correlation functions 〈0|T[φ(x1) · · · φ(xn)]|0〉

are often easier to compute than S-matrix elements directly, especially
using path integral methods.
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3.11 A Worked Example: The Four-Point Function

Let’s compute the four-point correlation function at order λ:

G(4)(x1, x2, x3, x4) = 〈0|T[φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 (3.33)

At zeroth order (free theory), Wick’s theorem gives:

G(4)
0 = ∆F(x1 − x2)∆F(x3 − x4) + ∆F(x1 − x3)∆F(x2 − x4)

+ ∆F(x1 − x4)∆F(x2 − x3) (3.34)

These are the three ways to pair four points into two pairs.
At first order in λ:

G(4)
1 = − iλ

4!

∫
d4y 〈0|T[φ(x1)φ(x2)φ(x3)φ(x4)φ

4(y)]|0〉 (3.35)

We have 8 fields, and we need to contract them all. The interesting
term has each external point xi contracted with one of the φ(y)s:

G(4)
1 = −iλ

∫
d4y ∆F(x1 − y)∆F(x2 − y)∆F(x3 − y)∆F(x4 − y) + · · ·

(3.36)

The “· · · ” includes terms where some xis are contracted with each
other rather than with y—these turn out to be “disconnected” contri-
butions that don’t contribute to scattering.

y

x1 x2

x3 x4

Figure 3.7: The first-order contribution
to the four-point function. Each exter-
nal point connects to the vertex y via a
propagator.

Fourier transforming to momentum space:

G̃(4)
1 (p1, p2, p3, p4) = −iλ · (2π)4δ(4)(p1 + p2 + p3 + p4) ·

4

∏
i=1

i
p2

i −m2 + iε
(3.37)

The product of propagators gives poles when each p2
i = m2—when

the external particles are on-shell. The LSZ procedure amputates
these propagators, leaving just −iλ.

3.12 What We’ve Learned

The perturbation theory machinery we’ve developed has a clear
structure:

1. Interaction picture: Fields evolve as free fields; states evolve due
to interactions.

2. S-matrix: Encodes scattering amplitudes as a time-ordered expo-
nential.

3. Wick’s theorem: Converts time-ordered products into sums over
contractions.
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4. Contractions: Each contraction is a propagator connecting two
spacetime points.

5. Perturbative expansion: Higher orders in λ involve more vertices
and more propagators.

The procedure is straightforward—you could teach a computer to
do it—but there’s something almost magical about watching the com-
binatorics organize themselves into physical amplitudes. Each con-
traction corresponds to a particle propagating between two points.
The sum over contractions becomes a sum over all the ways particles
can be exchanged.

But enumerating contractions by hand gets tedious fast. This ma-
chinery screams for a better notation—something that captures the
combinatorics visually, that lets you see at a glance what particles are
doing. That notation is Feynman diagrams, and it’s the subject of our
next chapter.

3.13 A Philosophical Note

Before moving on, let me make a philosophical point.
We’re expanding in powers of λ, assuming λ is small. But what

does “small” mean? There’s no dimensionful scale in the coupling
constant to compare to anything.

The expansion parameter turns out to be λ/(16π2), roughly. This
factor of 16π2 ≈ 158 comes from phase space integrals in loops. So
even for λ ∼ 1, the expansion is reasonably well-behaved.

But the series doesn’t converge. At high orders, the number of
Feynman diagrams grows factorially (roughly n! at order n), while
the coupling suppression grows only like λn. The perturbation se-
ries is asymptotic: it gives a good approximation up to some optimal
truncation, beyond which adding more terms makes things worse.

order n

error

optimal

Figure 3.8: An asymptotic series: the
error decreases to an optimal point,
then increases.

This doesn’t mean perturbation theory is useless—far from it.
For QED, the first few terms give predictions accurate to parts per
billion. But it does mean we’re not computing the “exact” answer by
summing infinitely many terms. We’re computing an approximation,
and the approximation is spectacularly good for weakly coupled
theories.

Whether this limitation is fundamental or whether there’s a way to
“resum” the perturbation series and extract exact answers is an open
question. For our purposes, we’ll trust perturbation theory where it’s
warranted and note its limitations where they matter.
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The interaction picture and perturbative S-matrix were developed in the late 1940s and early 1950s, during the heroic
era of quantum electrodynamics. Tomonaga, Schwinger, and Feynman developed equivalent formulations (Tomonaga
and Schwinger using the approach sketched here; Feynman using path integrals). Dyson showed in 1949 that the
approaches were equivalent and provided the systematic framework we still use today. The combinatorial explosion
of diagrams at high orders, and the asymptotic nature of the series, were understood later. Modern techniques—
renormalization group methods, resummation, lattice QFT—go beyond naive perturbation theory in various ways, but
for weakly coupled theories like QED, the approach developed in the 1940s remains the gold standard.



4
The Language of Feynman Diagrams

In the last chapter, we developed the machinery of perturbation the-
ory: time-ordered products, Wick contractions, the S-matrix expan-
sion. The calculations work, but they’re bookkeeping nightmares.
You enumerate contractions, track signs, match up creation and an-
nihilation operators, and eventually get an integral. The process
obscures the physics.

Feynman diagrams are a better way. They turn the combinatorics
into pictures. Each diagram represents a term in the perturbation
series. You draw a picture, read off the corresponding integral, and
compute. The physics becomes visual: particles propagate along
lines, interact at vertices, create and annihilate.

More than just computational tools, Feynman diagrams shape
how we think about quantum processes. When physicists discuss
scattering, they speak of “tree diagrams” and “loop diagrams,” of
particles being “exchanged” and processes being “mediated.” This
language comes from the diagrams.

Let me show you how it works.

4.1 From Contractions to Pictures

Recall the structure of perturbation theory. The S-matrix is

S = T exp
(
−i
∫

d4xHI(x)
)
= 1 + S(1) + S(2) + · · · (4.1)

Each term involves products of field operators. Wick’s theorem con-
verts these into sums over contractions. Each contraction is a propa-
gator.

The Feynman diagram is a graphical representation:

• Each vertex represents an interaction point (a factor of HI).

• Each internal line represents a propagator (a contraction between
two fields).
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• Each external line represents an external particle (in the initial or
final state).

vertex

propagator

external

Figure 4.1: The basic elements of
Feynman diagrams.

For φ4 theory, each vertex has four lines meeting (because the
interaction is φ4). The tree-level 2 → 2 scattering amplitude, which
we calculated laboriously in Chapter 3, is just:

p1

p3

p2

p4

Four external particles meet at one vertex. No internal lines (this is
tree-level—no loops). The amplitude is just −iλ times a momentum-
conserving delta function.

4.2 Feynman Rules in Position Space

Let me state the Feynman rules systematically. For φ4 theory in posi-
tion space:

1. Draw all distinct diagrams with the required external lines and
the appropriate number of vertices.

2. For each vertex at position x: write a factor of −iλ.

3. For each internal line from x to y: write a propagator ∆F(x− y).

4. For each external line from x to external momentum p: write
e±ipx, where the sign depends on whether the particle is incoming
(−) or outgoing (+).

5. Integrate over all vertex positions:
∫

d4x1 · · · d4xn.

6. Divide by the symmetry factor: accounts for overcounting equiv-
alent diagrams.

The symmetry factor deserves explanation. If interchanging ver-
tices or lines gives the same diagram, we’ve overcounted, and must
divide by the number of such interchanges.

4.3 Feynman Rules in Momentum Space

Position-space rules are conceptually clear but computationally awk-
ward. The integrals over vertex positions are easier after Fourier
transforming.
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Using

∆F(x− y) =
∫ d4k

(2π)4
i

k2 −m2 + iε
e−ik(x−y) (4.2)

each propagator introduces a momentum variable k flowing along
the line.

The position integrals then give delta functions enforcing momen-
tum conservation at each vertex:∫

d4x ei(p1+p2+p3+p4)·x = (2π)4δ(4)(p1 + p2 + p3 + p4) (4.3)

p1 p2

p3p4

p1 + p2 = p3 + p4

Figure 4.2: Momentum conservation at
a vertex: what goes in must come out.

Momentum-space Feynman rules for φ4 theory:

1. Draw all distinct diagrams.

2. Assign momenta to all lines (external momenta are fixed; internal
momenta are integration variables).

3. For each vertex: write −iλ.

4. For each internal line with momentum k: write
i

k2 −m2 + iε
.

5. For each loop: integrate
∫ d4k

(2π)4 over the undetermined momen-

tum.

6. Impose momentum conservation at each vertex (this determines
some internal momenta in terms of others).

7. Divide by the symmetry factor.

The number of loop integrals equals the number of independent
momenta not fixed by conservation. For a diagram with V vertices
and I internal lines, the number of loops is L = I −V + 1.

4.4 Counting Loops

This formula L = I − V + 1 is worth understanding. Each internal
line carries a momentum we integrate over. Each vertex gives a delta
function constraining momenta. But one delta function just enforces
overall conservation (total incoming = total outgoing), which doesn’t
reduce the number of integrals.

Diagram V I L Example

Tree (2→2) 1 0 0 φ4 vertex
Tree (2→2) 2 1 0 s-channel

1-loop (2→2) 2 2 1 fish/bubble
2-loop (vac) 1 2 2 “figure-eight”

Table 4.1: Examples of the loop-
counting formula L = I −V + 1.

So:
loop integrals = I − (V − 1) = I −V + 1 (4.4)

At tree level (L = 0), all momenta are determined by external
kinematics. No integrals remain—just algebra. This is why tree-level
calculations are easy.

At one loop (L = 1), there’s one undetermined momentum to inte-
grate. This integral often diverges—the subject of our next chapter.
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4.5 A One-Loop Example

Let’s see a one-loop diagram. Consider the “fish” diagram contribut-
ing to 2→ 2 scattering at order λ2:

p1

p2

p3

p4k

p1 + p2 − k

This is called the s-channel diagram (after the Mandelstam vari-
able s = (p1 + p2)

2).
Let’s apply the Feynman rules:

• Two vertices: (−iλ)2 = −λ2.

• Two internal propagators with momenta k and p1 + p2 − k:

i
k2 −m2 + iε

· i
(p1 + p2 − k)2 −m2 + iε

(4.5)

• One loop integral:
∫ d4k

(2π)4 .

• Symmetry factor: 1/2 (the two internal lines are equivalent).

The amplitude is:

iMs =
(−iλ)2

2

∫ d4k
(2π)4

i
k2 −m2 + iε

· i
(p1 + p2 − k)2 −m2 + iε

(4.6)

Now here’s the problem. Let’s estimate this integral. At large |k|:
∫ d4k

(2π)4
1

k2 · k2 ∼
∫ k3 dk

k4 =
∫ dk

k
(4.7)

This integral diverges logarithmically at large k. We have our first
infinity!

We’ll deal with this in Chapters 5-7. For now, just note: loop di-
agrams involve integrals over all momenta, and these integrals can
diverge.

4.6 Symmetry Factors: The Trickiest Part

The symmetry factor is the trickiest part of Feynman rules. It com-
pensates for overcounting when we enumerate diagrams. Getting this
wrong is one of the most common errors in QFT calculations, so let’s
be thorough.
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Where the Counting Comes From

The nth-order term in the S-matrix is

S(n) =
(−i)n

n!

∫ n

∏
j=1

d4xj T[HI(x1) · · · HI(xn)] (4.8)

The 1/n! is there because the time-ordering symbol T treats the ver-
tices as distinguishable, but when we integrate over all positions xj,
we’re summing over all ways to assign vertices to positions. If the
vertices are actually identical, we’ve overcounted by n!.

Similarly, within each HI =
λ
4! φ

4, the 1/4! is there because expand-
ing φ4 = φ · φ · φ · φ gives 4! ways to pair the four φ fields with other
fields via Wick contractions, and all these pairings give the same
result.

When we draw Feynman diagrams and apply the naive rules,
we’re essentially treating all internal lines and vertices as distinguish-
able. The symmetry factor S corrects for this overcounting:

contribution =
(diagram value)

S
(4.9)

where S counts the number of ways to permute internal lines and
vertices that leave the diagram unchanged (with external legs fixed in
place).

A Systematic Method

Here’s a reliable algorithm for computing symmetry factors:

1. Start with the diagram. Label all vertices 1, 2, . . . and all internal
lines a, b, . . .

2. Count the number of distinct ways to relabel vertices and lines
that produce the same diagram (with external legs held fixed).

3. That count is S.

Equivalently, S is the order of the automorphism group of the
diagram—the group of permutations that preserve the structure.

Worked Example: The Fish Diagram

Consider the “fish” or “bubble” diagram in φ4 theory:

1 2

a

b

What symmetries does this diagram have?
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• Can we swap vertices 1 and 2? No—that would interchange the
external legs on left and right.

• Can we swap internal lines a and b? Yes! The diagram looks ex-
actly the same.

So there’s one nontrivial symmetry: (a ↔ b). Together with the
identity, this gives a symmetry group of order 2. Therefore S = 2.

Worked Example: The Sunset Diagram

Now consider the “sunset” or “sunrise” diagram:

a

b

c

This has three internal lines connecting the same two vertices.
What’s the symmetry factor?

We can permute the three lines a, b, c in any of 3! = 6 ways with-
out changing the diagram. So S = 6.

But wait—in a theory like φ3 where each vertex has three lines,
this diagram would appear differently. The symmetry factor depends
on the theory! For φ4 theory, this diagram would need four lines at
each vertex, so we’d need external lines making up the difference.

Worked Example: The Tadpole

The simplest loop diagram is the tadpole:

This has a loop attached to the vertex (a “bubble” on a stick). The
single loop line can be “flipped” (traversed in the opposite direction),
but for a scalar field, both directions give the same propagator. In
terms of automorphisms: there are two ways to orient the loop, both
giving the same diagram.

So S = 2.

Worked Example: Figure-Eight (Double Tadpole)

Consider the figure-eight vacuum diagram:
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This has:

• Each loop can be flipped: factor of 2× 2 = 4

• The two loops can be interchanged: factor of 2

Total: S = 4× 2 = 8.

Why Getting This Wrong Matters

If you use the wrong symmetry factor, you get the wrong coefficient
for a diagram’s contribution. In simple calculations at low orders,
this might just give a wrong numerical factor. But in renormalization,
getting symmetry factors wrong can make counterterms inconsistent,
leading to apparent violations of gauge invariance or other symme-
tries.

The safest approach is: when in doubt, go back to the Wick con-
traction level and count explicitly. Every valid Wick contraction cor-
responds to a contribution; count them, and you’ll find the right
symmetry factor naturally.

S = 2

(tadpole)

S = 2
Figure 4.3: Common diagrams with
their symmetry factors.A Table of Common Symmetry Factors

Diagram Type S

Tree (no symmetry) 1

Fish / bubble 2

Tadpole (one loop) 2

Sunset (3 parallel lines) 6

Figure-eight 8

Table 4.2: Symmetry factors for com-
mon diagram topologies.

4.7 Connected Diagrams and Vacuum Bubbles

Not all diagrams contribute to scattering in the same way. This sec-
tion explains which diagrams matter and why—a crucial point for
understanding what we actually calculate.

Connected vs. Disconnected Diagrams

A diagram is connected if you can reach any part of it from any other
part by traveling along lines. A diagram is disconnected if it breaks
into separate pieces.

For example, consider these two diagrams for 2 → 2 scattering at
second order:

Connected Disconnected

The left diagram is connected: both vertices are linked by internal
lines. The right diagram is disconnected: there’s a tree-level scat-
tering plus a floating “vacuum bubble” that isn’t connected to any
external particle.



46 lectures on qft and renormalization

What Are Vacuum Bubbles?

A vacuum bubble (or vacuum diagram) is a connected subdiagram
with no external legs—a closed diagram floating in the vacuum.
Examples:

Tadpole Figure-eight Double-fish

These diagrams represent virtual processes happening in the vac-
uum with no connection to any physical particles.

Why Vacuum Bubbles Cancel

Here’s the key result: vacuum bubbles cancel out of all physical
observables.

The intuition is this. The vacuum-to-vacuum amplitude 〈0|S|0〉
includes all possible vacuum bubbles:

〈0|S|0〉 = 1 + (one bubble) + (two bubbles) + · · · = eiθ (4.10)

where θ is some (possibly infinite) phase.
Any scattering amplitude factorizes:

〈 f |S|i〉 = 〈 f |S|i〉connected × 〈0|S|0〉 (4.11)

The vacuum bubbles multiply the connected amplitude by the same
factor eiθ .

But we never measure 〈 f |S|i〉 directly—we measure probabilities,
which are:

|〈 f |S|i〉|2 = |〈 f |S|i〉connected|2 × |〈0|S|0〉|2 (4.12)

If we properly normalize our states (or, equivalently, divide by the
vacuum normalization), the factor |〈0|S|0〉|2 cancels:

|〈 f |S|i〉|2
|〈0|S|0〉|2 = |〈 f |S|i〉connected|2 (4.13)

Upshot: Vacuum bubbles contribute an overall phase that cancels
in physical observables. We can ignore them entirely when comput-
ing scattering amplitudes.

The Linked Cluster Theorem

This cancellation is formalized in the linked cluster theorem (or
connected diagram theorem). It states:
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The logarithm of the S-matrix equals the sum of all connected dia-
grams.

In equations:

log〈0|S|0〉 = ∑
connected vacuum diagrams

(4.14)

and more generally:

〈 f |S|i〉connected = sum of connected diagrams with external legs
(4.15)

The theorem tells us that the exponential structure of vacuum
bubbles (they can appear any number of times, independently) is
exactly what’s needed for them to factor out.

This is not obvious! It’s a nontrivial result about the structure of
perturbation theory. But once you know it, you can simplify calcula-
tions enormously by ignoring all disconnected diagrams.

Different Kinds of “Disconnected”

Be careful about terminology. There are different ways a diagram can
fail to be connected:

1. Disconnected with vacuum bubble: A scattering part plus a
floating bubble (no external legs on the bubble). These cancel, as
discussed.

2. Disconnected scattering: Two separate scattering processes that
happen independently. For example, if you scatter A + B → C + D
and simultaneously scatter E + F → G + H with no interaction
between the two processes. These contribute to the S-matrix but
represent independent events.

The second type doesn’t “cancel”—it represents legitimate physics
where two things happen independently. But for computing a spe-
cific scattering amplitude with definite external particles, we still
focus on connected diagrams for that process.

Practical Rule

For computing scattering amplitudesM:
Only draw connected diagrams.
Any diagram with a floating vacuum bubble can be ignored—it

will cancel when we compute physical quantities. This is an enor-
mous simplification in practice.

connected
X

disconnected×
Figure 4.4: Connected diagrams con-
tribute; disconnected diagrams with
vacuum bubbles cancel.



48 lectures on qft and renormalization

4.8 The Physical Picture

Feynman diagrams aren’t just computational tools—they provide a
physical picture of quantum processes.

Consider electron-electron scattering in QED. The tree-level dia-
gram shows the electrons exchanging a photon:

e−

e−

e−

e−

γ

We say the electromagnetic force is “mediated” by photon ex-
change. The photon is a virtual particle—it exists only during the
interaction, not before or after. Its momentum is determined by kine-
matics, and it’s generally off-shell (k2 6= 0 for a virtual photon).

t

E

E0

virtual

∆E

∆t

Figure 4.5: A virtual particle borrows
energy ∆E for time ∆t . h̄/∆E.

Is the virtual photon “real”? This is a genuinely subtle question,
and physicists disagree. You can’t observe it directly—try to measure
the intermediate photon, and you’ve changed the experiment into
something else entirely. The virtual photon exists only as an interme-
diate state in a quantum amplitude, with no independent existence
before or after.

Some physicists will tell you virtual particles are “just mathematics”—
artifacts of perturbation theory with no physical reality. Others in-
sist they’re as real as anything else in quantum mechanics: after all,
their effects are measurable. The electrons really do repel each other;
something must be happening.

I’m not sure the distinction matters. What matters is that we have
a calculation that gives the right answer. But if the ontological ques-
tion bothers you, hold onto that discomfort. It points at something
deep about the interpretation of quantum field theory that we don’t
fully understand.

4.9 Putting in Numbers: Tree-Level Scattering

Let’s do a complete calculation for φ4 theory. We’ll compute the
cross-section for 2→ 2 scattering at tree level.

The tree-level amplitude is

iM = −iλ (4.16)

So |M|2 = λ2.
The differential cross-section in the center-of-mass frame is1 1 This formula comes from phase-space

integrals and flux factors; we won’t
derive it here.dσ

dΩ
=

1
64π2s

|M|2 (4.17)
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where s = (p1 + p2)
2 is the center-of-mass energy squared.

For λ = 0.1 and
√

s = 1 GeV:

dσ

dΩ
=

λ2

64π2s
=

0.01
64π2 · (1 GeV)2 ≈ 1.6× 10−5 GeV−2 (4.18)

Converting to more useful units (using 1 GeV−2 ≈ 0.389 mb):

dσ

dΩ
≈ 6× 10−6 mb = 6× 10−33 cm2 (4.19)

This is small—much smaller than typical hadronic cross-sections
(tens of millibarns) but comparable to weak-interaction cross-sections.
The coupling λ = 0.1 is moderately weak.

Integrating over angles gives the total cross-section. For identical
particles, we must divide by 2 to avoid double-counting final states
where the two particles are exchanged:2 2 Swapping the two identical outgoing

particles gives the same physical final
state.

σtot =
1
2
· 4π · dσ

dΩ
≈ 3.8× 10−5 mb (4.20)

4.10 Beyond φ4: Different Theories, Different Rules

The Feynman rules depend on the theory. Let me sketch how other
theories work.

φ3 theory: Each vertex has three lines (factor: −ig). Unstable vac-
uum, but useful as a toy model.

Yukawa theory: A scalar φ couples to a fermion ψ via gψ̄φψ. The
vertex has two fermion lines and one scalar line.

QED: The photon Aµ couples to the electron ψ via eψ̄γµψAµ. The
vertex has two electron lines and one photon line.

Each theory has its own propagators:

• Scalar:
i

k2 −m2 + iε

• Fermion:
i(/k + m)

k2 −m2 + iε

• Photon:
−igµν

k2 + iε
(in Feynman gauge)

The numerator of the fermion propagator contains /k = γµkµ—
the gamma matrices make fermion calculations more involved. The
photon propagator involves the metric tensor because photons carry
polarization.

We’ll develop the QED rules fully in Chapter 8.
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4.11 Reading Diagrams: What Diverges and Why

Before we tackle infinities systematically, let’s build intuition for
which diagrams diverge.

Consider a generic loop integral:

∫ d4k
(2π)4

1
(k2 −m2)n (4.21)

For large k, this behaves like
∫

k3dk/k2n =
∫

k3−2ndk.

• If 3− 2n < −1, the integral converges.

• If 3− 2n = −1 (i.e., n = 2), the integral diverges logarithmically.

• If 3− 2n > −1 (i.e., n < 2), the integral diverges like a power of the
cutoff. n

D

−1
D = 3−2n

n=1

n=2diverges
converges

Figure 4.6: Degree of divergence D =
3− 2n. Convergence requires D < −1,
i.e., n > 2.

In φ4 theory, a one-loop diagram has two propagators (n = 2),
so it diverges logarithmically. A two-loop diagram might have more
propagators, but the additional loop adds another k integration,
potentially making things worse.

The systematic way to analyze this is power counting, which we’ll
develop in Chapter 6. For now, the intuition is: loops are dangerous
because they integrate over all momenta, and high momenta can
cause trouble.

4.12 A Bestiary of Diagrams

Let me catalog some common diagram types. These names will recur
constantly, and each type asks a different physical question.

Tree diagrams have no loops. All internal momenta are fixed by
external momenta, so there’s nothing to integrate over. They’re the
leading-order approximation to any process, and they’re always
finite.

Self-energy diagrams correct the propagator. They’re asking:
what is the mass of a particle that’s constantly surrounded by its own
quantum fluctuations? A particle propagates, emits and reabsorbs
virtual particles, then continues. The answer, as we’ll see, is diver-
gent.

self-energy
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Vertex corrections modify the interaction itself. The basic coupling
gets dressed by virtual particles, changing its effective strength. In
QED, the vertex correction will tell us how the electron’s magnetic
moment differs from Dirac’s prediction—a measurable effect that
agrees with experiment to extraordinary precision.

vertex correction

Box diagrams appear when two particles exchange two virtual
particles. They’re more complicated than single-exchange diagrams,
but they’re essential for precision calculations and for processes that
can’t happen at tree level.

box diagram

Tadpoles are loops connected to a single vertex—little bubbles that
grow off a line and pop. They often vanish by symmetry, but when
they don’t, they shift vacuum expectation values.

In QED, three diagrams control the renormalization: the photon
self-energy (vacuum polarization), the electron self-energy, and the
vertex correction. We’ll compute all three in full detail, and doing so
will teach us what renormalization really means.

4.13 Summary: The Feynman Rules

For φ4 theory in momentum space:

Element Factor

Vertex −iλ

Propagator (momentum k)
i

k2 −m2 + iε

Loop
∫ d4k

(2π)4

Momentum conservation at each vertex

Symmetry factor divide by S
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The procedure:

1. Draw all topologically distinct connected diagrams.

2. Assign momenta (external fixed, internal integrated).

3. Write down the factors.

4. Integrate and compute.

We now have the tools to do calculations. In the next chapter, we’ll
face the main challenge: those loop integrals diverge, and we need to
understand why and what to do about it.

Feynman introduced his diagrams in his 1949 papers on QED. They were initially met with skepticism—Bohr report-
edly thought they gave the wrong picture of quantum mechanics, suggesting particles followed definite trajectories.
But their computational power won out. Dyson showed how Feynman’s diagrams, Schwinger’s operator methods, and
Tomonaga’s covariant perturbation theory were all equivalent. The diagrams became the standard language of particle
physics. Today, every particle physics paper includes Feynman diagrams, and the visual vocabulary—propagators,
vertices, loops—shapes how we think about fundamental interactions. The transition from Wick contractions to dia-
grams is more than notational convenience; it’s a shift in how we conceptualize quantum processes.



5
Why Infinity?

We’ve built the machinery of quantum field theory: fields, particles,
propagators, Feynman diagrams, perturbation theory. Now we run
into a wall.

When we try to compute loop corrections—quantum corrections
from virtual particles—we get infinity. Not a large number. Actual
infinity. The integrals diverge.

This chapter is about understanding why. What is the physical
origin of these infinities? Are they telling us something deep about
nature, or are they just an artifact of our computational methods?
What went wrong?

I want to be clear: these infinities are not optional. They’re not a
mistake in the calculation. Any honest treatment of quantum field
theory in the continuum produces them. They’re built into the struc-
ture of the theory.

Understanding why is the first step toward understanding how to
deal with them.

5.1 The One-Loop Correction in φ4 Theory

Let’s examine a specific divergent integral. Consider the “tadpole”
diagram in φ4 theory—a loop attached to a single vertex, contributing
to the mass of the scalar particle:

p p

k

By the Feynman rules, this contributes:

−iΣ = (−iλ) · 1
2

∫ d4k
(2π)4

i
k2 −m2 + iε

(5.1)
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The 1/2 is the symmetry factor (we can flip the loop). This is a cor-
rection to the propagator, contributing a “self-energy” Σ.

Let’s evaluate this integral. In Euclidean space (after Wick rotation,
k0 → ik0

E):

Σ =
λ

2

∫ d4kE

(2π)4
1

k2
E + m2

(5.2)

The integral is over all of 4-dimensional momentum space. In
spherical coordinates:∫

d4kE =
∫ ∞

0
k3

E dkE

∫
dΩ4 = 2π2

∫ ∞

0
k3

E dkE (5.3)

where 2π2 is the surface area of the unit 3-sphere.
kE

integrand

∼ kE

Figure 5.1: The integrand grows like kE
at large kE.

So:

Σ =
λ

2
· 2π2

(2π)4

∫ ∞

0
dkE

k3
E

k2
E + m2

(5.4)

At large kE, the integrand behaves like k3
E/k2

E = kE. The integral
diverges: ∫ Λ

m
dkE kE =

Λ2 −m2

2
Λ→∞−−−→ ∞ (5.5)

The integral is quadratically divergent—it grows like Λ2 when we
cut it off at some large momentum Λ.

5.2 What Does This Mean Physically?

Let’s think about what the integral represents. We’re summing over
all possible momenta k of the virtual particle circulating in the loop.
The momentum can be anything—there’s no constraint on it.

The divergence comes from the high-momentum (short-distance)
region. When k is much larger than m or any external momentum,
the propagator becomes 1/k2, and integrating k3dk/k2 = k dk di-
verges.

Interpretation 1: Short-distance singularity. In position space,
the propagator ∆F(x − y) is singular when x → y. The tadpole dia-
gram involves ∆F(0)—the propagator at zero separation. This is the
field “interacting with itself” at the same point, and such pointlike
interactions produce infinities.

Classical electromagnetism has the same problem. The self-energy
of a point charge is infinite—the energy stored in the electric field
E ∼ 1/r2 diverges as you integrate toward the charge. Classical
physicists knew this and it troubled them. They tried giving the elec-
tron a finite radius, but nobody knew how big it should be or what
held it together. Quantum field theory inherits this short-distance
pathology. It’s not a bug in our quantum treatment; it’s a feature we
took over from classical physics and made worse. |x− y|

∆F

0

∼ 1/r2

Figure 5.2: The propagator diverges as
points approach—the position-space
origin of UV divergences.
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Interpretation 2: Virtual particles of arbitrarily high energy. In
the momentum picture, we’re summing over virtual particles with
momenta from 0 to ∞. There’s no upper limit on how energetic a
virtual particle can be. The sum over high-energy virtual particles is
what diverges.

But wait—doesn’t energy conservation forbid arbitrarily high
energies? For real particles, yes. But virtual particles are off-shell and
can have any momentum. They exist only briefly (by the energy-
time uncertainty relation) and don’t violate energy conservation in
the long run. The integral sums over all these fleeting high-energy
fluctuations.

Interpretation 3: We’re taking a continuum limit. Quantum field
theory assumes spacetime is a continuum—there are field values at
every point, no matter how close. But we’re integrating over mo-
menta up to infinity, which corresponds to arbitrarily short wave-
lengths.

If spacetime were discrete at some scale a, momenta would be
bounded by roughly Λ ∼ 1/a. The integral would be finite. The
divergence signals that we’re taking a continuum limit without being
careful about what happens at short distances.

5.3 The Degree of Divergence

Different loop integrals diverge in different ways. Let’s classify them.
For a general one-loop integral in four dimensions:∫ d4k

(2π)4
ka

(k2 −m2)b (5.6)

At large k, this behaves like k4+a−2b. The integral:

• Converges if 4 + a− 2b < 0

• Diverges logarithmically if 4 + a− 2b = 0

• Diverges like Λ4+a−2b if 4 + a− 2b > 0

The superficial degree of divergence D is defined as D = 4 + a− 2b.
For the tadpole (a = 0, b = 1), we have D = 2: quadratic divergence.

For the “fish” diagram we saw in Chapter 4 (two propagators), we
have D = 4− 4 = 0: logarithmic divergence. Logarithmic divergences
are the mildest—they grow slowly with the cutoff.

Diagram Props D Type

Tadpole 1 2 quad.
Fish 2 0 log.
Triangle 3 −2 finite
Box 4 −4 finite

Table 5.1: Degree of divergence for
one-loop diagrams in φ4.5.4 Power Counting: Which Diagrams Diverge?

For a general diagram, we can determine the degree of divergence by
power counting, without doing the integral.



56 lectures on qft and renormalization

Consider a diagram with:

• L loops

• I internal lines (propagators)

• V vertices

• E external lines

Each loop contributes d4k, adding 4 powers of momentum. Each
propagator contributes 1/k2, subtracting 2 powers. So:

D = 4L− 2I (5.7)

We can relate these using topology. In φ4 theory, each vertex has 4

lines, so:
4V = 2I + E (5.8)

(Each internal line connects two vertices; each external line connects
one vertex to the outside.)

Also, L = I −V + 1 (the loop-counting formula from Chapter 4).
Combining these:

D = 4L− 2I = 4(I −V + 1)− 2I = 2I − 4V + 4 = 4− E (5.9)

This is significant: the degree of divergence depends only on the
number of external lines, not on the internal structure of the diagram.

E

D

E = 0

E = 2

E = 4D = 0

Figure 5.3: In φ4 theory, D = 4− E.
Diagrams with E ≤ 4 external lines are
divergent.

For φ4 theory:

• E = 0 (vacuum diagrams): D = 4, quartically divergent

• E = 2 (propagator corrections): D = 2, quadratically divergent

• E = 4 (4-point functions): D = 0, logarithmically divergent

• E ≥ 6: D < 0, convergent

Only diagrams with E ≤ 4 diverge. This is a finite number of
classes. This will be crucial for renormalization: we only need to
“fix” a finite number of divergent structures.

5.5 The Same Argument for QED

Let’s repeat the analysis for QED. The vertex is eψ̄γµψAµ, connecting
two fermion lines and one photon line.

The power counting is more involved because fermion propagators
behave differently (they go like 1/k at large k rather than 1/k2), and
there are different types of lines.

After careful accounting, the degree of divergence for a QED dia-
gram is:1 1 We’ll derive this properly in Chapter

8.
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D = 4− 3
2

E f − Eγ (5.10)

where E f is the number of external fermion lines and Eγ is the num-
ber of external photon lines.

The divergent diagrams are:

• E f = 0, Eγ = 2: D = 2 (photon self-energy)

• E f = 2, Eγ = 0: D = 1 (fermion self-energy)

• E f = 2, Eγ = 1: D = 0 (vertex correction)

These are the only three divergent structures in QED. All other
diagrams are finite. This is why QED is renormalizable: there’s only a
finite number of infinities to deal with.

5.6 What the Divergence Tells Us

Let’s think more carefully about what the infinity means.
Consider the electron self-energy in QED. The electron propagates,

emits a virtual photon, reabsorbs it, and continues. This process
happens at all distance scales—the photon can have any wavelength.

e−

γ

Very short-wavelength photons (high-momentum) contribute to
this process. There’s no cutoff—we integrate all the way to infinite
momentum. This is the divergence.

But physically, we shouldn’t expect our theory to be valid to ar-
bitrarily short distances. At some point—perhaps the Planck scale
`P ∼ 10−35 m—spacetime itself might become discrete, or gravity
becomes important, or something else happens. Our theory is an
approximation that breaks down at some scale.

The divergence is telling us: this quantity depends on physics we don’t
know.

Think about what “the electron mass” means in this context.
When we write me in the Lagrangian, what number should we put?
The measured electron mass is a physical observable—we can mea-
sure it by deflecting electrons in a magnetic field. But the measured
mass includes the effect of all those virtual photon emissions and
absorptions.

Here’s the strange thing: suppose you could somehow strip away
all the quantum fluctuations and measure the “bare” electron mass.
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How would you do it? You’d need to probe the electron at arbitrar-
ily short distances, but that means arbitrarily high energies, which
means you can’t avoid the fluctuations. The “bare” mass isn’t just
hard to measure—it might not be a meaningful concept at all. What
we call the electron mass is always the dressed mass, fluctuations
included.

bare

dressed

virtual
photons

Figure 5.4: The “bare” electron vs.
the “dressed” electron surrounded by
virtual photons.

The divergence arises because we’re trying to compute the rela-
tionship between the bare mass (a parameter in the Lagrangian) and
the physical mass (what we measure). This relationship involves
physics at all scales, including scales where our theory isn’t valid.

5.7 Why Not Just Cut Off the Integral?

Here’s a natural thought: if the divergence comes from high mo-
menta, why not just stop the integral at some cutoff Λ?

We can do this. The integral becomes:

Σ(Λ) =
λ

32π2 Λ2 + finite terms (5.11)

Now Σ is finite—it depends on Λ. If we take Λ → ∞, we recover
the divergence. If we keep Λ finite, everything is well-defined.

But here’s the problem: Λ is not a physical quantity. Where does it
come from? What determines its value?

If Λ represents “the scale where new physics kicks in,” we should
be able to relate it to something observable. And indeed, the theory
with a finite cutoff makes predictions that depend on Λ. Different
values of Λ give different predictions.

The key insight of renormalization is that we can absorb the Λ-
dependence into the parameters of the theory. We redefine the mass
and coupling constant to depend on Λ in exactly the way needed to
make physical predictions Λ-independent.

This sounds like sleight of hand—and in a way, it is. But it works
because only a finite number of structures diverge. We have a finite
number of parameters to adjust, and a finite number of divergences
to cancel. The result is a theory that makes unambiguous predictions
for physical observables.

5.8 A Simple Analogy

Here’s an analogy that captures the spirit of the problem and its
resolution.

Suppose you’re trying to measure the height of a table. You put a
ruler on top and measure from the floor. But the ruler is sitting on a
thick book, and the book is sitting on the table. You measure ruler +
book, not just the table. table

book measured

Figure 5.5: Measuring “table height”
while a book sits on top.
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If you don’t know how thick the book is, your measurement of
“table height” is ambiguous. It includes an unknown contribution
from the book.

But suppose you also measure something else—say, how high
the table raises a chair when you put the chair on it. This gives you
another combination of table and book heights. From two measure-
ments, you can determine the table height even if you never figure
out the book’s thickness.

Similarly in QFT: the “bare” parameters include contributions
from physics we don’t understand (the high-momentum region). But
physical observables are combinations of bare parameters and loop
corrections. By measuring enough observables, we can determine the
physical quantities without ever knowing the bare parameters.

The “book thickness” never cancels exactly—what cancels is its
effect on the differences between physical observables. We express
everything in terms of measured quantities, and the unknown short-
distance physics drops out.

5.9 Different Types of Infinities

Not all infinities are created equal. Let me distinguish two types:
Ultraviolet (UV) divergences come from the high-momentum

(short-distance) region. These are the main subject of renormaliza-
tion. They arise because we integrate to k→ ∞.

Infrared (IR) divergences come from the low-momentum (long-
distance) region. They arise in theories with massless particles (like
photons) and are handled differently—they cancel between different
contributions to physical observables, or are absorbed into definitions
of “soft” radiation.

We’ll focus on UV divergences. These are the conceptually chal-
lenging ones, the ones that led to the crisis in 1930s QED and the
eventual triumph of renormalization.

k

IR UV

Figure 5.6: IR divergences at small k,
UV divergences at large k.5.10 The Historical Crisis

In the 1930s, physicists tried to compute quantum corrections in QED
and found infinities everywhere. Dirac, Heisenberg, and Pauli all
struggled with this. Some thought quantum electrodynamics was
fundamentally inconsistent. Dirac famously said that the theory had
“insoluble difficulties.”

The resolution came after World War II. In 1947, Willis Lamb mea-
sured a tiny splitting in the hydrogen spectrum (the Lamb shift) that
couldn’t be explained by the Dirac equation alone—it required quan-
tum corrections. This spurred a burst of theoretical activity.
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Tomonaga, Schwinger, and Feynman independently developed
methods to handle the infinities. Their key insight: the infinities can
be absorbed into a redefinition of the mass and charge. What you
measure isn’t the “bare” mass or charge but the “renormalized”
values, which include all the quantum corrections.

Dyson showed that these three approaches were equivalent and
that the procedure worked to all orders in perturbation theory. QED
was saved. The calculated Lamb shift agreed well with experiment.

5.11 A Preview of Renormalization

Here’s the plan—the logic we’ll develop over the coming chapters.
First, we introduce a temporary fix: a cutoff Λ that makes all in-

tegrals finite. The theory now depends on an artificial parameter,
which is uncomfortable, but at least we can compute.

Next, we discover something remarkable: all the infinities have the
same structure. They can be absorbed into redefinitions of a finite
number of parameters—the mass, the coupling constant, and the
normalization of the field. We add counterterms to the Lagrangian
that exactly cancel the divergences, with coefficients that depend on
Λ.

Then we fix the counterterms by insisting that physical quantities—
the measured mass, the measured coupling—take their experimental
values. This determines everything.

Finally, we take Λ → ∞. With counterterms in place, this limit
exists. The Λ-dependence of the counterterms exactly cancels the
Λ-dependence of the divergent integrals. Physical predictions are
Λ-independent.

The miracle is that only a finite number of counterterms are
needed. Once we fix them using a finite number of measurements,
everything else is predicted. We don’t get to adjust anything further.

5.12 Why This Isn’t Cheating

You might feel uncomfortable. We had infinities. We added terms to
cancel them. Isn’t this just sweeping problems under the rug?

In a sense, yes. We’re parameterizing our ignorance of short-
distance physics into a finite number of constants. But here’s why
it’s not cheating:

1. Predictions work. QED predictions agree with experiment to as-
tonishing precision. The anomalous magnetic moment of the elec-
tron is predicted to 10 significant figures, matching measurements.
Let me say that again: ten significant figures. That’s like predicting
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the distance from New York to Los Angeles to within the width
of a human hair. No other theory in the history of science has
achieved this precision.

2. The arbitrariness is expected. We know our theory isn’t complete
at arbitrarily short distances. We shouldn’t expect it to predict ev-
erything from first principles. The bare parameters encode physics
we don’t know.

3. The structure is constrained. Only certain types of infinities can
appear. We can’t add arbitrary counterterms—only those with the
structure allowed by the symmetries and power counting. The
theory isn’t infinitely adjustable.

4. It’s falsifiable. Once we fix the free parameters, everything else
is predicted. If the predictions were wrong, the theory would be
falsified. It isn’t.

measure m, e

QED + renorm

predict g− 2, etc.

Figure 5.7: Renormalization: a finite
number of inputs (measured masses
and couplings) determines infinitely
many predictions.

5.13 What Are We Really Learning?

Here’s a deeper way to think about it. Quantum field theory at low
energies doesn’t care about the details of high-energy physics. What-
ever happens at the Planck scale, or whatever replaces our theory at
1015 GeV, its effects on low-energy physics are encoded in just a few
parameters: masses and couplings.

This is the principle of decoupling: physics at different scales sep-
arates. You don’t need to know quantum gravity to compute atomic
spectra. The high-energy physics is “integrated out” and its effects
are absorbed into the parameters of the low-energy theory.

The divergences are telling us this decoupling isn’t perfect—the
integral tries to sum over all scales, including scales where our theory
is wrong. But the structure of the divergences is such that we can
compensate for our ignorance with a finite number of parameters.

This isn’t a bug; it’s a feature. It explains why we can do physics
at all without knowing everything. Each energy scale can be under-
stood in isolation, with the effects of other scales parameterized by a
handful of constants.

5.14 What Comes Next

In the next two chapters, we’ll make this precise:
Chapter 6: Regularization. We’ll learn dimensional regularization,

the standard tool for making divergent integrals finite in a controlled
way. We’ll see how to evaluate the key integrals systematically.
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Chapter 7: What Renormalization Really Means. We’ll connect
the particle physics approach (counterterms, renormalization condi-
tions) with the Wilsonian approach (integrating out high energies). If
you’ve learned renormalization from a condensed matter perspective,
this is where the two pictures come together.

Then we’ll apply these tools to QED, computing the three funda-
mental divergent diagrams and extracting physical predictions.

The infinities of quantum field theory troubled the greatest physicists of the 20th century. Dirac never fully accepted
renormalization, calling it “just a stop-gap procedure.” Feynman, who won the Nobel Prize for his contributions
to QED, described renormalization as “a shell game” and “dippy.” Yet the theory works. It makes predictions of
staggering precision. Perhaps the discomfort reflects not a flaw in renormalization but a limitation in our intuitions,
honed on classical physics where point particles don’t require careful handling. Or perhaps future theories will resolve
the infinities more satisfactorily. String theory, for instance, has no ultraviolet divergences—the extended nature of
strings smooths out short-distance singularities. But for now, renormalization is our best tool for making sense of
quantum field theory in the continuum, and its success speaks for itself.
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Regularization: Taming Infinity

In the last chapter, we saw that loop integrals in quantum field
theory diverge. Before we can do anything sensible with these
infinities—before we can cancel them, subtract them, or absorb them
into parameters—we need to make them finite. We need to regulate
them.

A regulator is a prescription that makes divergent integrals finite
while preserving as much of the theory’s structure as possible. Once
the integrals are finite, we can manipulate them algebraically, identify
the divergent parts, and eventually remove the regulator.

There are many ways to regulate. We could cut off the momen-
tum integral at some Λ (hard cutoff). We could add heavy fictitious
particles that cancel the divergence at high momenta (Pauli-Villars).
We could put the theory on a lattice, making momenta automatically
bounded.

But the method that has become standard in modern particle
physics is dimensional regularization. Instead of cutting off momenta,
we analytically continue the spacetime dimension from d = 4 to
d = 4− ε, where ε is small. The divergences appear as poles in 1/ε

rather than as infinite numbers.
This might sound bizarre—what does it mean to do physics in

4 − ε dimensions? But here’s the strange thing: it works. And not
just approximately. Dimensional regularization preserves gauge in-
variance, Lorentz invariance, and other symmetries that are essential
for QED and the Standard Model. It’s become the tool of choice for
practical calculations, even though nobody can draw you a picture of
3.99-dimensional spacetime.

6.1 Why Dimensional Regularization?

Before diving in, let me explain why we use this strange technique.
Hard cutoff problems. The simplest regulator is a momentum

cutoff: just stop the integral at |k| = Λ. But this breaks Lorentz in-
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variance (it treats time and space differently in general) and gauge
invariance (it doesn’t respect the Ward identities of QED). Break-
ing these symmetries introduces spurious terms that complicate or
invalidate calculations.

Pauli-Villars. You can preserve Lorentz invariance by adding
fictitious heavy particles that contribute with opposite signs. But this
requires care and becomes awkward for gauge theories.

Dimensional regularization preserves symmetries. Formally
continuing to d dimensions respects Lorentz invariance (there’s no
special direction) and gauge invariance (the symmetry algebra works
in any dimension). The only “violation” is that the theory doesn’t
physically exist in d 6= 4, but this is fine—it’s a computational trick,
and we take d→ 4 at the end. Re d

Im d

d = 44−ε

ε→ 0

Figure 6.1: We work at d = 4− ε, then
take ε→ 0 at the end.

6.2 The Basic Idea

Consider a one-loop integral in d dimensions:

I =
∫ ddk

(2π)d
1

(k2 −m2)n (6.1)

In d = 4, this might diverge. But for d sufficiently small, it converges.
We’ll compute it for general d, express the answer as a function of d,
then analytically continue to d = 4− ε.

The divergence will appear as a pole at ε = 0. Something like:

I =
A
ε
+ B + O(ε) (6.2)

where A and B are finite coefficients. The 1/ε is the “regularized
infinity.”

What Does Non-Integer Dimension Mean?

You might wonder: what does it mean to integrate in 3.99 dimen-
sions? After all, we can’t draw 3.99 coordinate axes!

The answer is that we never actually need to picture d-dimensional
space. What matters is that the formulas for integrals can be analyti-
cally continued to any complex d.

Consider the volume of a d-dimensional sphere of radius R:

Vd(R) =
πd/2

Γ(d/2 + 1)
Rd (6.3)

For d = 1, this gives 2R (the length of an interval). For d = 2, it gives
πR2 (area of a circle). For d = 3, it gives 4

3 πR3 (volume of a ball).
But nothing stops us from evaluating the formula at d = 3.99. The

result isn’t the “volume of a 3.99-dimensional sphere”—that doesn’t
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exist. It’s just a number defined by analytic continuation of a formula
that makes sense for positive integers.

This is the spirit of dimensional regularization: we use formulas
that are valid for integer d, analytically continue them to d = 4− ε,
and only at the end take ε→ 0 to return to physical spacetime.

Should this bother you? In a sense, yes—we’re claiming that
the answer to a question that doesn’t make physical sense (“what
happens in 3.99 dimensions?”) tells us something true about our 4-
dimensional world. The justification is purely pragmatic: it works.
The results agree with experiment. If that feels unsatisfying, you’re in
good company. But as long as no one tells the integrals that they’re
not allowed to live in fractional dimensions, they seem perfectly
happy to give us sensible answers.

Why Does Lower Dimension Help?

Intuitively, reducing the dimension reduces the “phase space” for
high-momentum modes. An integral

∫
ddk has fewer high-momentum

modes in lower dimension.
More precisely, consider∫ ddk

(2π)d
1

k2n ∼
∫ Λ

0
kd−1dk · k−2n =

∫ Λ

0
kd−2n−1dk (6.4)

This converges at large k if d − 2n − 1 < −1, i.e., if d < 2n. By
lowering d below this threshold, we make the integral converge.

For a quadratically divergent integral (n = 1), we need d < 2. For
a logarithmically divergent integral (n = 2), any d < 4 works. So by
taking d = 4− ε with ε > 0, we ensure convergence, and then we
track how the answer behaves as ε→ 0.

6.3 Angular Integrals in d Dimensions

First, let’s establish some geometry. In d dimensions, a vector k has d

components. The “radial” part is |k| =
√

k2
1 + · · ·+ k2

d.
The volume element is:

ddk = |k|d−1d|k| dΩd (6.5)

where dΩd is the angular element on the (d− 1)-sphere.
The total solid angle in d dimensions is:

Ωd =
∫

dΩd =
2πd/2

Γ(d/2)
(6.6)

This formula involves the Gamma function, which generalizes facto-
rials to non-integer arguments.

d Ωd

1 2

2 2π

3 4π

4 2π2

d 2πd/2

Γ(d/2)

Table 6.1: Solid angle in d dimensions.
For d = 3, we recover the familiar 4π
steradians.
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For integrals that only depend on |k|, we can do the angular inte-
gral immediately:

∫ ddk
(2π)d f (k2) =

Ωd

(2π)d

∫ ∞

0
d|k| |k|d−1 f (k2)

=
1

(4π)d/2
1

Γ(d/2)

∫ ∞

0
dk2 (k2)d/2−1 f (k2) (6.7)

This reduces everything to a one-dimensional integral.

6.4 The Master Formula

The key result for dimensional regularization is the following inte-
gral: ∫ ddk

(2π)d
1

(k2 − ∆)n =
i(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)
1

∆n−d/2 (6.8)

where we’ve Wick-rotated to Euclidean space (hence the factor of i)
and ∆ is some combination of masses and external momenta.

Let me derive this formula, as understanding the derivation will
help you use it.

Wick Rotation: From Minkowski to Euclidean Space

Before deriving the master formula, we need to understand Wick ro-
tation. This is a crucial step that turns oscillating Minkowski integrals
into convergent Euclidean integrals.

In Minkowski space, k2 = k2
0 − k2. The integral over k0 runs along

the real axis, and the propagator 1/(k2 −m2 + iε) has poles near the
real axis (at k0 = ±

√
k2 + m2 ∓ iε).

The iε prescription tells us the poles are slightly displaced: the
positive-energy pole is just below the real axis, and the negative-
energy pole is just above. This means we can rotate the integration
contour from the real k0 axis to the imaginary axis without crossing
any poles.

Re k0

Im k0

+ω

−ω

original

Euclidean

Figure 6.2: Wick rotation: the contour
along the real axis (blue) is deformed
to the imaginary axis (green). The iε
prescription places poles (red) so no
poles are crossed.

Setting k0 = ikE
0 (Euclidean), we have:

k2 = k2
0 − k2 = −(kE

0 )
2 − k2 = −k2

E (6.9)

dk0 = i dkE
0 (6.10)

So the Minkowski integral becomes:

∫ dk0 dd−1k
(2π)d

1
(k2 − ∆)n = i

∫ ddkE

(2π)d
1

(−k2
E − ∆)n =

i(−1)n

1

∫ ddkE

(2π)d
1

(k2
E + ∆)n

(6.11)
The Euclidean integral is over a positive-definite k2

E, so it’s much
better behaved—no oscillations, no poles on the integration contour.
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Derivation of the Master Formula

Start with the Euclidean integral (after Wick rotation):

IE =
∫ ddkE

(2π)d
1

(k2
E + ∆)n (6.12)

Using the angular integral formula:

IE =
1

(4π)d/2
1

Γ(d/2)

∫ ∞

0
dk2

E (k2
E)

d/2−1 1
(k2

E + ∆)n (6.13)

k2
E

integrand

∼ ∆

Figure 6.3: The integrand peaks near
k2

E ∼ ∆ and falls off at large momenta.

Substitute u = k2
E/∆, so dk2

E = ∆ du:

IE =
∆d/2−n

(4π)d/2Γ(d/2)

∫ ∞

0
du ud/2−1(1 + u)−n (6.14)

The remaining integral is a Beta function:∫ ∞

0
du ua−1(1 + u)−a−b =

Γ(a)Γ(b)
Γ(a + b)

= B(a, b) (6.15)

with a = d/2 and b = n− d/2. So:

IE =
∆d/2−n

(4π)d/2
Γ(n− d/2)

Γ(n)
(6.16)

Converting back to Minkowski space (the Wick rotation gives a
factor of i(−1)n):∫ ddk

(2π)d
1

(k2 − ∆ + iε)n =
i(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)
1

∆n−d/2 (6.17)

This is the master formula (6.8).

6.5 Where Do the Divergences Go?

The Gamma function Γ(z) has poles at z = 0,−1,−2, . . .. In our
formula, the argument is n− d/2.

For the tadpole integral (n = 1) in d = 4− ε:

Γ(1− 2 + ε/2) = Γ(−1 + ε/2) (6.18)

This has a pole at ε = 0 because Γ(−1) is infinite.
Near z = −1:

Γ(−1 + x) =
1

−1 + x
· Γ(x) ≈ − 1

1− x
· 1

x
Γ(1 + x) ≈ − 1

x
(6.19)

Wait, let me be more careful. Using Γ(z + 1) = zΓ(z):

Γ(−1 + ε/2) =
Γ(ε/2)

(−1 + ε/2)
=

Γ(ε/2)
−1 + ε/2

(6.20)

And Γ(ε/2) ≈ 2/ε − γE + O(ε), where γE ≈ 0.5772 is the Euler-
Mascheroni constant.

So the divergence (the pole at ε = 0) is encoded in the Gamma
function. The integral is no longer literally infinite; it’s a meromor-
phic function of ε with a pole at ε = 0.
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6.6 Expanding Around d = 4

Let’s work out the tadpole integral explicitly. In d = 4− ε:

∫ ddk
(2π)d

1
k2 −m2 =

i
(4π)d/2 Γ(1− d/2)(m2)d/2−1 (6.21)

With d = 4− ε:

• (4π)d/2 = (4π)2−ε/2 = (4π)2 · (4π)−ε/2 = 16π2 · e−ε ln(4π)/2

• Γ(1− d/2) = Γ(−1 + ε/2)

• (m2)d/2−1 = (m2)1−ε/2 = m2 · (m2)−ε/2

Using Γ(−1 + ε/2) = −2/ε + γE − 1 + O(ε):

∫ ddk
(2π)d

1
k2 −m2 =

im2

16π2

[
2
ε
+ 1− γE − ln

m2

4π
+ O(ε)

]
(6.22)

The 2/ε is the divergent part. The rest is finite.

6.7 Feynman Parameters

Most loop integrals aren’t as simple as the tadpole—they have multi-
ple propagators with different momenta. The standard technique to
handle this is Feynman parameterization.

The Feynman Parameter Trick

The basic identity is:

1
A1 A2 · · · An

= (n− 1)!
∫ 1

0
dx1 · · · dxn δ

(
∑ xi − 1

) 1
(x1 A1 + · · ·+ xn An)n

(6.23)
For two propagators:

1
AB

=
∫ 1

0
dx

1
[xA + (1− x)B]2

(6.24)

This combines multiple propagators into a single denominator, at
the cost of introducing an integral over Feynman parameters xi.

Why Does This Help?

The magic of Feynman parameters is that they let us complete the
square in the loop momentum. With multiple propagators, the de-
nominator is a mess like

1
(k2 −m2

1)((k− p)2 −m2
2)

(6.25)
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where k appears in different ways in each factor.
After applying Feynman parameters, we get a single denominator

like
1

[k2 − 2k · (something) + (constant)]2
(6.26)

This is a quadratic form in k. We can complete the square by shifting
k→ k + (something), after which the denominator becomes

1
(k2 − ∆)2 (6.27)

where ∆ depends on the Feynman parameters and external momenta
but not on k.

Now the k integral is in standard form! We can apply the master
formula directly.

The price we pay is an additional integral over Feynman param-
eters at the end. But this is usually much easier than the original
multi-propagator integral.

Physical Intuition

Is there any physics in the Feynman parameters? Sort of. The pa-
rameter x roughly corresponds to how the loop momentum is “dis-
tributed” between the two propagators. When x ≈ 0, the combined
denominator is dominated by B (the second propagator). When
x ≈ 1, it’s dominated by A (the first propagator). The integral over x
sums over all ways of distributing the “blame” for the loop.

In position space, Feynman parameters have an even more direct
interpretation: they parameterize how the proper time is divided
between different propagators along a particle’s world line. But for
our momentum-space calculations, it’s enough to view them as a
mathematical tool.

A

B
xA + (1− x)B

Figure 6.4: Feynman parameters com-
bine multiple propagators into one.

Example: The Fish Diagram

Let’s compute the “fish” diagram—the one-loop correction to 2 → 2
scattering in φ4 theory:

p p

k

p− k

The integral is:

I(p2) =
∫ ddk

(2π)d
1

(k2 −m2)((p− k)2 −m2)
(6.28)
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Apply Feynman parameterization (6.24):

I(p2) =
∫ 1

0
dx
∫ ddk

(2π)d
1

[x(k2 −m2) + (1− x)((p− k)2 −m2)]2
(6.29)

The denominator is:

D = x(k2 −m2) + (1− x)((p− k)2 −m2) (6.30)

= k2 − 2(1− x)p · k + (1− x)p2 −m2 (6.31)

Complete the square by shifting k→ k + (1− x)p:

D = k2 + (1− x)p2 − (1− x)2 p2 −m2 = k2 − ∆ (6.32)

where ∆ = m2 − x(1− x)p2.
The shifted integral is:

I(p2) =
∫ 1

0
dx
∫ ddk

(2π)d
1

(k2 − ∆)2 (6.33)

Now we can use the master formula (6.8) with n = 2:∫ ddk
(2π)d

1
(k2 − ∆)2 =

i
(4π)d/2 Γ(2− d/2)

1
∆2−d/2 (6.34)

In d = 4− ε, Γ(2− d/2) = Γ(ε/2) = 2/ε− γE + O(ε). So:

I(p2) =
i

16π2

[
2
ε
− γE + ln(4π)

] ∫ 1

0
dx ∆−ε/2 + O(ε) (6.35)

To leading order in ε:

∆−ε/2 = 1− ε

2
ln ∆ + O(ε2) (6.36)

So the integral is:

I(p2) =
i

16π2

[
2
ε
− γE + ln(4π)−

∫ 1

0
dx ln(m2 − x(1− x)p2)

]
+ O(ε)

(6.37)
The 2/ε pole is the divergence. The rest is finite and depends on

the kinematics through p2.

6.8 The MS Scheme

The constants γE and ln(4π) that accompany 1/ε are annoying but
universal. They appear in every loop integral. It’s convenient to ab-
sorb them into the definition of the divergent part.

The MS scheme (“MS-bar”) defines the subtraction to remove not
just 1/ε but the combination:

2
ε̄
≡ 2

ε
− γE + ln(4π) (6.38)
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In MS, you replace 2/ε → 2/ε̄ and the leftover finite parts are
simpler.

MS

subtract 1
ε

MS

subtract 2
ε − γE + ln 4π

Figure 6.5: The MS scheme subtracts
extra constants along with the pole.

This is purely a convention for how we split “divergent” from
“finite” parts. Physical results don’t depend on the scheme—only
intermediate steps do.

6.9 The Mass Scale µ

There’s a subtlety we’ve glossed over. In d dimensions, the coupling
constant λ has dimension (4− d) = ε. To keep the action dimension-
less, we must introduce a mass scale µ and write:

λ→ λµε (6.39)

where λ is now dimensionless.
This µ is the renormalization scale. It appears in loop integrals

through logarithms like ln(µ2/m2) or ln(µ2/p2).
The physical results can’t depend on our arbitrary choice of µ.

This independence leads to the renormalization group, which we’ll
explore in Chapter 12.

6.10 A Complete Worked Example

Let me work through the one-loop correction to the 4-point function
in φ4 theory completely.

The amplitude at one loop includes the “fish” diagram in three
channels:

s-channel
t-channel u-channel

The tree-level amplitude isM0 = −λ.
The one-loop correction from the s-channel is:

iMs =
(−iλ)2

2
· I(s) (6.40)

where s = (p1 + p2)
2 and I(s) is the bubble integral we computed.

Adding all three channels:

M1-loop = −λ2

2
[I(s) + I(t) + I(u)] (6.41)

In MS:

I(s) =
i

16π2

[
2
ε̄
−
∫ 1

0
dx ln

m2 − x(1− x)s
µ2

]
(6.42)



72 lectures on qft and renormalization

The divergent part is:

Mdiv
1-loop = − 3λ2

32π2 ·
2
ε̄
= − 3λ2

16π2ε̄
(6.43)

The factor of 3 comes from the three channels.

6.11 What Have We Accomplished?

We’ve converted divergent integrals into expressions with poles at
ε = 0. The “infinity” is now 1/ε, which is a well-defined mathemat-
ical object (it’s large when ε is small, but it’s finite for any nonzero
ε).

We can now:

1. Identify the divergent part (coefficients of 1/ε).

2. Identify the finite part (terms independent of 1/ε).

3. Manipulate these algebraically.

4. Eventually, add counterterms to cancel the 1/ε poles.

∫
→ ∞

dim reg

A
ε + B

Figure 6.6: Dimensional regularization
turns infinities into poles.

The regularization is temporary scaffolding. After renormalization,
we’ll take ε→ 0 and the result will be finite.

6.12 Important Integrals for QED

When we compute QED loop diagrams, we’ll need integrals with
tensor structure—numerators involving kµ or kµkν. Here are the key
results.

Symmetric integration: Odd powers of k integrate to zero by
symmetry: ∫ ddk

(2π)d
kµ

(k2 − ∆)n = 0 (6.44)

For even powers:

∫ ddk
(2π)d

kµkν

(k2 − ∆)n =
gµν

d

∫ ddk
(2π)d

k2

(k2 − ∆)n (6.45)

The factor gµν/d comes from the only available tensor structure.
Similarly:

∫ ddk
(2π)d

kµkνkρkσ

(k2 − ∆)n =
g{µνgρσ}

d(d + 2)

∫ ddk
(2π)d

(k2)2

(k2 − ∆)n (6.46)

where g{µνgρσ} means the sum over all distinct pairings.
These formulas let us reduce tensor integrals to scalar integrals,

which we can evaluate with the master formula.
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6.13 Summary: The Toolkit

Let me collect what we’ve learned. The dimensional regularization
procedure is this: work in d = 4− ε dimensions, remembering that
couplings acquire factors of µε to keep their dimensions straight.
When you encounter multiple propagators, combine them with Feyn-
man parameters. Complete the square in the loop momentum to put
the integral in standard form. Then apply the master integral—the
Wick-rotated Gaussian that gives you Gamma functions. Expand in ε:
the divergences show up as 1/ε poles, with finite parts that depend
on your regularization scheme. Finally, do the Feynman parameter
integrals, which are usually elementary.

The master integral is:

∫ ddk
(2π)d

1
(k2 − ∆)n =

i(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)
∆d/2−n (6.47)

With these tools, you can compute any one-loop diagram in φ4

theory or QED. Multi-loop calculations are harder—more Feynman
parameters, more integrals—but they follow the same principles. The
machinery we’ve built scales.

In the next chapter, we’ll see how to use counterterms to cancel the
1/ε poles, and we’ll finally connect the particle physics approach to
renormalization with the Wilsonian perspective you may know from
condensed matter.

Dimensional regularization was developed in the early 1970s by ’t Hooft and Veltman, specifically for gauge theories.
Previous regulators (cutoffs, Pauli-Villars) broke gauge invariance in awkward ways. ’t Hooft and Veltman realized
that continuing to d dimensions preserved gauge symmetry because the gauge algebra is the same in any dimension.
The method was crucial for proving the renormalizability of the electroweak theory, for which ’t Hooft and Veltman
shared the 1999 Nobel Prize. Today, dimensional regularization is the standard tool for perturbative calculations in
the Standard Model. Its elegance lies in replacing brute-force cutoffs with analytic continuation—trading a hard
boundary in momentum space for a soft deformation of spacetime dimension.





7
What Renormalization Really Means

Renormalization is perhaps the most misunderstood idea in modern
physics. Some people think it’s a trick to hide infinities under the
rug. Others think it’s deep mathematics. The truth is both stranger
and simpler: renormalization is the recognition that physics at differ-
ent scales decouples, and that what we measure depends on the scale
at which we measure it.

We’ve developed the machinery: Feynman diagrams give us in-
tegrals, dimensional regularization makes them finite, and we know
which structures diverge. Now we need to understand what to do
with all this. What are “bare” and “renormalized” parameters? How
do counterterms work? And how does all this connect to the Wilso-
nian picture you may know from condensed matter?

That last question is crucial. If you’ve learned renormalization
from a condensed matter perspective—starting with a UV theory
and flowing to the IR—the particle physics approach can seem back-
wards. It looks like we’re going from IR to UV. But we’re not. The
two pictures describe the same physics from different viewpoints.
Understanding their relationship is the key to everything.

7.1 Bare Parameters vs. Physical Parameters

Let’s start with a concrete question: what is the mass of the electron?
You might say: me = 0.511 MeV. That’s the measured value. But

what mass should we put in the Lagrangian?
The Lagrangian for a free electron contains a mass term:

L = ψ̄(i/∂ −m0)ψ (7.1)

The parameter m0 is called the bare mass. It’s the number we write
down in the fundamental theory.

But when we turn on interactions (couple the electron to photons),
quantum corrections modify the relationship between m0 and the
physical mass we measure. The electron is always surrounded by a
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cloud of virtual photons, virtual electron-positron pairs, etc. What we
observe includes all these effects.

m0 (bare)

mphys (measured)

Figure 7.1: The bare mass m0 and the
physical mass mphys differ by quantum
corrections.

The relationship is:

mphys = m0 + δm (7.2)

where δm is the “mass correction” from loop diagrams. As we’ve
seen, δm is divergent—it contains a 1/ε pole in dimensional regular-
ization.

So what is m0? It’s not directly measurable. If δm is infinite (in the
ε → 0 limit), then m0 must also be infinite—in just the right way to
cancel the divergence and leave a finite mphys.

This sounds crazy. We’re adding two infinite quantities to get a
finite result? But remember: in dimensional regularization, “infinite”
means “has a pole at ε = 0.” We never actually set ε = 0 until the
end. At finite ε, both m0 and δm are finite, and the cancellation is
perfectly well-defined.

7.2 The Counterterm Approach

Here’s how we organize the calculation systematically.
Write the Lagrangian as:

L = Lphysical + Lcounterterm (7.3)

The “physical” part has the same form as the original Lagrangian
but with renormalized (physical) parameters. The “counterterm” part
contains new terms that cancel the divergences.

For φ4 theory:

L =
1
2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 +

1
2

δZ(∂φ)2 − 1
2

δmφ2 − δλ

4!
φ4 (7.4)

The first three terms use the renormalized mass m and coupling
λ—the values we measure. The counterterms δZ, δm, δλ are chosen to
cancel the divergences from loop diagrams.

loop

+
c.t.

=finite

Figure 7.2: Divergent loop plus coun-
terterm (c.t.) gives a finite result.

The counterterms are treated as additional interaction vertices
in Feynman diagrams. At one-loop, they contribute at tree level,
canceling the one-loop divergences. At two-loop, they appear in one-
loop diagrams, canceling two-loop divergences. And so on.

7.3 Renormalization Conditions

The counterterms aren’t arbitrary—they’re fixed by renormalization
conditions. These are physical requirements that define what we mean
by the “mass” and “coupling.”

For the mass, a natural condition is:
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The pole of the propagator occurs at p2 = m2.

The full propagator, including loop corrections, is:

G(p2) =
i

p2 −m2
0 − Σ(p2)

(7.5)

where Σ(p2) is the self-energy (sum of all 1PI corrections to the prop-
agator). We require:

m2
0 + Σ(m2) = m2 (7.6)

This determines δm in terms of Σ.
For the coupling, we might require:

The 4-point function at some specific kinematic point equals −iλ.
at s=t=u=4m2/3

Figure 7.3: The coupling is defined at a
specific kinematic point (renormaliza-
tion point).

For instance: at the symmetric point s = t = u = 4m2/3 (where all
Mandelstam variables are equal), require the amplitude to equal −λ.

Different choices of renormalization conditions define different
renormalization schemes. Common schemes include:

• On-shell: Physical mass is the pole; coupling is defined at a physi-
cal kinematic point.

• MS: Counterterms are just the 1/ε̄ poles—no finite parts.

Physical predictions don’t depend on the scheme. Different schemes
just organize the calculation differently.

7.4 Here’s the Miracle

In φ4 theory, we found that only diagrams with E = 0, 2, 4 external
lines diverge (Chapter 5). These correspond to:

• E = 0: Vacuum energy (we ignore this).

• E = 2: Mass and wave-function renormalization.

• E = 4: Coupling renormalization.

We need exactly three counterterms: δZ, δm, δλ. These are the same
three parameters that appear in the original Lagrangian.

No matter how many loops we compute, no matter how compli-
cated the diagrams, the divergences always have one of these three
structures. We can always cancel them with the same three countert-
erms.

This is what makes φ4 theory renormalizable: all divergences can
be absorbed into redefinitions of the existing parameters. No new
parameters are needed.
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7.5 Non-Renormalizable Theories

Compare this to a theory with a φ6 interaction:

L =
1
2
(∂φ)2 − 1

2
m2φ2 − g

6!
φ6 (7.7)

Power counting gives D = 4 − E + 2L(3 − 1) = 4 − E + 4L
(roughly—I’m being schematic). At one loop, diagrams with E = 6
are divergent. We’d need a φ6 counterterm. Fine, the theory already
has one.

But at higher loops, E = 8 diagrams diverge. We need a φ8 coun-
terterm. Then φ10, φ12, ... We need infinitely many counterterms.

Renormalizable

finite counterterms

Non-renormalizable

∞ counterterms
Figure 7.4: Renormalizable theories
need finitely many counterterms; non-
renormalizable need infinitely many.

Such theories are called non-renormalizable. They’re not useless—
they can be treated as effective theories valid below some energy
scale—but they’re not fundamental in the traditional sense. We’ll
return to this perspective later.

7.6 Two Pictures of the Same Mountain

Now let’s connect this to the Wilsonian picture.
In the Wilsonian approach (familiar from condensed matter), you

start with a theory defined at a UV cutoff Λ. You then “integrate out”
high-momentum modes—the degrees of freedom with |k| > Λ/b for
some b > 1—and ask what effective theory describes the remaining
low-momentum modes.

The result is that the parameters of the effective theory change.
The coupling “flows” under this coarse-graining. Starting from bare
parameters at scale Λ, you flow to effective parameters at scale Λ/b,
then Λ/b2, etc.

This is the renormalization group (RG) flow, and it goes from UV
to IR. You start with the microscopic theory and flow toward long
wavelengths.

energy

UV theory

RG flow

IR theory

Figure 7.5: Wilsonian RG: flow from
UV to IR by integrating out high-
momentum modes.

In particle physics, the logic seems reversed. We measure at low
energies (compared to any cutoff). We measure me = 0.511 MeV and
α = 1/137 in laboratory experiments. These are the IR parameters.
Then we ask: what happens at higher energies?

The answer is that α runs. At higher energies, α is larger. The
coupling increases as we probe shorter distances. This is described by
the beta function:

µ
dα

dµ
= β(α) > 0 (in QED) (7.8)

This seems to say we’re going “from IR to UV.” We start with
the low-energy coupling and extrapolate to high energy. Isn’t that
backwards?
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7.7 The Resolution

No, it’s not backwards. Let me explain.
The RG flow is always UV→ IR. The physics at high energies de-

termines the physics at low energies, not the other way around. If
you had a complete UV theory, you could calculate all the IR parame-
ters.

But in practice, we don’t have the complete UV theory. We don’t
know physics at the Planck scale. So we work differently:

1. We parameterize the UV physics by a few numbers: the bare pa-
rameters at some high scale.

2. We measure at accessible (IR) scales.

3. We use the RG to relate these: given the UV parameters, the RG
tells us the IR parameters.

4. We invert this: given the IR parameters (measured), we can infer
what UV parameters would produce them.

The “IR→ UV” appearance comes from step 4. We’re not claiming
that IR physics determines UV physics. We’re asking: given what we
measured at low energy, what must be true at high energy for this to work?

UV params

IR params (measured)

RG flowinfer

Figure 7.6: RG flows UV→ IR. We infer
UV from IR by inverting this flow.

The beta function works both ways. Running α from low to high
energy isn’t claiming the flow goes that direction—it’s using the
known flow to extrapolate.

7.8 Matching at Scale µ

Here’s another way to see the connection.
In the Wilsonian picture, imagine we have a theory at cutoff Λ. We

integrate out modes between Λ and µ, getting an effective theory at
scale µ with different parameters.

In the particle physics approach, we work with an effective theory
at scale µ directly. The “renormalized parameters” are the effective
parameters at that scale. Different choices of µ give different effective
theories, related by the RG.

The renormalization conditions are like “matching conditions.”
When we say “the coupling at scale µ is λ(µ),” we’re specifying the
effective theory at that scale.

The counterterms absorb the difference between:

• The “bare” theory at cutoff Λ (the UV).

• The effective theory at scale µ (where we define renormalized
parameters).
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In dimensional regularization, Λ → ∞ is taken implicitly. The 1/ε

poles are what’s left of the UV divergence. The counterterms cancel
these poles, matching the bare theory to the effective theory at scale
µ.

7.9 A Concrete Example: φ4 Running Coupling

Let’s see this explicitly in φ4 theory.
The one-loop correction to the 4-point function is (from Chapter 6):

M = −λ +
3λ2

32π2

[
2
ε̄
+ finite terms involving ln

µ2

s
, ln

µ2

t
, ln

µ2

u

]
(7.9)

The counterterm is:

δλ =
3λ2

16π2ε̄
+ (scheme-dependent finite part) (7.10)

The renormalized amplitude becomes:

Mren = −λ(µ) +
3λ2(µ)

32π2

[
ln

µ2

s
+ ln

µ2

t
+ ln

µ2

u
+ const

]
(7.11)

Notice: the amplitude depends on µ through λ(µ) and the log-
arithms. But the physical amplitude can’t depend on our arbitrary
choice of µ.

Demanding dM/dµ = 0 at fixed physical momenta gives:

µ
dλ

dµ
=

3λ2

16π2 + O(λ3) (7.12)

This is the beta function. It tells us how the coupling runs with
scale.

Solving this equation:

1
λ(µ2)

=
1

λ(µ1)
− 3

16π2 ln
µ2

µ1
(7.13)

At higher scales (µ2 > µ1), λ increases (since we subtract a positive
number from 1/λ). This is consistent with the Wilsonian picture: as
we integrate out high-momentum modes, the effective coupling at
lower scales is smaller.

ln µ

λ

λ1

λ2

Figure 7.7: The φ4 coupling λ increases
with scale µ. At higher µ, the coupling
is larger.

7.10 The Wilsonian Effective Action

Let me state the Wilsonian picture more precisely.
Define the Wilsonian effective action Seff[φ; Λ] by integrating out all

modes with |k| > Λ:

e−Seff[φ< ;Λ] =
∫
[Dφ>] e−S[φ<+φ> ] (7.14)
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where φ< = modes with |k| < Λ and φ> = modes with |k| > Λ.
The effective action Seff has the form:

Seff =
∫

d4x
[

Z(Λ)

2
(∂φ)2 +

m2(Λ)

2
φ2 +

λ(Λ)

4!
φ4 +

c6(Λ)

6!
φ6 + · · ·

]
(7.15)

In general, infinitely many terms are generated. But for a renor-
malizable theory, the important terms (those that grow or stay con-
stant as Λ → ∞) are just the original ones. The φ6, φ8, etc. terms are
suppressed by powers of 1/Λ.

The RG flow is the dependence of these coefficients on Λ:

Λ
dλ(Λ)

dΛ
= β(λ) (7.16)

This is the same beta function we derived from dimensional regu-
larization! The two approaches—Wilsonian and counterterm/dimensional
regularization—give identical physics.

7.11 Reconciliation: Same Physics, Different Questions

Let me state the relationship crisply.
Wilsonian picture:

• Start with bare theory at cutoff Λ0.

• Integrate out high-momentum modes.

• Get effective theory at lower cutoff Λ < Λ0.

• RG flow goes UV→ IR.

• Question: “Given the UV theory, what’s the IR behavior?”

Particle physics picture:

• Measure physical parameters at accessible energy µ.

• Use RG to extrapolate to other scales.

• Counterterms absorb the difference between bare and physical.

• Question: “Given IR measurements, what does the theory predict
at other scales?”

The beta function is the same in both. The physics is the same. The
difference is the question being asked.

In condensed matter, you often know the microscopic theory
(atoms, electrons) and want to understand emergent phenomena.
Flow UV→ IR.

In particle physics, you don’t know the ultimate UV theory. You
measure what you can and extrapolate. The RG lets you connect
scales, in either direction.

scale

high µ

low µ

same RG

Figure 7.8: The RG relates high and low
scales—we can go either direction.
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7.12 Why the Confusion Arises

The confusion between “UV→ IR” and “IR→ UV” arises from con-
flating two things:

1. The direction of the RG flow (always UV→ IR for relevant/marginal
operators).

2. The direction of our inference (from what we know to what we
want to know).

In condensed matter, we typically know the UV (the lattice model)
and want the IR (the continuum behavior). We flow in the same
direction as the physics.

In particle physics, we know the IR (measurements) and want to
know about the UV (high energies). We use the RG flow equation,
but we solve it “backwards” to extrapolate upward.

Neither approach changes the fundamental physics. The beta func-
tion has a sign; that sign determines whether a coupling increases or
decreases with scale. QED’s coupling increases with energy. QCD’s
decreases (asymptotic freedom). These are physical facts, indepen-
dent of how we use the RG.

7.13 Renormalizable vs. Non-Renormalizable: The Modern View

Armed with this understanding, let’s revisit non-renormalizable
theories.

A non-renormalizable theory has couplings with negative mass di-
mension. At low energies, these couplings are suppressed by powers
of E/Λ, where Λ is the cutoff. But at E ∼ Λ, they become important.

In the Wilsonian language: non-renormalizable couplings are
irrelevant. They shrink under RG flow toward the IR. Starting from
generic UV physics, they wash out.

This is good news! It means low-energy physics is insensitive to
UV details. Whatever mess is happening at the Planck scale, its ef-
fects on atomic physics are suppressed by (Eatom/MPl)

n for some
n > 0.

E

g

relevant

marginal

irrelevant

Figure 7.9: Relevant (red), marginal
(black), and irrelevant (blue) couplings.

The modern view: every theory is an effective theory. Renormal-
izable theories are those where irrelevant operators can be ignored at
low energies. Non-renormalizable theories are useful too, as long as
we stay below their cutoff.

Gravity is non-renormalizable. The Newton constant GN has di-
mension −2. But for E � MPl, quantum gravity corrections are tiny.
We can do gravitational physics perfectly well at everyday energies;
it’s only at Planck-scale energies that non-renormalizability matters.
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7.14 Summary: What Renormalization Really Means

Let me pull all this together.
Bare parameters are what we write in the Lagrangian; renormal-

ized parameters are what we measure. They differ by quantum cor-
rections, and the difference is divergent. Counterterms absorb this
divergence, and renormalization conditions fix the counterterms by
connecting them to experiment.

The miracle is that renormalizable theories need only finitely
many counterterms. All the infinitely many divergent diagrams can
be absorbed into a finite number of parameters. Once we fix those
parameters by measurement, everything else is predicted.

The Wilsonian picture and the counterterm picture describe the
same physics. The RG flow is always UV→ IR—that’s physics, that’s
causality, that’s the second law of thermodynamics. Particle physics
appears to go “IR→ UV” because we’re extrapolating from measure-
ments, not because the flow reverses. The beta function governs how
couplings change with scale, and it’s the same in both pictures.

With this conceptual foundation, we’re ready to tackle QED.
The next several chapters will work through the three divergent
diagrams—vacuum polarization, electron self-energy, vertex correction—
in full detail. These calculations are the heart of the subject. The ideas
we’ve developed will guide them.

The Wilsonian perspective, developed by Kenneth Wilson in the 1970s, revolutionized our understanding of renormal-
ization. Before Wilson, renormalization was often viewed as a trick to sweep infinities under the rug. After Wilson,
it became clear that renormalization is really about the separation of scales: high-energy physics decouples from low-
energy physics, with the effects parameterized by a few running couplings. Wilson received the 1982 Nobel Prize for
this work. The unification of the condensed matter and particle physics perspectives is one of the great intellectual
achievements of 20th-century theoretical physics. What seemed like two different subjects—critical phenomena in
magnets and ultraviolet divergences in QED—turned out to be manifestations of the same underlying mathematics.
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QED: Setting the Stage

Quantum electrodynamics is the most precisely tested theory in all of
science. Its predictions match experiment to parts per billion—better
than we can measure most things. When you calculate the electron’s
magnetic moment in QED and compare to the measured value, the
agreement is so good it’s almost embarrassing. How can a theory
with infinities hiding in every loop give answers this accurate?

We’ve developed the tools: perturbation theory, Feynman dia-
grams, dimensional regularization, the logic of renormalization.
Now we apply them to QED—the theory of electrons, positrons, and
photons—and see how everything fits together.

This chapter sets up the theory: the Lagrangian, the Feynman
rules, and which diagrams diverge. The next three chapters compute
the three fundamental divergent diagrams: vacuum polarization
(photon self-energy), electron self-energy, and the vertex correction.

8.1 The Dirac Equation: A Lightning Review

Before writing down QED, let’s recall how the electron is described.
The electron is a spin- 1

2 particle, described by a four-component
spinor ψ. The free Dirac equation is:

(iγµ∂µ −m)ψ = 0 (8.1)

where γµ are the Dirac gamma matrices satisfying:

{γµ, γν} = 2gµν (8.2)

In the standard (Dirac) representation:

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
(8.3)

where σi are the Pauli matrices.

ψ1

ψ2

ψ3

ψ4

large (NR)

small (NR)

Figure 8.1: The Dirac spinor has four
components. At low velocities, two are
large and two are small.
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The Dirac Lagrangian is:

LDirac = ψ̄(i/∂ −m)ψ (8.4)

where ψ̄ = ψ†γ0 and /∂ = γµ∂µ.
The free electron propagator is:

SF(p) =
i(/p + m)

p2 −m2 + iε
(8.5)

The numerator /p + m = γµ pµ + m is a 4× 4 matrix. This is more
complicated than the scalar propagator.

8.2 The Photon Field

The photon is described by a four-vector field Aµ. The free Maxwell
Lagrangian is:

LMaxwell = −
1
4

FµνFµν (8.6)

where Fµν = ∂µ Aν − ∂ν Aµ is the field strength tensor.
This Lagrangian has a gauge symmetry: Aµ → Aµ + ∂µχ for any

function χ(x). This redundancy means we can’t directly invert the
kinetic operator to get a propagator—we need to fix the gauge.

A common choice is Feynman gauge (also called Lorenz gauge with
a specific gauge-fixing parameter):

Lgauge-fix = − 1
2ξ

(∂µ Aµ)2 (8.7)

With ξ = 1 (Feynman gauge), the photon propagator is:

Dµν
F (k) =

−igµν

k2 + iε
(8.8)

photon propagator

k

Figure 8.2: The photon propagator is
proportional to gµν/k2. The wavy line
represents a photon.

The photon is massless, so there’s no m2 in the denominator. The
tensor gµν sums over polarizations.

8.3 The QED Lagrangian

Putting it together, the QED Lagrangian is:

LQED = ψ̄(i/∂ −m)ψ− 1
4

FµνFµν − eψ̄γµψAµ (8.9)

The last term is the interaction: the electron current ψ̄γµψ couples
to the photon field Aµ with strength e (the electron charge).

This interaction arises from minimal coupling: replace ∂µ → Dµ =

∂µ + ieAµ in the Dirac Lagrangian. This prescription is dictated by
gauge invariance. e−

e−

γ

= −ieγµ

Figure 8.3: The QED vertex: two elec-
tron lines and one photon line meet
with strength −ieγµ.
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8.4 Gauge Invariance

The Lagrangian is invariant under local U(1) transformations:

ψ→ eieχ(x)ψ (8.10)

Aµ → Aµ + ∂µχ (8.11)

This gauge invariance has important consequences:

• The photon must be massless. A mass term m2
γ Aµ Aµ would break

gauge invariance.

• Current is conserved: ∂µ(ψ̄γµψ) = 0.

• Certain diagrams must cancel, enforced by Ward identities.

The Ward identities will be crucial for renormalization. They relate
different divergent diagrams, reducing the number of independent
counterterms.

8.5 Feynman Rules for QED

Let me state the complete Feynman rules.
External lines:

• Incoming electron: u(p, s) (spinor)

• Outgoing electron: ū(p, s)

• Incoming positron: v̄(p, s)

• Outgoing positron: v(p, s)

• External photon: εµ(k, λ) (polarization vector)

Propagators:

• Electron:
i(/p + m)

p2 −m2 + iε

• Photon:
−igµν

k2 + iε
(Feynman gauge)

Vertices:

• QED vertex: −ieγµ

Loops:

• Integrate
∫ d4k

(2π)4 for each loop.

• Fermion loops get an extra factor of (−1).
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Element Factor

Electron prop
i(/p + m)

p2 −m2 + iε

Photon prop
−igµν

k2 + iε

Vertex −ieγµ

Fermion loop −1
Table 8.1: QED Feynman rules sum-
mary.

Spinor algebra:

• Trace over spinor indices for closed fermion loops.

• Contract Lorentz indices between gamma matrices, propagators,
and vertices.

8.6 Power Counting in QED

Let’s determine which QED diagrams diverge.
For a diagram with Ee external electron lines and Eγ external

photon lines, the superficial degree of divergence is:

D = 4− 3
2

Ee − Eγ (8.12)

Let me derive this. Count powers of momentum in the integral:

• Each loop contributes +4 (from d4k).

• Each electron propagator contributes −1 (goes like 1/k at large k).

• Each photon propagator contributes −2 (goes like 1/k2).

• Each vertex contributes 0 (it’s just a gamma matrix).

Using topological relations (similar to φ4), we get D = 4− 3
2 Ee −

Eγ.

Ee = 0, Eγ = 2
D = 2: vacuum pol.

Ee = 2, Eγ = 0
D = 1: electron SE

Ee = 2, Eγ = 1
D = 0: vertex

Figure 8.4: The three divergent struc-
tures in QED.

The divergent diagrams are:

1. Vacuum polarization: Ee = 0, Eγ = 2⇒ D = 2. The photon
self-energy.

2. Electron self-energy: Ee = 2, Eγ = 0⇒ D = 1. The electron
propagator correction.

3. Vertex correction: Ee = 2, Eγ = 1⇒ D = 0. The vertex is
modified.

What about Eγ = 1, Ee = 0 (a “photon tadpole”)? This would have
D = 3, but it vanishes by Lorentz invariance (a single photon carries
spin-1; there’s no Lorentz-invariant 1-point function).

What about Eγ = 3 (three-photon vertex)? This has D = 1, but it’s
forbidden by charge conjugation symmetry (Furry’s theorem).

So we have exactly three divergent structures. QED is renormaliz-
able.
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8.7 The Three Diagrams

Let me show the three divergent diagrams at one-loop:
1. Vacuum Polarization (Photon Self-Energy):

e−

γ γ

A photon fluctuates into a virtual electron-positron pair, which
then annihilates back into a photon. This modifies the photon propa-
gator and screens the charge.

2. Electron Self-Energy:

γ

e− e−

An electron emits and reabsorbs a virtual photon. This modifies
the electron propagator, contributing to mass and wave-function
renormalization.

3. Vertex Correction:

γ

e− e−

The electron-photon vertex is modified by a virtual photon ex-
change within the interaction. This affects the coupling and the mag-
netic moment.

8.8 What We’ll Calculate

In the next three chapters, we’ll compute each of these diagrams in
detail:

Chapter 9: Vacuum Polarization. We’ll find that the divergent part
has the structure kµkν − gµνk2—it’s transverse, as gauge invariance
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requires. This modifies the photon propagator and makes the charge
“run.”

Chapter 10: Electron Self-Energy. The electron self-energy Σ(p)
has two divergent parts: one proportional to /p (wave-function renor-
malization Z2) and one proportional to m (mass renormalization δm).

Chapter 11: Vertex Correction. The vertex correction modifies
γµ to γµ + Λµ. The Ward identity tells us that the divergent part of
Λµ is proportional to γµ, with the same coefficient as the electron
self-energy divergence. This is why Z1 = Z2.

8.9 The Structure of QED Counterterms

The QED Lagrangian with counterterms is:

L = ψ̄(i/∂ −m)ψ− 1
4

FµνFµν − eψ̄γµψAµ

+ δZ2 ψ̄i/∂ψ− δmψ̄ψ−
δZ3

4
FµνFµν − δZ1 eψ̄γµψAµ (8.13)

The counterterms are:

• δZ2 : electron wave-function renormalization

• δm: electron mass renormalization

• δZ3 : photon wave-function renormalization

• δZ1 : vertex renormalization

δZ2 : electron field

δm: electron mass

δZ3 : photon field

δZ1 : vertex

Z1 = Z2 (Ward)

Figure 8.5: Four counterterms, but the
Ward identity relates Z1 and Z2.

But wait—that’s four counterterms for three divergent structures.
The Ward identity (gauge invariance) tells us Z1 = Z2, so there are
really only three independent counterterms.

We can define the renormalized coupling:

eren =
Z1

Z2

√
Z3 e0 =

√
Z3 e0 (8.14)

The factors of Z1/Z2 cancel! Only the photon wave-function renor-
malization affects the physical coupling.

The electron’s “dress” (its cloud of virtual photons) doesn’t affect
the charge—only the photon’s self-interaction does. Gauge invariance
protects the charge from some quantum corrections.

8.10 Spinor Algebra: Some Useful Identities

Before we start computing, let me collect some useful identities for
gamma matrix algebra. You’ll need these constantly.

Basic anticommutator:

{γµ, γν} = 2gµν (8.15)
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Contractions:

γµγµ = d · I (in d dimensions) (8.16)

γµγνγµ = (2− d)γν (8.17)

γµγνγργµ = 4gνρ − (4− d)γνγρ (8.18)

In d = 4− ε:

γµγµ = 4− ε (8.19)

γµγνγµ = −(2− ε)γν (8.20)

γµγνγργµ = 4gνρ − εγνγρ (8.21)

Traces:

Tr(I) = 4 (in 4 dimensions) (8.22)

Tr(γµγν) = 4gµν (8.23)

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (8.24)

Traces with odd numbers of gamma matrices vanish:

Tr(γµ) = Tr(γµγνγρ) = 0 (8.25)

These identities follow from the anticommutation relations. You’ll
use them to simplify numerators of loop integrals.

8.11 A Taste of What’s Coming

Let me sketch what the vacuum polarization calculation looks like, so
you know what to expect.

The one-loop photon self-energy is:

iΠµν(k) = (−1)(−ie)2
∫ dd p

(2π)d Tr
[

γµ i(/p + m)

p2 −m2 γν i(/p − /k + m)

(p− k)2 −m2

]
(8.26)

The (−1) is from the fermion loop. The trace is over spinor in-
dices.

We’ll need to:

1. Evaluate the trace using gamma matrix identities.

2. Combine denominators using Feynman parameters.

3. Shift the loop momentum.

4. Use the master integral formula from Chapter 6.
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5. Expand in ε.

The result is:

Πµν(k) = (k2gµν − kµkν)Π(k2) (8.27)

The tensor structure (k2gµν − kµkν) is transverse: kµΠµν = 0. This is
required by gauge invariance (the Ward identity).

The scalar function Π(k2) contains a 1/ε divergence that we’ll
renormalize by the photon field counterterm δZ3 .

8.12 Units and Numbers

Let’s establish the numerical values we’ll be working with.
The fine-structure constant is:

α =
e2

4π
≈ 1

137.036
(8.28)

The electron mass is:

me = 0.511 MeV = 9.11× 10−31 kg (8.29) Quantity Value

α 1/137.036
me 0.511 MeV
λe = 1/me 3.86× 10−13 m

Table 8.2: Key QED parameters.

The expansion parameter for QED perturbation theory is:

α

π
≈ 1

430
(8.30)

This is small! Each additional loop adds roughly a factor of α/π.
Even at ten loops, the correction is (α/π)10 ≈ 10−26. QED perturba-
tion theory converges very rapidly.

This is why QED gives such precise predictions. The one-loop
correction to the electron’s magnetic moment is α/(2π) ≈ 0.00116.
The full calculation, carried to five loops, agrees with experiment to
10−10.

8.13 Historical Note: The Lamb Shift

The development of renormalized QED was driven by experiment. In
1947, Willis Lamb and Robert Retherford measured a tiny splitting in
the hydrogen spectrum—the 2S1/2 and 2P1/2 levels, which should be
degenerate according to the Dirac equation, were separated by about
1000 MHz.

This “Lamb shift” couldn’t be explained without quantum cor-
rections to the electron’s self-energy and the vertex. The theoretical
calculation, requiring careful handling of the infinities, gave a result
that agreed with the measurement.

The success of renormalized QED, demonstrated by the Lamb
shift calculation, established quantum field theory as the correct
framework for particle physics. Tomonaga, Schwinger, and Feynman
shared the 1965 Nobel Prize for their contributions.
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8.14 Summary: The Setup

We’re now ready to compute. Here’s what we have:

1. The QED Lagrangian, with its gauge symmetry.

2. The Feynman rules: propagators, vertex, loop integration.

3. Power counting: three divergent structures.

4. Gamma matrix algebra for handling spinors.

5. The small parameter α ≈ 1/137.

In the next chapter, we’ll compute the vacuum polarization in full
detail. Every step will be shown, and the physical meaning will be
explained as we go.

QED was the first successful quantum field theory, and it remains the cleanest example of how renormalization works.
The gauge symmetry—local U(1) invariance—is both a blessing and a complication. It’s a blessing because it con-
strains the form of interactions and links different counterterms through Ward identities. It’s a complication because
we must fix a gauge to define propagators, and we must verify that physical results are gauge-independent. The
beauty of QED is that everything fits together: gauge invariance, renormalizability, unitarity, and agreement with
experiment to extraordinary precision. Understanding QED deeply is the foundation for understanding the Standard
Model, which is “just” a larger gauge theory with the same underlying structure.
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Vacuum Polarization

What is the vacuum? In classical physics, empty space is truly empty.
But in quantum field theory, the vacuum seethes with activity. Virtual
particle-antiparticle pairs flicker in and out of existence, borrowing
energy for fleeting moments. A photon traveling through this quan-
tum vacuum doesn’t travel through nothing—it travels through a
medium.

Vacuum polarization is the effect of this medium on light. A pho-
ton can briefly convert into a virtual electron-positron pair, which
then annihilates back into a photon. This process modifies how pho-
tons propagate and screens the electric charge. The effect is small—
suppressed by α—but it’s measurable, and calculating it will teach us
how gauge invariance constrains quantum corrections.

This chapter works through the calculation in full detail. What
emerges has a very specific structure, one that gauge invariance
demands.

9.1 The Diagram

The one-loop vacuum polarization diagram is:

µ ν

k k

p

p− k

The external photon carries momentum k and has Lorentz indices
µ (incoming) and ν (outgoing). The loop momentum p flows around
the fermion loop.
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9.2 Writing Down the Integral

Using the Feynman rules from Chapter 8:

iΠµν(k) = (−1)(−ie)2
∫ dd p

(2π)d Tr
[

γµ i(/p + m)

p2 −m2 + iε
γν i(/p − /k + m)

(p− k)2 −m2 + iε

]
(9.1)

Let me explain each factor:

• (−1): Fermion loop sign.

• (−ie)2 = −e2: Two vertices.

• The trace: Fermion loop is a closed spinor line; trace over spinor
indices.

• First propagator: Electron with momentum p.

• Second propagator: Electron with momentum p− k.

Simplifying:

iΠµν(k) = e2
∫ dd p

(2π)d
Tr[γµ(/p + m)γν(/p − /k + m)]

(p2 −m2 + iε)((p− k)2 −m2 + iε)
(9.2)

9.3 Evaluating the Trace

The numerator contains:

Nµν = Tr[γµ(/p + m)γν(/p − /k + m)] (9.3)

Expand:

Nµν = Tr[γµ
/pγν(/p − /k)] + mTr[γµ

/pγν] + mTr[γµγν(/p − /k)] + m2Tr[γµγν]

(9.4)

The middle two terms have three gamma matrices in the trace, so
they vanish. We’re left with:

Nµν = Tr[γµ
/pγν(/p − /k)] + m2Tr[γµγν] (9.5)

Trace rules:
Tr(odd γ’s) = 0

Tr(γµγν) = 4gµν

Figure 9.1: Key trace identities for
gamma matrices.

Using Tr[γµγν] = 4gµν (in 4 dimensions):

m2Tr[γµγν] = 4m2gµν (9.6)

For the four-gamma trace, use the identity:

Tr[γαγβγργσ] = 4(gαβgρσ − gαρgβσ + gασgβρ) (9.7)
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With γα = γµ, γβ = γλ (from /p = pλγλ), etc.:

Tr[γµ
/pγν(/p − /k)] = pλ(p− k)σTr[γµγλγνγσ] (9.8)

= 4pλ(p− k)σ(gµλgνσ − gµνgλσ + gµσgνλ) (9.9)

= 4[pµ(p− k)ν − gµν p · (p− k) + pν(p− k)µ]

(9.10)

So the full numerator is:

Nµν = 4[pµ(p− k)ν + pν(p− k)µ − gµν(p · (p− k)−m2)] (9.11)

9.4 Combining Denominators

The denominator of (9.2) has two propagators. Use Feynman parame-
ters:

1
AB

=
∫ 1

0
dx

1
[xA + (1− x)B]2

(9.12)

With A = p2 −m2 and B = (p− k)2 −m2:

xA + (1− x)B = x(p2 −m2) + (1− x)((p− k)2 −m2) (9.13)

= p2 − 2(1− x)p · k + (1− x)k2 −m2 (9.14)

Complete the square by defining ` = p− (1− x)k:

xA + (1− x)B = `2 + (1− x)k2 − (1− x)2k2 −m2 (9.15)

= `2 − ∆ (9.16)

where
∆ = m2 − x(1− x)k2 (9.17)

x

∆

m2 − x(1− x)k2

Figure 9.2: The function ∆(x) = m2 −
x(1− x)k2 is positive for k2 < 4m2.

9.5 Shifting the Loop Momentum

We now shift the loop momentum to eliminate the cross-term in the
denominator. Define ` = p− (1− x)k, so that:

• p = `+ (1− x)k

• p− k = `− xk

The numerator Nµν = 4[pµ(p− k)ν + pν(p− k)µ − gµν(p · (p− k)−
m2)] transforms as follows.

The First Two Terms

Consider pµ(p− k)ν:

pµ(p− k)ν = (`µ + (1− x)kµ)(`ν − xkν) (9.18)

= `µ`ν − x`µkν + (1− x)kµ`ν − x(1− x)kµkν (9.19)



98 lectures on qft and renormalization

Terms linear in ` vanish after integration because the integrand
is odd while the domain is symmetric. Keeping only the surviving
terms:

pµ(p− k)ν → `µ`ν − x(1− x)kµkν (9.20)

By symmetry µ↔ ν:

pν(p− k)µ → `ν`µ − x(1− x)kνkµ (9.21)

So the sum becomes:

pµ(p− k)ν + pν(p− k)µ → 2`µ`ν − 2x(1− x)kµkν (9.22)

The Third Term

For the dot product:

p · (p− k) = (`+ (1− x)k) · (`− xk) (9.23)

= `2 − x` · k + (1− x)` · k− x(1− x)k2 (9.24)

= `2 + (1− 2x)` · k− x(1− x)k2 (9.25)

The linear term ` · k vanishes upon integration, leaving:

p · (p− k)→ `2 − x(1− x)k2 (9.26)

Assembling the Numerator

Putting everything together:

Nµν = 4
[
2`µ`ν − 2x(1− x)kµkν − gµν

(
`2 − x(1− x)k2 −m2

)]
(9.27)

= 8`µ`ν − 4gµν`2 − 8x(1− x)kµkν + 4gµν
(

x(1− x)k2 + m2
)
(9.28)

Since ∆ = m2 − x(1− x)k2, we have x(1− x)k2 + m2 = 2m2 − ∆.
The numerator becomes:

Nµν = 8`µ`ν − 4gµν`2 − 8x(1− x)kµkν + 4gµν(2m2 − ∆) (9.29)

9.6 The Integral Structure

The vacuum polarization is now:

iΠµν(k) = e2
∫ 1

0
dx
∫ dd`

(2π)d
Nµν

(`2 − ∆)2 (9.30)

From (9.29), the numerator splits into three types of terms:

Nµν = 8`µ`ν︸ ︷︷ ︸
tensor

− 4gµν`2︸ ︷︷ ︸
scalar

+ [−8x(1− x)kµkν + 4gµν(2m2 − ∆)]︸ ︷︷ ︸
constant in `

(9.31)

Each requires a different integral.
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The Master Integrals

We need three integrals over `:

J0 =
∫ dd`

(2π)d
1

(`2 − ∆)2 (9.32)

J1 =
∫ dd`

(2π)d
`2

(`2 − ∆)2 (9.33)

Jµν
2 =

∫ dd`

(2π)d
`µ`ν

(`2 − ∆)2 (9.34)
∫

`µ`ν

(· · · )n

=

gµν

d

∫
`2

(· · · )n

Figure 9.3: Symmetric integration gives
gµν/d.

The tensor integral Jµν
2 must be proportional to gµν by Lorentz

symmetry (there’s no other tensor available). Contracting both sides
with gµν:

gµν Jµν
2 = J1 = gµν ·

gµν

d
J1 =

d
d

J1 (9.35)

which is consistent. Therefore:

Jµν
2 =

gµν

d
J1 (9.36)

Using the master formula from Chapter 6:

∫ dd`

(2π)d
(`2)a

(`2 − ∆)n =
i(−1)n−a

(4π)d/2
Γ(a + d/2)Γ(n− a− d/2)

Γ(d/2)Γ(n)
∆a+d/2−n

(9.37)
For J0 (where a = 0, n = 2):

J0 =
i

(4π)d/2
Γ(d/2)Γ(2− d/2)

Γ(d/2)Γ(2)
∆d/2−2 (9.38)

=
i

(4π)d/2 Γ(2− d/2)∆d/2−2 (9.39)

For J1 (where a = 1, n = 2):

J1 =
i(−1)
(4π)d/2

Γ(1 + d/2)Γ(1− d/2)
Γ(d/2)Γ(2)

∆1+d/2−2 (9.40)

=
−i

(4π)d/2
Γ(1 + d/2)Γ(1− d/2)

Γ(d/2)
∆d/2−1 (9.41)

Using Γ(1 + d/2) = (d/2)Γ(d/2):

J1 =
−i

(4π)d/2
d
2

Γ(1− d/2)∆d/2−1 (9.42)

And therefore:

Jµν
2 =

gµν

d
J1 =

−igµν

2(4π)d/2 Γ(1− d/2)∆d/2−1 (9.43)
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9.7 Putting It Together

We now assemble the vacuum polarization using these integrals. The
integral over ` gives:

iΠµν(k) = e2
∫ 1

0
dx
[
8Jµν

2 − 4gµν J1 +
(
−8x(1− x)kµkν + 4gµν(2m2 − ∆)

)
J0

]
(9.44)

Substituting the expressions for J0, J1, Jµν
2 :

iΠµν(k) = e2
∫ 1

0
dx

[
8 · −igµν

2(4π)d/2 Γ(1− d/2)∆d/2−1

− 4gµν · −i
(4π)d/2

d
2

Γ(1− d/2)∆d/2−1

+
(
−8x(1− x)kµkν + 4gµν(2m2 − ∆)

)
· i
(4π)d/2 Γ(2− d/2)∆d/2−2

]
(9.45)

Let’s simplify term by term.
First term:

8 · −igµν

2(4π)d/2 Γ(1− d/2)∆d/2−1 =
−4igµν

(4π)d/2 Γ(1− d/2)∆d/2−1 (9.46)

Second term:

−4gµν · −i
(4π)d/2

d
2

Γ(1− d/2)∆d/2−1 =
2idgµν

(4π)d/2 Γ(1− d/2)∆d/2−1

(9.47)
Combining the first two terms:

(first + second) =
igµν

(4π)d/2 Γ(1− d/2)∆d/2−1 (−4 + 2d) (9.48)

=
igµν

(4π)d/2 Γ(1− d/2)∆d/2−1 · 2(d− 2) (9.49)

Now use the gamma function identity Γ(z + 1) = zΓ(z), which
gives:

Γ(2− d/2) = (1− d/2)Γ(1− d/2) (9.50)

and therefore:

Γ(1− d/2) =
Γ(2− d/2)

1− d/2
=
−2Γ(2− d/2)

d− 2
(9.51)

Substituting:

(first + second) =
igµν

(4π)d/2 ·
−2Γ(2− d/2)

d− 2
· ∆d/2−1 · 2(d− 2) (9.52)

=
−4igµν

(4π)d/2 Γ(2− d/2)∆d/2−1 (9.53)
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Third term:
i

(4π)d/2 Γ(2− d/2)∆d/2−2
(
−8x(1− x)kµkν + 4gµν(2m2 − ∆)

)
(9.54)

Let’s expand the factor (2m2 − ∆). Since ∆ = m2 − x(1− x)k2:

2m2 − ∆ = 2m2 −m2 + x(1− x)k2 = m2 + x(1− x)k2 (9.55)

The third term becomes:
i

(4π)d/2 Γ(2− d/2)∆d/2−2
(
−8x(1− x)kµkν + 4gµν(m2 + x(1− x)k2)

)
(9.56)

Combining all three terms:

iΠµν(k) = e2
∫ 1

0
dx

iΓ(2− d/2)
(4π)d/2

[
− 4gµν∆d/2−1

+ ∆d/2−2
(
−8x(1− x)kµkν + 4gµν(m2 + x(1− x)k2)

) ]
(9.57)

Factor out ∆d/2−2:

iΠµν(k) =
ie2Γ(2− d/2)

(4π)d/2

∫ 1

0
dx ∆d/2−2

[
− 4gµν∆

− 8x(1− x)kµkν + 4gµν(m2 + x(1− x)k2)

]
(9.58)

The gµν terms combine:

−4gµν∆ + 4gµν(m2 + x(1− x)k2) = 4gµν
[
−∆ + m2 + x(1− x)k2

]
(9.59)

= 4gµν
[
−(m2 − x(1− x)k2) + m2 + x(1− x)k2

]
(9.60)

= 4gµν · 2x(1− x)k2 (9.61)

= 8x(1− x)k2gµν (9.62)

So we have:

iΠµν(k) =
ie2Γ(2− d/2)

(4π)d/2

∫ 1

0
dx ∆d/2−2

[
8x(1− x)k2gµν − 8x(1− x)kµkν

]
=

8ie2Γ(2− d/2)
(4π)d/2

∫ 1

0
dx x(1− x)∆d/2−2

(
k2gµν − kµkν

)
(9.63)

The tensor structure has emerged: Πµν(k) = (k2gµν − kµkν)Π(k2).
Dividing both sides by i:

Π(k2) =
8e2Γ(2− d/2)

(4π)d/2

∫ 1

0
dx x(1− x)∆d/2−2 (9.64)
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9.8 The Transverse Structure

The tensor structure (k2gµν − kµkν) is transverse: it satisfies

kµ(k2gµν − kµkν) = k2kν − k2kν = 0 (9.65)

This is required by gauge invariance. The Ward identity demands
that the photon self-energy be transverse. The fact that this structure
emerged automatically from our calculation is a powerful check:
dimensional regularization preserves gauge invariance.

9.9 Extracting the Scalar Function Π(k2)

From (9.64), we have the exact d-dimensional result:

Π(k2) =
8e2Γ(2− d/2)

(4π)d/2

∫ 1

0
dx x(1− x)(m2 − x(1− x)k2)d/2−2 (9.66)

Now we expand in d = 4− ε. We need:

• (4π)d/2 = (4π)2−ε/2 = 16π2 (1− ε
2 ln(4π) + O(ε2)

)
• Γ(2− d/2) = Γ(ε/2) = 2

ε − γE + O(ε)

• ∆d/2−2 = ∆−ε/2 = 1− ε
2 ln ∆ + O(ε2)

In MS, we introduce a scale µ to make ∆ dimensionless. The stan-
dard MS pole is defined as:

1
ε̄
≡ 1

ε
− γE

2
+

ln(4π)

2
(9.67)

Expanding systematically, the leading 1/ε contribution comes
from:

Π(k2) =
8e2

16π2 ·
2
ε
· 1

6
+ finite =

e2

6π2ε
+ finite (9.68)

where we used
∫ 1

0 dx x(1− x) = 1/6.
With α = e2/(4π), this becomes 2α

3πε .
The full MS result, including finite terms, is:

Π(k2) =
8e2

16π2

(
2
ε
− γE + ln(4π)

) ∫ 1

0
dx x(1− x)

(
1− ε

2
ln

∆
µ2

)
=

e2

2π2

(
2
ε
− γE + ln(4π)

)
· 1

6
− e2

2π2

∫ 1

0
dx x(1− x) ln

∆
µ2 (9.69)

Converting to α = e2/(4π):

Π(k2) =
2α

3π

(
1
ε̄

)
− 2α

π

∫ 1

0
dx x(1− x) ln

m2 − x(1− x)k2

µ2 (9.70)

In a cleaner form:

Π(k2) =
α

π

[
2
3ε̄
− 2

∫ 1

0
dx x(1− x) ln

m2 − x(1− x)k2

µ2

]
(9.71)
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9.10 The Final Result

Collecting our results, the vacuum polarization is:

Π(k2) =
α

π

[
2
3ε̄
− 2

∫ 1

0
dx x(1− x) ln

m2 − x(1− x)k2

µ2

]
(9.72)

where α = e2/(4π).
−k2

Π

4m2

Re

Im

Figure 9.4: Π(k2) vs −k2. Below thresh-
old (k2 < 4m2), Π is real (solid blue).
Above threshold, it develops an imag-
inary part (red)—real pair production
becomes possible.

The divergent part is:

Πdiv(k2) =
2α

3πε̄
(9.73)

The finite part depends on k2 through the integral. For k2 � m2,
we expand the logarithm:

ln
m2 − x(1− x)k2

µ2 = ln
m2

µ2 −
x(1− x)k2

m2 + O(k4) (9.74)

Using
∫ 1

0 dx x(1− x) = 1/6 and
∫ 1

0 dx x2(1− x)2 = 1/30:

Π(k2) ≈ α

π

[
2
3ε̄
− 1

3
ln

m2

µ2 +
k2

15m2 + O(k4)

]
(9.75)

9.11 Physical Interpretation

What does the vacuum polarization mean physically?
Screening of charge. The virtual e+e− pairs act like dipoles in a

dielectric medium. They partially screen the bare charge, making the
observed charge smaller at large distances.

Running coupling. The finite part of Π(k2) depends on k2 =

−Q2 (the momentum transfer). This means the effective coupling
depends on the energy scale of the probe. At higher energies (shorter
distances), the screening is less effective, and the effective charge is
larger.

The modified propagator. The dressed photon propagator be-
comes:

Dµν(k) =
−igµν

k2(1−Π(k2))
=
−igµν

k2

(
1 + Π(k2) + Π2(k2) + . . .

)
(9.76)

The effective coupling at scale k2 is:

e2
eff(k

2) =
e2

1−Π(k2)
(9.77)

Q
−

−

−

−
−

−

Figure 9.5: Virtual pairs screen the bare
charge, like polarization in a dielectric.
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9.12 Renormalization

The divergent part ∝ 1/ε̄ must be canceled by a counterterm. The
photon field renormalization Z3 relates bare and renormalized fields:
Abare

µ = Z1/2
3 Aren

µ . The counterterm is:

δZ3 = Z3 − 1 = − 2α

3πε̄
+ finite (scheme-dependent) (9.78)

The renormalized vacuum polarization is:

Πren(k2) = Π(k2) + δZ3 = finite (9.79)

In the MS scheme, δZ3 is chosen to cancel exactly the 1/ε̄ pole:

δMS
Z3

= − 2α

3πε̄
(9.80)

The renormalized result is:

ΠMS
ren(k

2) = −2α

π

∫ 1

0
dx x(1− x) ln

m2 − x(1− x)k2

µ2 (9.81)

In an on-shell scheme, we might instead require Πren(0) = 0,
which gives a different finite part.

9.13 Putting in Numbers

Let’s see how the vacuum polarization affects the running of α.
The key physical quantity is the change in the effective coupling

between two scales. From the dressed propagator, the effective cou-
pling at momentum transfer Q2 is:

αeff(Q2) =
α

1− ∆Π(Q2)
(9.82)

where ∆Π(Q2) = Πren(Q2) −Πren(0) is the change in the vacuum
polarization from zero momentum.

For spacelike momentum transfer Q2 � m2
e , the vacuum polariza-

tion integral can be evaluated:

∆Π(Q2) ≈ α

3π
ln

Q2

m2
e

(9.83)

At Q = 100 GeV:

ln
Q2

m2
e
= ln

(1011 eV)2

(5.1× 105 eV)2 ≈ 24 (9.84)

So:
∆Π ≈ 1

137× 3π
× 24 ≈ 0.019 (9.85)
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The effective coupling becomes:

αeff(Q2) ≈ 1/137
1− 0.019

=
1/137
0.981

≈ 1
134

(9.86)

At even higher energies (the Z boson mass, MZ ≈ 91 GeV), the ef-
fective coupling reaches α ≈ 1/128. This running has been measured
experimentally at LEP and agrees well with the QED prediction.

9.14 Summary

We’ve computed the one-loop vacuum polarization in QED:

1. The tensor structure is (k2gµν − kµkν)—transverse, as gauge invari-
ance requires.

2. The scalar function has a divergent part ∝ 1/ε̄ and a finite part
depending on k2.

3. The divergence is canceled by the photon field counterterm δZ3 .

4. The finite part encodes the running of the electric charge with
energy scale.

5. At high energies (Q2 � m2
e ), the effective coupling increases

logarithmically.

This is the first of our three QED calculations. Next, we’ll compute
the electron self-energy.

The vacuum polarization was one of the first radiative corrections calculated in QED. The physical picture—that the
vacuum is filled with virtual particle-antiparticle pairs that screen electric charges—emerged from this calculation.
The running of α was originally a theoretical prediction; it has since been confirmed experimentally at LEP and other
colliders, where αeff(MZ) ≈ 1/128 is measured directly. The agreement between calculation and measurement is yet
another triumph of QED.





10
The Electron Self-Energy

An electron is never alone. Even in perfect vacuum, it’s surrounded
by a cloud of virtual photons—constantly emitting and reabsorbing
them, like a person breathing. This cloud is part of what the electron
is. When we measure the electron’s mass, we’re measuring the mass
of the electron plus its cloud.

The electron self-energy diagram captures this physics. An elec-
tron emits a virtual photon, travels a bit, and reabsorbs it. The result
modifies the electron’s mass and rescales its wave function. Both
effects are divergent, and both must be absorbed into counterterms.

This is the second of the three fundamental QED diagrams. Let’s
compute it.

10.1 The Diagram

The one-loop electron self-energy is:

p p

k

p− k

The external electron has momentum p. The internal photon car-
ries momentum k, and the internal electron line carries p− k.

10.2 The Integral

Applying the Feynman rules:

−iΣ(p) = (−ie)2
∫ ddk

(2π)d γµ i(/p − /k + m)

(p− k)2 −m2 + iε
γν −igµν

k2 + iε
(10.1)

The minus sign on the left comes from the definition iS−1(p) =

i(/p −m− Σ(p)).
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Contracting γµ with gµνγν = γµ:

−iΣ(p) = −e2
∫ ddk

(2π)d

γµ(/p − /k + m)γµ

k2[(p− k)2 −m2]
(10.2)

Numerator:

γµ(/p − /k + m)γµ

↓

Use γµγνγµ = −(2− ε)γν

Figure 10.1: The numerator simplifies
using gamma matrix identities.

10.3 Simplifying the Numerator

Use the contraction identity in d = 4− ε dimensions:

γµγνγµ = −(2− ε)γν (10.3)

So:
γµ(/p − /k)γµ = −(2− ε)(/p − /k) (10.4)

And:
γµγµ = d = 4− ε (10.5)

The numerator becomes:

γµ(/p − /k + m)γµ = −(2− ε)(/p − /k) + (4− ε)m (10.6)

= −(2− ε)/p + (2− ε)/k + (4− ε)m (10.7)

The self-energy is (dividing both sides by −i):

Σ(p) = ie2
∫ ddk

(2π)d
−(2− ε)/p + (2− ε)/k + (4− ε)m

k2[(p− k)2 −m2]
(10.8)

10.4 Combining Denominators

Use Feynman parameters to combine the two propagators:

1
k2[(p− k)2 −m2]

=
∫ 1

0
dx

1
[xk2 + (1− x)((p− k)2 −m2)]2

(10.9)

The combined denominator is:

D = xk2 + (1− x)(p− k)2 − (1− x)m2 (10.10)

= k2 − 2(1− x)p · k + (1− x)p2 − (1− x)m2 (10.11)

Shift to ` = k− (1− x)p:

D = `2 + (1− x)p2 − (1− x)2 p2 − (1− x)m2 (10.12)

= `2 − ∆ (10.13)

where:

∆ = (1− x)m2 − x(1− x)p2 = (1− x)[m2 − xp2] (10.14)
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10.5 The Shifted Integral

After shifting k→ `+ (1− x)p:

• /k → +(1− x)/p

• Terms linear in ` vanish by symmetric integration.

The numerator becomes:

N = −(2− ε)/p + (2− ε)[+(1− x)/p] + (4− ε)m (10.15)

→ −(2− ε)/p + (2− ε)(1− x)/p + (4− ε)m (10.16)

= −(2− ε)x/p + (4− ε)m (10.17)
After shift:

N = −(2− ε)x/p + (4− ε)m

Figure 10.2: The numerator after mo-
mentum shift. The term vanishes.

Wait—I dropped the term too quickly. The integral
∫

dd` /(`2 −
∆)2 doesn’t vanish immediately; let me be more careful.

Actually, by Lorentz symmetry,
∫

dd` `µ/(`2−∆)2 = 0 since there’s
no preferred direction. So

∫
dd` /(`2 − ∆)2 = γµ

∫
dd` `µ/(`2 − ∆)2 =

0.
The self-energy becomes:

Σ(p) = e2
∫ 1

0
dx
∫ dd`

(2π)d
−(2− ε)x/p + (4− ε)m

(`2 − ∆)2 (10.18)

Using the master integral:

∫ dd`

(2π)d
1

(`2 − ∆)2 =
i

(4π)d/2 Γ(2− d/2)∆d/2−2 (10.19)

We get:

Σ(p) =
ie2

(4π)d/2 Γ(2− d/2)
∫ 1

0
dx [−(2− ε)x/p + (4− ε)m]∆d/2−2

(10.20)

10.6 Expanding in ε

In d = 4− ε:

Γ(2− d/2) = Γ(ε/2) =
2
ε
− γE + O(ε) (10.21)

(4π)d/2 = (4π)2(4π)−ε/2 = 16π2[1− ε

2
ln(4π) + . . .] (10.22)

∆d/2−2 = ∆−ε/2 = 1− ε

2
ln ∆ + O(ε2) (10.23)

Also:

• (2− ε)→ 2 at leading order

• (4− ε)→ 4 at leading order
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So:

Σ(p) =
ie2

16π2

(
2
ε
− γE + ln(4π)

) ∫ 1

0
dx [−2x/p + 4m]

(
1− ε

2
ln ∆

)
(10.24)

Keeping terms through O(ε0):

Σ(p) =
ie2

16π2

∫ 1

0
dx
{
[−2x/p + 4m]

(
2
ε
− γE + ln(4π)

)
(10.25)

− [−2x/p + 4m] ln ∆ + O(ε)
}

The integrals over x are: ∫ 1

0
dx x =

1
2

(10.26)∫ 1

0
dx 1 = 1 (10.27)

10.7 The Result

In MS (where 2/ε− γE + ln(4π)→ 2/ε̄):

Σ(p) =
iα
4π

[
2
ε̄
(−/p + 4m)−

∫ 1

0
dx (−2x/p + 4m) ln

∆
µ2

]
(10.28)

where α = e2/(4π).
The self-energy has the structure:

Σ(p) = A(p2)/p + B(p2)m (10.29)

Σ(p) = A/p + Bm

A: field renormB: mass renorm
Figure 10.3: The self-energy has two
Lorentz structures.

Explicitly:

A(p2) = − iα
4π

[
2
ε̄
− 2

∫ 1

0
dx x ln

(1− x)(m2 − xp2)

µ2

]
(10.30)

B(p2) =
iα
4π

[
8
ε̄
− 4

∫ 1

0
dx ln

(1− x)(m2 − xp2)

µ2

]
(10.31)

10.8 Mass and Wave Function Renormalization

The full electron propagator, including the self-energy, is:

S(p) =
i

/p −m− Σ(p)
=

i

/p(1− A)−m(1 + B)
(10.32)

Define:

• Z2 = 1/(1− A): wave function renormalization

• δm = mB/(1− A): mass shift
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Then:
S(p) =

iZ2

/p −m− δm
(10.33)

The physical mass mphys is where the propagator has a pole:

mphys = m + δm (10.34)

More precisely, we expand Σ(p) around /p = m:

Σ(p) = Σ(m) + (/p −m)Σ′(m) + . . . (10.35)

The physical mass is defined by:

mphys −m− Σ(mphys) = 0 (10.36)

At one loop:

δm = Σ(m)|/p=m = Σscalar(m2) (10.37)

where Σscalar(p2) = A(p2)m + B(p2)m evaluated at p2 = m2, /p = m.

10.9 On-Shell Renormalization

In the on-shell scheme, we impose:

1. The pole of the propagator is at /p = mphys.

2. The residue of the pole is 1 (properly normalized).

This requires:

Σ(m) = 0 (mass condition) (10.38)

dΣ
d/p

∣∣∣∣
/p=m

= 0 (residue condition) (10.39)
/p

S(p)

m

Figure 10.4: The propagator has a pole
at the physical mass.

The counterterms are:

δZ2 = − ∂Σ
∂/p

∣∣∣∣
/p=m

(10.40)

δm = Σ(m) (10.41)

From our one-loop result:

δZ2 =
α

4π

[
2
ε̄
+ finite

]
(10.42)

δm =
3αm
4π

[
2
ε̄
+ finite

]
(10.43)

(The exact finite parts depend on the scheme and the Feynman
parameter integrals.)
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10.10 Physical Interpretation

What does the electron self-energy mean?
The electron’s “cloud.” A physical electron is never truly alone.

It’s constantly emitting and absorbing virtual photons. These photons
can also briefly convert to e+e− pairs. The measured electron mass
and charge include all these effects.

Mass renormalization. The bare mass m0 in the Lagrangian isn’t
what we measure. The physical mass mphys includes self-energy
contributions. The relationship is:

mphys = m0 + δm = m0 +
3αm0

4π

(
2
ε̄
+ finite

)
(10.44)

In the limit ε → 0, m0 must be infinite in just the right way to give
a finite mphys.

Wave function renormalization. The normalization of the electron
field also gets quantum corrections. The Z2 factor ensures that when
we create a one-electron state, it’s properly normalized.

bare

physical

+Σ

Figure 10.5: The physical electron
includes its virtual photon cloud.

10.11 Comparison with Classical Electromagnetism

There’s a classical analogue of mass renormalization. Consider a
charged sphere of radius R. Its electromagnetic field energy is:

UEM =
e2

8πε0R
(10.45)

For a point charge (R → 0), this energy is infinite. This contributes
to the “electromagnetic mass”:

mEM =
UEM

c2 =
e2

8πε0Rc2 → ∞ (10.46)

Classical physics already has an infinite self-energy problem! The
electron mass we measure is mtotal = mbare + mEM, and for this to be
finite, mbare must be negatively infinite to compensate.

Quantum field theory inherits this problem in a more sophisti-
cated form. The loop integrals formalize what was already implicit
classically: point particles have infinite self-energy.

10.12 Putting in Numbers

Let’s estimate the size of the self-energy correction.
The one-loop mass correction is roughly:

δm
m
∼ 3α

4π
ln

Λ2

m2 (10.47)
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(using a cutoff instead of dim reg for intuition).
For Λ ∼ MPl = 1019 GeV and m = me = 0.511 MeV:

ln
Λ2

m2 = ln
1038

10−6 ≈ 100 (10.48)

So:
δm
m
∼ 3× 100

137× 4π
≈ 0.17 (10.49)

This is about a 17% correction—not small! But it gets absorbed
into the definition of m. What we call “the electron mass” already
includes this correction.

10.13 The Ward Identity Preview

There’s a deep connection between the electron self-energy and the
vertex correction, enforced by gauge invariance: the Ward identity.

It states:
Z1 = Z2 (10.50)

The wave function renormalization (Z2) and the vertex renormal-
ization (Z1) are equal. This means the divergent parts of δZ2 and δZ1

cancel when we compute the physical charge.
We’ll prove this in the next chapter when we compute the vertex

correction. The Ward identity is why QED is so well-behaved: gauge
invariance links different divergences and reduces the number of
independent counterterms.

10.14 Summary

The one-loop electron self-energy:

1. Has the structure Σ(p) = A(p2)/p + B(p2)m.

2. Contains divergences that renormalize the mass and wave func-
tion.

3. The mass counterterm is δm ∝ mα/ε̄.

4. The field counterterm is δZ2 ∝ α/ε̄.

5. Physically represents the electron’s cloud of virtual photons.

Together with the vacuum polarization (Chapter 9) and the vertex
correction (Chapter 11), the electron self-energy completes the set of
divergent one-loop diagrams in QED.



114 lectures on qft and renormalization

The electron self-energy was at the heart of the historical crisis in quantum electrodynamics. In the 1930s, physicists
computed this diagram and found infinity. The resolution—that the infinity could be absorbed into a redefinition of
the mass—took over a decade to fully work out. The key was recognizing that the “bare” mass in the Lagrangian isn’t
physical; only the “dressed” mass, including all quantum corrections, is measurable. This shift in thinking, from bare
to physical parameters, is the conceptual core of renormalization. Once accepted, it transformed QED from a theory
plagued by infinities into the most precisely tested theory in all of science.



11
The Vertex Correction and Ward Identity

There’s a constraint on quantum electrodynamics so tight, so exact,
that it connects calculations that seem to have nothing to do with
each other. The way the electron propagator gets renormalized must
be related, in a very specific way, to how the vertex gets renormal-
ized. Miss this connection, and your theory violates charge conserva-
tion. Get it right, and everything works out perfectly.

This constraint—the Ward identity—is gauge invariance making
itself felt at the quantum level. We’ve calculated two of the three
fundamental QED diagrams: vacuum polarization and the electron
self-energy. The third, the vertex correction, will complete our one-
loop picture. But more than that, it will reveal how gauge invariance
ties the whole structure together.

11.1 What the Vertex Correction Represents

The basic QED vertex describes the interaction between an electron
and a photon: an electron comes in, absorbs or emits a photon, and
an electron goes out. At tree level, this is simply:

−ieγµ

The vertex correction asks: what happens when we include quantum
corrections to this interaction? The simplest correction involves the
electron emitting a virtual photon before the interaction and reab-
sorbing it afterward (or vice versa).

Let’s draw this out carefully. We have an incoming electron with
momentum p, an outgoing electron with momentum p′, and an exter-
nal photon with momentum q = p′ − p. The vertex correction has the
electron emit a virtual photon (momentum k), then interact with the
external photon, then reabsorb the virtual photon.

What’s inside this diagram? An electron propagator for the elec-
tron between emitting and reabsorbing the virtual photon. Another
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electron propagator after the external interaction. A photon propaga-
tor for the virtual photon. And three vertices—two where the virtual
photon attaches, one where the external photon attaches. It’s more
complicated than what we’ve seen before, with three denominators to
combine.

Why does this matter physically? The vertex correction modifies
how the electron couples to the electromagnetic field. It changes both
the strength of the coupling (contributing to charge renormaliza-
tion) and the structure of the interaction (contributing to anomalous
magnetic moments and other effects). The fact that electrons have a
magnetic moment slightly different from Dirac’s prediction g = 2
comes precisely from this diagram.

11.2 Setting Up the Integral

Let’s write down the vertex correction using the Feynman rules. The
corrected vertex is:

−ieΓµ(p′, p) = −ieγµ

+ (−ie)3
∫ ddk

(2π)d γν i(/p′ − /k + m)

(p′ − k)2 −m2 γµ i(/p − /k + m)

(p− k)2 −m2 γν
−i
k2

(11.1)

Let me explain each piece:

• The three factors of (−ie) come from the three vertices

• γν is the vertex where the virtual photon is emitted

• The first electron propagator carries momentum p′ − k (after emit-
ting the virtual photon with momentum k)

• γµ is the vertex where the external photon attaches

• The second electron propagator carries momentum p− k

• γν is the vertex where the virtual photon is reabsorbed

• The photon propagator carries momentum k (in Feynman gauge)

Collecting terms, the one-loop correction to the vertex is:

Λµ(p′, p) = −e2
∫ ddk

(2π)d
γν(/p′ − /k + m)γµ(/p − /k + m)γν

[(p′ − k)2 −m2][(p− k)2 −m2][k2]
(11.2)

where I’ve dropped the iε terms for notational clarity (they’re always
there implicitly).

This integral has three propagators, which is more complicated
than the two-propagator integrals we encountered in vacuum polar-
ization and electron self-energy. We’ll need to combine them using
Feynman parameters for three denominators.
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11.3 Feynman Parameters for Three Propagators

The Feynman parameter formula for three denominators is:

1
ABC

= 2
∫ 1

0
dx
∫ 1−x

0
dy

1
[xA + yB + (1− x− y)C]3

This extends naturally from the two-propagator formula. The factor
of 2 comes from the factorial (n− 1)! = 2! for n = 3 propagators. The
integration region is the triangle x ≥ 0, y ≥ 0, x + y ≤ 1—a simplex
in parameter space.

Physically, the Feynman parameters x, y, and 1− x − y represent
how we weight the three propagators when combining them into a
single denominator. We’re trading the complexity of three separate
denominators for the complexity of integrating over these parame-
ters.

Let’s identify our three denominators:

A = (p′ − k)2 −m2 (11.3)

B = (p− k)2 −m2 (11.4)

C = k2 (11.5)

The combined denominator is:

D = xA+ yB+(1− x− y)C = x[(p′− k)2−m2]+ y[(p− k)2−m2]+ (1− x− y)k2

Let’s expand this carefully. First:

(p′ − k)2 = p′2 − 2p′ · k + k2 (11.6)

(p− k)2 = p2 − 2p · k + k2 (11.7)

So:

D = x[p′2 − 2p′ · k + k2 −m2] + y[p2 − 2p · k + k2 −m2] + (1− x− y)k2

(11.8)

= xp′2 + yp2 − 2(xp′ + yp) · k + [x + y + (1− x− y)]k2 − (x + y)m2

(11.9)

= xp′2 + yp2 − (x + y)m2 − 2(xp′ + yp) · k + k2 (11.10)

To complete the square, we shift k→ `+ xp′ + yp:

D = `2 − (xp′ + yp)2 + xp′2 + yp2 − (x + y)m2

Let’s simplify the constant term:

xp′2 + yp2 − (xp′ + yp)2 − (x + y)m2 (11.11)

= xp′2 + yp2 − x2 p′2 − y2 p2 − 2xyp′ · p− (x + y)m2 (11.12)

= x(1− x)p′2 + y(1− y)p2 − 2xyp′ · p− (x + y)m2 (11.13)
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For on-shell external electrons, p2 = p′2 = m2. Also, q = p′ − p, so
p′ · p = (p′2 + p2 − q2)/2 = m2 − q2/2. Substituting:

x(1− x)m2 + y(1− y)m2 − 2xy(m2 − q2/2)− (x + y)m2 (11.14)

= [x− x2 + y− y2 − 2xy− x− y]m2 + xyq2 (11.15)

= [−x2 − y2 − 2xy]m2 + xyq2 (11.16)

= −(x + y)2m2 + xyq2 (11.17)

Therefore:
D = `2 − ∆

where
∆ = (x + y)2m2 − xyq2

This is a key result. The parameter ∆ depends on the Feynman
parameters and the momentum transfer q2, but after shifting to `, the
loop momentum appears only as `2 in the denominator.

11.4 The Numerator Structure

The numerator of our vertex correction is:

Nµ = γν(/p′ − /k + m)γµ(/p − /k + m)γν

After shifting k→ `+ xp′ + yp, this becomes:

Nµ = γν(/p′ − /̀− x/p′ − y/p + m)γµ(/p − /̀− x/p′ − y/p + m)γν

Simplifying the terms in parentheses:

/p′ − x/p′ − y/p = (1− x)/p′ − y/p (11.18)

/p − x/p′ − y/p = −x/p′ + (1− y)/p (11.19)

So:

Nµ = γν[(1− x)/p′ − y/p − /̀ + m]γµ[−x/p′ + (1− y)/p − /̀ + m]γν

This is where the calculation becomes intricate. The numerator is a
polynomial in `:

Nµ = Nµ
0 + Nµ

1 + Nµ
2

where Nµ
n contains n powers of `.

The term quadratic in ` is:

Nµ
2 = γν/̀γµ/̀γν

The terms linear in ` are:

Nµ
1 = −γν/̀γµ[−x/p′+(1− y)/p +m]γν−γν[(1− x)/p′− y/p +m]γµ/̀γν
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The term independent of ` is:

Nµ
0 = γν[(1− x)/p′ − y/p + m]γµ[−x/p′ + (1− y)/p + m]γν

Now, when we integrate over `, terms odd in ` vanish by symme-
try. Specifically, Nµ

1 integrates to zero. What about Nµ
2 ?

For the quadratic term, we use the fact that in dimensional regu-
larization: ∫ dd`

(2π)d
`α`β

(`2 − ∆)3 =
gαβ

d

∫ dd`

(2π)d
`2

(`2 − ∆)3

This replacement `α`β → (gαβ/d)`2 follows from rotational symmetry
in d dimensions.

So we need to evaluate:

γνγαγµγαγν = γν(2gµα − γµγα)γαγν

Using γαγα = d and γνγν = d:

γνγαγµγαγν = γν(2γµ − dγµ)γν = (2− d)γνγµγν = (2− d)2γµ

In d = 4− ε dimensions, (2− d)2 = (2− 4 + ε)2 = (−2 + ε)2 =

4− 4ε +O(ε2).

11.5 The Divergent and Finite Parts

Let’s focus on isolating the divergent part of the vertex correction.
The full integral is:

Λµ(p′, p) = −e2 · 2
∫ 1

0
dx
∫ 1−x

0
dy
∫ dd`

(2π)d
Nµ

(`2 − ∆)3

The divergent part comes from the `2 terms in the numerator.
Using our master integral:

∫ dd`

(2π)d
`2

(`2 − ∆)n =
d
2

i(−1)n

(4π)d/2
Γ(n− 1− d/2)

Γ(n)
1

∆n−1−d/2

For n = 3 and d = 4− ε:∫ dd`

(2π)d
`2

(`2 − ∆)3 =
d
2
· −i
(4π)d/2 ·

Γ(1− d/2)
2

· ∆d/2−1

Near d = 4, Γ(1− d/2) = Γ(−1 + ε/2) has a pole. Using Γ(−1 +

ε/2) = − 2
ε + (γ− 1) +O(ε):

∫ dd`

(2π)d
`2

(`2 − ∆)3 =
−i

(4π)2

(
−1

ε

)
+ finite
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For the `-independent term Nµ
0 :

∫ dd`

(2π)d
1

(`2 − ∆)3 =
−i

(4π)d/2
Γ(3− d/2)

Γ(3)
1

∆3−d/2

For d = 4− ε, Γ(3− d/2) = Γ(1 + ε/2) = 1 +O(ε), so this integral is
finite.

The key result is that the vertex correction has a UV divergence
proportional to γµ. After a careful calculation (which involves consid-
erable gamma matrix algebra), the divergent part is:

Λµ
div =

α

4π

2
ε̄

γµ =
α

2πε̄
γµ

This means the one-loop corrected vertex is:

Γµ = γµ + Λµ = γµ
(

1 +
α

2πε̄

)
+ finite

We absorb this divergence into the vertex counterterm δ1:

δ1 = − α

2πε̄
+ finite

The renormalization constant Z1 is then:

Z1 = 1 + δ1 = 1− α

2πε̄
+O(α2)

11.6 The Ward-Takahashi Identity

Now comes an important result. Recall from the electron self-energy
calculation that:

Z2 = 1− α

2πε̄
+O(α2)

Comparing with our vertex result:

Z1 = 1− α

2πε̄
+O(α2)

We find Z1 = Z2 to one-loop order! This is not a coincidence. It’s
a consequence of gauge invariance, encoded in the Ward-Takahashi
identity.

The Ward-Takahashi identity relates the vertex function to the
electron propagator:

qµΓµ(p′, p) = S−1(p′)− S−1(p)

where S(p) is the full electron propagator and q = p′ − p.
Let’s understand what this means. The left side contracts the ver-

tex with the photon momentum qµ. The right side is the difference
of inverse propagators at the two electron momenta. This identity
connects how electrons couple to photons with how they propagate.
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At tree level, Γµ = γµ and S−1(p) = /p −m, so:

qµγµ = /q = /p′ − /p = (/p′ −m)− (/p −m) = S−1
0 (p′)− S−1

0 (p)X

The identity holds at tree level. But the key claim is that it holds to
all orders in perturbation theory, as a consequence of gauge invari-
ance.

11.7 Why the Ward Identity Implies Z1 = Z2

Let’s see how the Ward-Takahashi identity constrains the renormal-
ization constants. The full (renormalized) vertex and propagator can
be written:

Γµ = Z−1
1 Γµ

R, S = Z2SR

where the subscript R denotes renormalized quantities.
The Ward-Takahashi identity in terms of bare quantities is:

qµΓµ = S−1(p′)− S−1(p)

In terms of renormalized quantities:

qµZ−1
1 Γµ

R = Z−1
2 S−1

R (p′)− Z−1
2 S−1

R (p)

For this to be consistent with the Ward identity for renormalized
quantities:

qµΓµ
R = S−1

R (p′)− S−1
R (p)

we need:

Z−1
1 = Z−1

2

or equivalently Z1 = Z2.
This is an important result. Gauge invariance, through the Ward

identity, forces the vertex renormalization to match the wave function
renormalization. The physical electron charge eR is related to the bare
charge by:

eR = Z1Z−1
2 Z1/2

3 e0 = Z1/2
3 e0

where I used Z1 = Z2. The charge renormalization comes entirely
from Z3, the photon wave function renormalization!

This explains why all charged particles, regardless of their other
properties, couple to photons with the same renormalized charge.
The electron and muon, despite having different masses and different
self-energy corrections, have exactly the same electric charge after
renormalization. This universality is protected by gauge invariance.
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11.8 Physical Origin of the Ward Identity

Where does the Ward identity come from physically? It’s a conse-
quence of charge conservation.

Consider the electromagnetic current:

jµ(x) = ψ̄(x)γµψ(x)

Current conservation says ∂µ jµ = 0, or in momentum space, qµ jµ = 0
when q is the momentum carried by the current.

The vertex function Γµ is essentially the matrix element of the
current between electron states:

〈p′|jµ(0)|p〉 ∼ ū(p′)Γµ(p′, p)u(p)

Current conservation requires:

qµ〈p′|jµ(0)|p〉 = 0 when electrons are on-shell

But there’s a subtlety. For off-shell electrons, the current isn’t ex-
actly conserved—there’s a contribution from the electron’s "charge
density." The Ward-Takahashi identity captures this precisely:

qµΓµ = S−1(p′)− S−1(p)

When the electrons are on-shell, S−1(p)u(p) = 0 and ū(p′)S−1(p′) =
0, so the right side vanishes and we recover exact current conserva-
tion for physical scattering.

The Ward identity is the quantum field theory incarnation of
gauge invariance. Just as gauge invariance in classical electrodynam-
ics implies charge conservation, in QFT it implies the Ward identity,
which in turn constrains the renormalization of the theory.

11.9 The On-Shell Renormalization Scheme

We’ve now calculated all three one-loop divergent diagrams in QED:

1. Vacuum polarization: renormalizes the photon propagator, gives
Z3

2. Electron self-energy: renormalizes the electron mass and propaga-
tor, gives δm and Z2

3. Vertex correction: renormalizes the electron-photon coupling,
gives Z1 (but Z1 = Z2 by Ward)

Let’s put this together in the on-shell renormalization scheme. The
idea is to define the renormalized parameters in terms of physical
observables:
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Mass renormalization: The physical electron mass m is the pole of
the full propagator:

S−1(p)
∣∣

p2=m2 = 0

This fixes δm such that the renormalized mass equals the physical
mass.

Wave function renormalization: The residue of the propagator
pole equals i:

lim
p2→m2

(/p −m)S(p) = i

This fixes Z2.
Charge renormalization: The electron-photon vertex at zero mo-

mentum transfer equals the physical charge:

ū(p)Γµ(p, p)u(p) = ū(p)γµu(p)

Combined with Z1 = Z2 from the Ward identity, this determines Z3

and hence the running of the coupling.
In this scheme, the renormalized electron mass and charge are

directly the physical, measurable values. The scheme is physically
transparent: when you measure the electron mass, you get mR; when
you measure the electron charge, you get eR.

11.10 Structure of the Finite Part

The vertex correction has a finite part after renormalization, and this
finite part has important physical consequences. The most famous
is the anomalous magnetic moment, which we’ll derive in detail in a
later chapter.

The general structure of the vertex function, constrained by Lorentz
invariance and parity, is:

Γµ(p′, p) = γµF1(q2) +
iσµνqν

2m
F2(q2)

where σµν = i
2 [γ

µ, γν] and F1, F2 are form factors depending only on
q2 = (p′ − p)2.

The form factor F1(q2) is the electric form factor, related to charge
distribution. At q2 = 0:

F1(0) = 1

This is fixed by charge conservation (or equivalently, the Ward iden-
tity).

The form factor F2(q2) is the magnetic form factor. At tree level,
F2 = 0. But the vertex correction generates:

F2(0) =
α

2π
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This is Schwinger’s famous result for the anomalous magnetic
moment. The electron’s magnetic moment is:

µ =
e

2m

(
1 +

α

2π

)
The factor in parentheses is g/2, so:

g− 2
2

=
α

2π
≈ 0.00116

This prediction, first calculated by Schwinger in 1948, was one
of the first triumphs of renormalized QED. The current theoretical
value, computed to tenth order in α, matches experiment to about
10 significant figures—arguably the most precise agreement between
theory and experiment in all of physics.

11.11 The Infrared Divergence

There’s a subtlety we’ve glossed over. The vertex correction integral
also has an infrared divergence—a divergence from the k → 0 region
of the loop integral.

This happens because the photon propagator 1/k2 becomes sin-
gular as k → 0. Physically, this reflects the fact that an accelerating
electron emits an infinite number of very soft (low-energy) photons.
Any electron scattering process is accompanied by this cloud of soft
radiation.

The resolution is that the infrared divergence in the vertex cor-
rection cancels against a corresponding divergence in the emission
of real soft photons. When you ask a physical question—like "what
is the cross section for electron scattering?"—you must include both
virtual corrections (the vertex correction) and real emission (soft
bremsstrahlung). The infrared divergences cancel, leaving a finite,
measurable result.

This cancellation is guaranteed by the Bloch-Nordsieck theorem.
It reflects a deep feature of gauge theories: you cannot prepare or
detect a single charged particle in isolation. The electron always
comes with its cloud of soft photons. Physical observables, properly
defined, are always infrared finite.

For our purposes, we can regulate the infrared divergence by
giving the photon a small mass λ, compute the vertex correction,
and verify that the UV structure we’ve discussed is unchanged. The
infrared physics is important for detailed predictions but doesn’t
affect the renormalization program.
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11.12 Summary: The Three QED Divergences

Let’s collect what we’ve learned about the three divergent one-loop
diagrams in QED:

Vacuum polarization (Chapter 9):

Πµν(q2) = (q2gµν − qµqν)Π(q2)

with
Π(q2) =

2α

3πε̄
+ finite

This gives Z3 = 1− 2α
3πε̄ +O(α2).

Electron self-energy (Chapter 10):

Σ(p) = A(p2)/p + B(p2)m

The divergent parts give Z2 = 1− α
2πε̄ +O(α2) and mass counterterm

δm = 3αm
2πε̄ .

Vertex correction (this chapter):

Λµ =
α

2πε̄
γµ + finite

This gives Z1 = 1− α
2πε̄ +O(α2).

The Ward identity guarantees Z1 = Z2, so the charge renormaliza-
tion is:

eR = Z1/2
3 e0 =

(
1− α

3πε̄

)
e0 +O(α2)

All three divergent diagrams have been tamed. The theory is
renormalizable: a finite number of counterterms absorb all diver-
gences, and physical predictions are finite and unambiguous.

11.13 What Renormalization Has Achieved

We started this investigation because loop diagrams gave infinite
answers. Now we see that these infinities have a systematic structure:

• They appear only in a finite number of diagrams (vacuum polar-
ization, self-energies, vertex corrections)

• They can be absorbed into redefinitions of the parameters in the
Lagrangian

• Gauge invariance (the Ward identity) constrains them, reducing
the number of independent counterterms

• After renormalization, physical predictions are finite and unam-
biguous



126 lectures on qft and renormalization

The renormalized theory makes predictions. The electron’s mag-
netic moment differs from 2 by a calculable amount. The effective
charge varies with energy scale in a calculable way. Scattering cross
sections can be computed to arbitrary precision, limited only by our
ability to evaluate higher-loop diagrams.

This is the triumph of renormalization: what seemed like a fatal
disease of quantum field theory turned out to be a systematic feature
with a consistent cure. The infinities were never really physical—they
were artifacts of pretending that our theory is valid to arbitrarily high
energies. Once we acknowledge that QED is an effective theory and
absorb the high-energy ignorance into the renormalized parameters,
all is well.

In the next chapter, we’ll explore the running of the coupling con-
stant in more detail, deriving the beta function and understanding
what the Landau pole tells us about the theory’s regime of validity.



12
The Running Coupling

We have renormalized QED. The infinities are gone, absorbed into
counterterms that redefine the parameters of the theory. But some-
thing strange emerged along the way: the renormalized coupling
constant depends on an arbitrary scale µ. This seems troubling—
surely the physics shouldn’t depend on an arbitrary choice we made
in the calculation?

It doesn’t. The resolution is that while the coupling α(µ) depends
on µ, physical observables do not. The µ-dependence in the coupling
is exactly compensated by µ-dependence elsewhere in the calculation.
This compensation is guaranteed by the renormalization group.

But there’s something physically meaningful here too. The "run-
ning" of α with µ reflects a real physical effect: the effective strength
of the electromagnetic interaction depends on the energy scale at
which you probe it. At low energies (large distances), the electron’s
charge is screened by virtual pairs; at high energies (short distances),
you penetrate this screening and see a larger effective charge.

12.1 Where Does the Scale µ Come From?

Let’s recall where the renormalization scale appeared. In dimensional
regularization, we work in d = 4 − ε dimensions. The coupling
constant e has mass dimension (4− d)/2 = ε/2. To keep the coupling
dimensionless, we introduce a mass scale µ and replace:

e→ eµε/2

where e is now dimensionless and µ is an arbitrary mass scale.
When we compute loop integrals and expand in ε, factors of log µ

appear. For example, the vacuum polarization gives:

Π(q2) = − α

3π

[
2
ε
− γ + log(4π)− log

−q2

µ2 + · · ·
]

The divergent 2/ε term gets absorbed into the counterterm. The
finite log(−q2/µ2) term remains in physical predictions. If we change
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µ, this logarithm changes—but so does the counterterm we use, in
exactly the compensating way.

The key insight is that µ is not a parameter of nature; it’s a book-
keeping device. We’re free to choose any µ we like. But the most
useful choice is often µ2 ∼ −q2, because then the logarithm is small
and perturbation theory converges well.

12.2 The Beta Function

The µ-dependence of the coupling is encoded in the beta function:

β(α) = µ
∂α

∂µ

This tells us how fast α changes as we vary the renormalization scale.
Let’s derive the beta function for QED from our vacuum polariza-

tion calculation. The bare coupling e0 is independent of µ (it’s a fixed
parameter in the Lagrangian). The renormalized coupling is:

e = Z−1/2
3 e0µε/2

where we’ve included the factor of µε/2 from dimensional regulariza-
tion.

From Chapter 9, the vacuum polarization gives:

Z3 = 1− 2α

3πε
+O(α2)

so
Z−1/2

3 = 1 +
α

3πε
+O(α2)

The renormalized charge is:

e =
(

1 +
α

3πε

)
e0µε/2

Since e0 is µ-independent, we can take µ∂/∂µ of both sides. Using
α = e2/(4π):

µ
∂e
∂µ

=
ε

2
e +

e3

48π2ε
µ

∂

∂µ
(1) + · · ·

Wait, let me be more careful. The subtlety is that α itself depends
on µ through e. Let’s write this out systematically.

Define α0 = e2
0/(4π) (bare) and α = e2/(4π) (renormalized). Then:

α = Z−1
3 α0µε

where µε comes from the two factors of µε/2 in the relation between e
and e0.

Taking the log:

log α = − log Z3 + log α0 + ε log µ
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Differentiating with respect to log µ:

µ

α

∂α

∂µ
= − µ

Z3

∂Z3

∂µ
+ ε

Here’s the key: Z3 depends on µ only through α(µ). So:

µ

Z3

∂Z3

∂µ
=

1
Z3

∂Z3

∂α
µ

∂α

∂µ

With Z3 = 1− 2α/(3πε) +O(α2):

∂Z3

∂α
= − 2

3πε
+O(α)

Putting it together:

β(α) = µ
∂α

∂µ
= α

[
ε +

α

3πεZ3
β(α)

]
This is an implicit equation for β. To solve it perturbatively, as-

sume β = εα + β1α2 +O(α3). Substituting:

εα + β1α2 = αε +
α2

3πε
· εα +O(α3)

Hmm, this is getting complicated because of the ε-dependence. Let
me take a cleaner approach.

12.3 The Beta Function: A Cleaner Derivation

The cleanest way to derive the beta function is to note that bare quan-
tities are independent of µ, while renormalized quantities may de-
pend on µ. The condition:

µ
d

dµ
(bare quantity) = 0

generates the renormalization group equations.
For the coupling, α0 = Z3αµ−ε is µ-independent. Therefore:

0 = µ
d

dµ
(Z3αµ−ε) = µ−ε

[
µ

dZ3

dµ
α + Z3µ

dα

dµ
− εZ3α

]
Rearranging:

β(α) = µ
dα

dµ
= εα− α

Z3
µ

dZ3

dµ

Now, Z3 depends on µ only through α:

µ
dZ3

dµ
=

∂Z3

∂α
β(α)

So:
β = εα− α

Z3

∂Z3

∂α
β
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Solving for β:

β

(
1 +

α

Z3

∂Z3

∂α

)
= εα

β =
εα

1 + α
Z3

∂Z3
∂α

With Z3 = 1− 2α
3πε +O(α2), we have ∂Z3

∂α = − 2
3πε +O(α), and:

α

Z3

∂Z3

∂α
= α · 1 ·

(
− 2

3πε

)
+O(α2) = − 2α

3πε

Therefore:

β =
εα

1− 2α
3πε

= εα

(
1 +

2α

3πε
+O(α2)

)
= εα +

2α2

3π
+O(α3, εα2)

Now we take ε → 0 (return to d = 4). The εα term vanishes,
leaving:

β(α) =
2α2

3π
+O(α3)

This is the one-loop beta function for QED. It’s positive, meaning
the coupling increases with µ.

12.4 Physical Interpretation: Charge Screening

What does a positive beta function mean? As we increase µ—probing
the theory at higher energies or shorter distances—the effective cou-
pling α(µ) grows.

The physical picture is charge screening. The vacuum around an
electron is not empty; it’s a sea of virtual electron-positron pairs.
These pairs are polarized by the electron’s field: the virtual positrons
are attracted toward the electron, while the virtual electrons are re-
pelled. This creates a "polarization cloud" that partially screens the
electron’s bare charge.

At large distances (low energies), you see the fully screened
charge. As you probe at shorter distances (higher energies), you
penetrate the screening cloud and see more of the bare charge. Hence
the effective charge increases with energy.

Let’s make this quantitative. The running coupling satisfies:

µ
dα

dµ
=

2α2

3π

This is a separable differential equation:

dα

α2 =
2dµ

3πµ
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Integrating from µ0 to µ:

− 1
α(µ)

+
1

α(µ0)
=

2
3π

log
µ

µ0

Solving for α(µ):

α(µ) =
α(µ0)

1− 2α(µ0)
3π log µ

µ0

Let’s put in numbers. At low energies (say µ0 = me ≈ 0.5 MeV),
the fine structure constant is α(me) ≈ 1/137. What is α at the Z boson
mass, µ = MZ ≈ 91 GeV?

The logarithm is:

log
MZ
me

= log
91× 109 eV
0.5× 106 eV

≈ log(1.8× 105) ≈ 12

The correction factor:

2α(me)

3π
log

MZ
me
≈ 2

137× 3π
× 12 ≈ 24

1290
≈ 0.019

So:
α(MZ) ≈

1/137
1− 0.019

≈ 1/137
0.981

≈ 1
134

Wait, this seems like a tiny effect. But I’ve neglected something
important: other charged particles contribute to vacuum polarization
too! The muon, tau, and quarks all create virtual pairs that screen the
charge.

Including all Standard Model charged particles, the actual value is:

α(MZ) ≈
1

128

The coupling increases by about 7% from atomic scales to elec-
troweak scales. This running has been measured experimentally and
matches the theoretical prediction well.

12.5 The Landau Pole

Look again at the formula for the running coupling:

α(µ) =
α(µ0)

1− 2α(µ0)
3π log µ

µ0

As µ increases, the denominator decreases. Eventually, for large
enough µ, the denominator vanishes. This happens when:

log
µ

µ0
=

3π

2α(µ0)
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µ = µ0 exp
(

3π

2α(µ0)

)
At this scale, α(µ)→ ∞. This is the Landau pole.
Let’s estimate its location. Taking µ0 = me and α(me) = 1/137:

µLandau = me exp(3π × 137/2) = me exp(646)

This is an absurdly large number. The scale is roughly:

µLandau ∼ 10280 eV

For comparison, the Planck energy is about 1028 eV, and the
mass of the observable universe expressed in electron masses is
roughly 1080. The Landau pole is at an energy scale that is physi-
cally meaningless—it’s so far beyond any conceivable experiment
that it might as well be at infinity.

12.6 What the Landau Pole Tells Us

The Landau pole seems like a problem: the coupling constant be-
comes infinite, and perturbation theory certainly breaks down. But
what does this really mean?

Option 1: QED is incomplete. The Landau pole might signal that
QED must be embedded in a larger theory before that scale. In fact,
we know this is true: QED is part of the electroweak theory, which is
itself part of the Standard Model. Long before we reach the Landau
pole, QED merges with the weak interaction, and the relevant physics
changes completely.

Option 2: Perturbation theory fails. The Landau pole appears in
perturbative calculations. Perhaps non-perturbative effects become
important well before the pole and change the behavior. This is diffi-
cult to check because we don’t have good non-perturbative tools for
QED.

Option 3: The theory becomes trivial. Some argue that if you try
to take the continuum limit of QED (removing the UV cutoff while
holding physical quantities fixed), the only consistent result is a free,
non-interacting theory. This "triviality" problem is related to the
Landau pole but distinct from it.

The practical resolution is simple: we don’t worry about the Lan-
dau pole because it’s at an energy scale where QED isn’t the right
theory anyway. QED is an effective theory, valid at energies well be-
low the electroweak scale. Within its domain of validity, QED makes
extraordinarily precise predictions. The Landau pole lies far, far out-
side this domain.
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12.7 Comparison with Asymptotic Freedom

QED’s positive beta function is not universal. In some theories, the
beta function is negative, and the coupling decreases at high energies.
This is called asymptotic freedom.

The most famous example is quantum chromodynamics (QCD),
the theory of the strong interaction. For QCD with Nc = 3 colors and
N f quark flavors:

β(g) = − g3

16π2

(
11Nc

3
−

2N f

3

)
With Nc = 3 and N f = 6 (or fewer at low energies):

β(g) < 0

The strong coupling is large at low energies (explaining why
quarks are confined inside hadrons) and small at high energies (ex-
plaining why high-energy quarks behave almost freely—"asymptotic
freedom").

The discovery of asymptotic freedom by Gross, Wilczek, and
Politzer in 1973 was revolutionary. It explained the paradox of "par-
ton" behavior in deep inelastic scattering: quarks inside protons act
almost free when probed at high energies, even though they’re per-
manently confined.

Why does QED have a positive beta function while QCD has a
negative one? In both cases, there are competing contributions:

• Fermion loops contribute positively to the beta function (screen-
ing)

• Gauge boson self-interactions contribute negatively (anti-screening)

In QED, photons don’t self-interact (they’re electrically neutral), so
there’s only the positive fermion contribution. In QCD, gluons carry
color charge and do self-interact. Their contribution dominates (as
long as there aren’t too many quark flavors), making the total beta
function negative.

12.8 The Renormalization Group Equation

We’ve been discussing how α runs with µ. But the renormalization
group is more general: it tells us how any physical quantity depends
on µ.

Consider a physical observable O computed in perturbation the-
ory. It depends on the coupling α, the renormalization scale µ, and
some physical momentum scale Q:

O = O(α(µ), µ, Q)
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The key insight is that O represents a physical measurement, and
physical measurements can’t depend on our arbitrary choice of µ.
Therefore:

µ
dO
dµ

= 0

Expanding this using the chain rule:

µ
∂O
∂µ

+ β(α)
∂O
∂α

= 0

This is the renormalization group equation (RGE). It relates the
explicit µ-dependence in O to the implicit µ-dependence through α.

If we compute O to a given order in perturbation theory, both
terms in the RGE are nonzero—they only cancel exactly when we
sum to all orders. But the RGE tells us how to improve perturbative
calculations: choose µ ∼ Q so that the logarithms log(Q/µ) are
small.

This is the practical art of using the renormalization group. At
any given order in perturbation theory, our answer depends on µ. By
choosing µ wisely, we minimize the higher-order terms we’re neglect-
ing. The running of α(µ) resums certain classes of large logarithms,
improving the convergence of perturbation theory.

12.9 Connecting to the Wilsonian Picture

In earlier chapters, we discussed two perspectives on renormaliza-
tion:

• The Wilsonian view: start with a UV theory, integrate out high-
energy modes, flow to the IR

• The particle physics view: measure parameters at some scale, use
the RGE to predict at other scales

Let’s see how the running coupling connects these perspectives.
In the Wilsonian picture, imagine starting with QED defined at

a cutoff scale Λ. The bare coupling α0 is the coupling at that scale.
As we lower the cutoff (integrate out modes between Λ and Λ′),
the effective coupling changes. The beta function tells us the rate of
change:

Λ
∂α

∂Λ
= β(α)

This is the same equation we derived! Both equations have β on
the right-hand side with the same sign. The difference is only in
what we call the scale: Wilsonians call it Λ (a cutoff), while particle
physicists call it µ (a renormalization point). Lowering Λ in Wilson’s
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picture and raising µ in the particle physics picture both correspond
to probing shorter distances.

In the particle physics picture, we measure α at some scale µ0 (say,
via the electron’s magnetic moment or low-energy scattering). The
RGE tells us α at any other scale:

α(µ) =
α(µ0)

1− 2α(µ0)
3π log µ

µ0

Both pictures describe the same physics: the effective coupling
depends on the energy scale. The Wilsonian picture asks "starting
from the UV, what’s the IR physics?" The particle physics picture asks
"given measurements at one scale, what happens at another?" The
beta function answers both questions.

12.10 Running and Physical Predictions

Let’s see how running affects a physical prediction. Consider the
cross section for e+e− → µ+µ− at center-of-mass energy

√
s.

At tree level:

σ0 =
4πα2

3s
But which α should we use? The cross section involves a photon

propagator at momentum q2 = s. Including the one-loop vacuum
polarization correction:

σ =
4πα2

3s
|1−Π(s)|−2

The vacuum polarization Π(s) contains log(s/µ2), which is large if
µ2 � s. But we can choose µ2 = s, so the logarithm vanishes. Then
all the physics is absorbed into α(µ =

√
s):

σ =
4πα(

√
s)2

3s

[
1 +O(α2)

]
The running coupling automatically resums the leading loga-

rithms. Instead of having α2× [1+ α log(s/m2
e )+ α2 log2(s/m2

e )+ · · · ],
we have α(

√
s)2 × [1 +O(α2)]. The infinite series of logarithms is hid-

den inside the running coupling.
This is the power of the renormalization group: it reorganizes

perturbation theory to make the important physics manifest.

12.11 Higher-Loop Contributions

Our one-loop beta function β(α) = 2α2/(3π) is just the leading term.
Higher loops contribute:

β(α) =
2α2

3π
+

α3

2π2 +O(α4)
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The two-loop coefficient has been calculated; the three-loop and
four-loop coefficients are also known. These higher-order terms affect
the running at high precision.

The general structure is:

β(α) = 2α
∞

∑
n=0

βn

( α

4π

)n+1

For QED with one charged fermion:

β0 =
4
3

(12.1)

β1 = 4 (12.2)

β2 = known (12.3)

... (12.4)

Let’s verify: the one-loop term is 2α · β0 · (α/(4π)) = 2α · (4/3) ·
(α/(4π)) = 2α2/(3π), confirming the conventions.

For precision physics—like the anomalous magnetic moment—
these higher-order terms matter. The running of α must be computed
consistently to whatever order you’re working.

12.12 Summary

The running coupling α(µ) is one of the most important results in
quantum field theory. Let’s summarize what we’ve learned:

The physics: The effective charge depends on the distance scale at
which you probe it. Virtual electron-positron pairs screen the charge
at large distances. Probing at shorter distances (higher energies)
penetrates this screening and reveals more of the bare charge.

The mathematics: The beta function β(α) = µ dα/dµ encodes this
running. For QED, β > 0, so α increases with µ.

The formula:

α(µ) =
α(µ0)

1− 2α(µ0)
3π log µ

µ0

The numbers: From α(me) ≈ 1/137 to α(MZ) ≈ 1/128, the
coupling increases by about 7% over 5 orders of magnitude in energy.

The Landau pole: The coupling formally diverges at exponen-
tially high energies. This doesn’t matter in practice because QED is
replaced by more fundamental physics long before that scale.

The renormalization group: Physical observables are independent
of µ. This constraint, µ dO/dµ = 0, is the renormalization group
equation. It tells us how to resum large logarithms by choosing µ

appropriately.
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The connection to Wilson: The particle physics running coupling
is the same as the Wilsonian effective coupling, just described from
a different perspective. The beta function connects measurements
at different scales, regardless of whether you’re thinking UV→IR or
asking about predictions from measurements.

With the running coupling in hand, we’re ready for the crown
jewel of QED calculations: the anomalous magnetic moment of the
electron.





13
The Anomalous Magnetic Moment

In the late 1940s, experimentalists started getting numbers that didn’t
quite match Dirac’s beautiful prediction g = 2 for the electron’s
magnetic moment. The discrepancy was tiny—a tenth of a percent—
but it was real. Something was missing from the theory.

That something was quantum corrections. Schwinger showed in
1948 that when you include the effect of virtual photons—the same
vertex correction we computed in the last chapter—you get a shift in
g. The calculation is delicate, but the result is simple and beautiful.
And when theory and experiment are compared today, they agree
to about one part in a trillion. This is the most precise test of any
physical theory, ever.

In this chapter, we’ll derive Schwinger’s result:

g− 2
2

=
α

2π

This calculation brings together everything we’ve developed: Feyn-
man diagrams, regularization, renormalization, and the structure of
QED vertices.

13.1 What Is the Magnetic Moment?

A charged particle with spin has a magnetic moment. Classically,
we’d expect the magnetic moment to be related to the angular mo-
mentum by:

µ =
q

2m
L

This is the magnetic moment of a current loop: charge moving in a
circle creates a magnetic dipole proportional to the angular momen-
tum.

For a quantum particle with spin S, we write:

µ = g
q

2m
S
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where g is the gyromagnetic ratio, or g-factor. The classical expecta-
tion would be g = 1, but spin is intrinsically quantum mechanical, so
there’s no reason to expect this.

The Dirac equation predicts g = 2 for a spin-1/2 particle. This was
one of its early triumphs—it correctly predicted the electron’s mag-
netic moment without any free parameters. But when measurements
became precise enough in the late 1940s, tiny deviations from g = 2
were observed. These deviations, quantified by a = (g− 2)/2, are the
"anomalous" magnetic moment.

13.2 Why g = 2 from the Dirac Equation

Let’s understand where g = 2 comes from. The Dirac equation for an
electron in an external electromagnetic field is:

(i /D−m)ψ = 0

where /D = γµDµ and Dµ = ∂µ + ieAµ is the covariant derivative.
Consider a non-relativistic electron in a weak magnetic field. We

can expand the Dirac equation to find the effective Hamiltonian.
After some algebra (which we’ll sketch), the result is:

H =
p2

2m
− e

m
S · B + · · ·

where S = 1
2 σ is the spin operator (with σ the Pauli matrices).

Comparing with the general form H = −µ · B and µ = g(e/2m)S,
we read off g = 2.

The key point is that the Dirac equation, with its minimal coupling
Dµ = ∂µ + ieAµ, automatically gives g = 2. Any deviation from g = 2
must come from physics beyond minimal coupling—namely, from
quantum fluctuations.

13.3 The Vertex Function and Form Factors

We saw in Chapter 11 that the full QED vertex has the structure:

Γµ(p′, p) = γµF1(q2) +
iσµνqν

2m
F2(q2)

where q = p′ − p is the momentum transfer, σµν = i
2 [γ

µ, γν], and F1,
F2 are form factors.

This decomposition follows from Lorentz invariance and the prop-
erties of the vertex (parity, hermiticity). The two terms represent the
only independent Lorentz structures that can appear.

At tree level, Γµ = γµ, so F(0)
1 = 1 and F(0)

2 = 0.
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The form factor F1(q2) is called the electric (or Dirac) form factor.
It describes how the electron’s charge distribution looks at different
resolution scales.

The form factor F2(q2) is the magnetic (or Pauli) form factor. It
contributes to the magnetic moment. The connection is:

a =
g− 2

2
= F2(0)

So the anomalous magnetic moment equals the Pauli form factor at
zero momentum transfer.

13.4 Setting Up the Calculation

The one-loop correction to the vertex comes from the diagram we
analyzed in Chapter 11. The vertex correction is:

Λµ(p′, p) = −e2
∫ ddk

(2π)d
γν(/p′ − /k + m)γµ(/p − /k + m)γν

[(p′ − k)2 −m2][(p− k)2 −m2][k2]

To extract F2(0), we need the coefficient of the σµνqν structure at
q2 = 0. At first, this seems like it might require a tedious extraction
from a complicated expression. But there’s a clever approach: we can
use Gordon identities and the structure of the calculation to isolate F2

directly.
The Gordon identity relates γµ to σµν:

ū(p′)γµu(p) = ū(p′)
[

p′µ + pµ

2m
+

iσµνqν

2m

]
u(p)

This identity, which follows from the Dirac equation (/pu(p) =

mu(p)), shows that on-shell, γµ can be decomposed into a "convec-
tive" part (p′ + p)µ/2m and a "spin" part iσµνqν/2m.

The strategy is: compute the vertex correction, use the Gordon
identity to isolate the σµν piece, and extract F2(0).

13.5 The Calculation

We use Feynman parameters to combine the three propagators:

Λµ = −e2 · 2
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d
Nµ

D3

where D = (k− xp′ − yp)2 − ∆ after shifting k, and ∆ = (x + y)2m2 −
xyq2.

At q2 = 0 and on-shell (p2 = p′2 = m2, q = p′ − p), we have:

∆ = (x + y)2m2
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The numerator is:

Nµ = γν[(1− x)/p′ − y/p − /̀ + m]γµ[−x/p′ + (1− y)/p − /̀ + m]γν

where ` = k− xp′ − yp is the shifted loop momentum.
Terms odd in ` vanish upon integration. The remaining terms are:

Nµ = Nµ
0 + Nµ

2

where Nµ
0 is independent of ` and Nµ

2 is quadratic in `.
For extracting F2(0), we need the finite part of the integral. The

divergent part (which we already computed) is proportional to γµ

and contributes only to F1. The σµν piece is finite.
Let’s focus on extracting the finite σµν contribution. This comes

from Nµ
0 .

13.6 Evaluating the Numerator

We have:

Nµ
0 = γν[(1− x)/p′ − y/p + m]γµ[−x/p′ + (1− y)/p + m]γν

This is a product of gamma matrices. Let’s denote:

A = (1− x)/p′ − y/p + m (13.1)

B = −x/p′ + (1− y)/p + m (13.2)

Then Nµ
0 = γν AγµBγν.

Using gamma matrix contraction identities (like γνγµγν = −2γµ in
4 dimensions), this gets complicated. Let’s be more systematic.

First, we use γνγαγµγβγν = 4gαβγµ − 2γβγµγα (in 4 dimensions).
Actually, let’s take a different approach. The most efficient method

uses the trace and projection properties. For the anomalous magnetic
moment, we can use a clever shortcut.

The F2(q2) form factor can be extracted using:

F2(q2) = −m
q2 Tr

[
Λµ(p′, p) · (/p′ + m) · γµ · (/p + m)

]
/Tr[· · · ]

But at q2 = 0, this involves a 0/0 limit. Instead, let’s use the ex-
plicit structure.

The key observation is that F2 arises from the part of Λµ that is
antisymmetric in µ and ν when contracted with qν. We can write:

ū(p′)Λµu(p) = ū(p′)[Aγµ + B(p′ + p)µ/m + C iσµνqν/2m]u(p)

The B term doesn’t contribute on-shell (it’s the same as the γµ

term by Gordon). The F2 contribution is C, which we extract by look-
ing at terms that produce σµνqν.
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13.7 A Direct Approach to F2(0)

Let’s use a more direct method. We want to extract the part of the
vertex correction that contributes to the magnetic moment. For an
electron at rest in a static magnetic field, this corresponds to looking
at the spatial components of the vertex with q0 = 0, q→ 0.

Schwinger’s original calculation used a similar physical argument.
Here’s a streamlined version.

At q → 0, we work to first order in q. The vertex correction be-
comes:

Λµ(p′, p) = Λµ(p, p) + qρ ∂Λµ

∂p′ρ

∣∣∣∣
p′=p

+O(q2)

The zeroth-order term Λµ(p, p) contributes to charge renormaliza-
tion (it’s proportional to γµ). The first-order term contributes to the
anomalous magnetic moment.

The F2 form factor at q = 0 is:

F2(0) = lim
q→0

m
i

∂

∂qν
[coefficient of σµν in Λµ]

After a careful calculation (which involves expanding the inte-
grand to first order in q and extracting the antisymmetric tensor
structure), the result is:

F2(0) =
e2

8π2m2 · 2
∫ 1

0
dx
∫ 1−x

0
dy

m2(1− x− y)(x + y)
(x + y)2m2

Let me simplify. The integral becomes:

F2(0) =
e2

4π2

∫ 1

0
dx
∫ 1−x

0
dy

1− x− y
x + y

Let’s substitute z = 1− x− y, so x + y = 1− z:

F2(0) =
e2

4π2

∫ 1

0
dz
∫ z

1− z
· (Jacobian)

Actually, let me be more careful with the integration region. We
have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, which is the triangle with vertices at
(0, 0), (1, 0), (0, 1).

Changing variables to u = x + y and v = x/(x + y) (so x = uv and
y = u(1− v)), the Jacobian is u, and: - u ranges from 0 to 1 - v ranges
from 0 to 1

The integral becomes:

F2(0) =
e2

4π2

∫ 1

0
du
∫ 1

0
dv u · 1− u

u
=

e2

4π2

∫ 1

0
du
∫ 1

0
dv (1− u)

=
e2

4π2

∫ 1

0
dv
∫ 1

0
du (1− u) =

e2

4π2 · 1 ·
1
2
=

e2

8π2
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With α = e2/(4π):

F2(0) =
e2

8π2 =
4πα

8π2 =
α

2π

13.8 The Result

We have derived:

a =
g− 2

2
= F2(0) =

α

2π
≈ 0.00116

This is Schwinger’s result. The electron’s magnetic moment is:

µ =
e

2m

(
1 +

α

2π

)
σ

or equivalently:

g = 2
(

1 +
α

2π

)
≈ 2.00232

Let’s appreciate what we’ve done. We started with infinities—the
vertex correction is UV divergent. We regularized (dimensional regu-
larization) and renormalized (absorbing infinities into counterterms).
What remained was a finite, unambiguous prediction. And this pre-
diction agrees with experiment.

13.9 Physical Interpretation

What does the anomalous magnetic moment represent physically?
The tree-level magnetic moment (g = 2) comes from the elec-

tron’s intrinsic spin interacting directly with the magnetic field. The
anomalous part comes from the electron’s interaction with its own
electromagnetic field—the cloud of virtual photons it carries around.

In the vertex correction diagram, the electron emits a virtual pho-
ton, interacts with the external magnetic field, and reabsorbs the
virtual photon. This process modifies how the electron’s spin couples
to the magnetic field.

Why does this increase the magnetic moment (positive anomaly)?
The virtual photon carries away some of the electron’s momentum.
While "sharing" momentum with the virtual photon, the electron
moves more slowly, making its effective Compton wavelength larger.
A larger effective size means a larger magnetic moment.

This is a hand-wavy argument, but it captures the essence: quan-
tum fluctuations enhance the electron’s coupling to magnetic fields.
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13.10 Comparison with Experiment

In 1948, when Schwinger calculated α/(2π), the agreement with
experiment was a triumph. The measured anomaly was consistent
with this prediction at the percent level.

Today, the comparison has advanced enormously:
Theoretical value (including higher loops, hadronic and weak

contributions):

atheory
e = 0.001 159 652 181 643 (764)

The uncertainty is in the last digits.
Experimental value (from measurements of the electron’s motion

in Penning traps):

aexp
e = 0.001 159 652 180 59 (13)

These agree to about 10 significant figures! The slight tension (at
the 2σ level) is an active area of research, but the overall agreement is
remarkable.

This comparison tests QED across an enormous range of loop
orders:

• One-loop: α/(2π) ≈ 0.00116

• Two-loop: O(α2) ≈ −1.8× 10−6

• Three-loop: O(α3) ≈ 1.2× 10−8

• Four-loop: O(α4) ≈ −1.9× 10−11

• Five-loop: O(α5) ≈ 9× 10−15

The theoretical calculation requires evaluating thousands of Feyn-
man diagrams at high loop orders. It’s an extensive effort, carried out
over decades by many physicists.

13.11 The Muon Anomaly

The muon, being 200 times heavier than the electron, is more sensi-
tive to heavy new particles that might contribute to g− 2. This makes
the muon anomalous magnetic moment a prime target for discover-
ing physics beyond the Standard Model.

At one loop, the result is the same: a(1)µ = α/(2π), independent of
the muon mass. But at higher orders, mass effects enter through:

• Loops of virtual electrons (light) and taus (heavy)

• Hadronic vacuum polarization (quarks)
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• Electroweak contributions (W, Z, Higgs)

The theoretical prediction for the muon anomaly has larger uncer-
tainties than for the electron, mainly because hadronic contributions
are harder to calculate.

Currently, there’s a tantalizing discrepancy between the Standard
Model prediction and the experimental measurement of aµ—about
4–5σ depending on how the hadronic contributions are estimated.
This could be a hint of new physics, or it could be an issue with
the theoretical calculation of hadronic effects. It’s one of the most
exciting open questions in particle physics.

13.12 Infrared Finiteness of F2(0)

We noted earlier that the vertex correction has an infrared divergence
from the k → 0 region. Does this affect the anomalous magnetic
moment?

No. The infrared divergence appears in F1, not F2.
To see why, recall that the infrared divergence comes from soft

(low-momentum) virtual photons. These soft photons don’t resolve
the internal structure of the interaction—they just see the overall
charge. Soft photon effects are captured by the charge form factor F1.

The magnetic moment, in contrast, is sensitive to the spin structure
of the vertex. This is a finite-distance effect, not affected by infinitely
soft photons. Mathematically, the extraction of F2 involves derivatives
with respect to q, which suppress the k→ 0 region.

This is why we could compute F2(0) = α/(2π) without worrying
about infrared issues. The anomalous magnetic moment is infrared
finite.

13.13 The Meaning of Precision

The precision of the g− 2 measurement tells us something important
about quantum field theory and renormalization.

First, it validates renormalization as a predictive framework. The
infinities we encountered were not fundamental problems—they
were bookkeeping artifacts. Once we properly accounted for them,
finite predictions emerged.

Second, it confirms QED to high accuracy. Any modification of
QED at energy scales below a few hundred GeV would affect g − 2
at a measurable level. The agreement tells us that QED, as we under-
stand it, is correct.

Third, the precision opens a window to new physics. If the Stan-
dard Model prediction ever disagrees with experiment beyond uncer-
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tainties, it would signal new particles or interactions. The muon g− 2
discrepancy might be exactly this signal.

13.14 Summary

We’ve derived the leading quantum correction to the electron’s mag-
netic moment:

a =
g− 2

2
=

α

2π

This calculation exemplifies what renormalized QED can do:

• Start with a divergent integral (the vertex correction)

• Use regularization (dimensional regularization) to define it

• Use renormalization (absorbing divergences into counterterms) to
extract finite predictions

• Obtain an unambiguous, testable result

The agreement between theory and experiment for the electron
anomaly—to about one part in a trillion—is the most precise test of
any physical theory. It tells us that the framework we’ve developed
in these lectures isn’t just mathematically consistent; it’s physically
correct.

In the final chapter, we’ll step back and reflect on what renormal-
ization tells us about quantum field theory and nature.





14
What Renormalization Tells Us

We began this journey puzzled by infinities. Loop integrals in quan-
tum field theory diverged, giving infinite answers to what should be
sensible physical questions. This seemed like a disaster—a sign that
the theory was sick.

Now we understand that these infinities were never really physi-
cal. They arose from pretending that our theory is valid to arbitrarily
high energies, when we have no right to make such a claim. Once we
acknowledge this and properly organize our calculations, the infini-
ties disappear from physical predictions. What remains is one of the
most successful frameworks in the history of science.

In this final chapter, we step back and consider what renormaliza-
tion teaches us about physics and about our theories.

14.1 Is QED Fundamental?

Here’s the key lesson: every quantum field theory should be viewed
as an effective theory—valid up to some energy scale, but not neces-
sarily beyond.

This might seem disappointing. Shouldn’t physics aim for fun-
damental theories that work at all scales? Perhaps. But the effective
theory perspective is liberating. We don’t need to know the ultimate
theory of everything to make predictions at accessible energies. We
just need to know the relevant degrees of freedom and their interac-
tions at the scales we can probe.

QED is an effective theory. It’s valid at energies well below the
electroweak scale, where the electromagnetic and weak interactions
unify. At higher energies, we need the full electroweak theory. And
that theory, in turn, is probably effective, embedded in something
else at still higher energies.

The key point is that the effective theory framework tells us pre-
cisely what we need to know at any given scale. The theory comes
with a finite number of parameters (mass, charge) that must be mea-
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sured. All predictions then follow from these measurements. The
unknown UV physics is systematically encoded in the measured
values of these parameters.

14.2 Renormalizable vs. Non-Renormalizable: A Modern View

In the traditional view, renormalizable theories were "good" and non-
renormalizable theories were "bad." Renormalizable theories require
only finitely many counterterms; non-renormalizable theories require
infinitely many. This seemed to make non-renormalizable theories
unpredictive.

The modern view is more nuanced. A non-renormalizable theory
is simply an effective theory where the non-renormalizable terms are
suppressed by powers of the cutoff scale Λ. As long as we work at
energies E� Λ, we can organize the theory systematically:

• Leading terms: renormalizable interactions

• First corrections: dimension-5 operators, suppressed by E/Λ

• Second corrections: dimension-6 operators, suppressed by (E/Λ)2

• And so on

This is the logic of effective field theory (EFT). At low energies,
only the renormalizable terms matter. Non-renormalizable terms give
small corrections that can be computed systematically.

The classic example is Fermi’s theory of weak interactions. Be-
fore the electroweak theory was developed, physicists used a non-
renormalizable four-fermion interaction:

LFermi =
GF√

2
(ψ̄γµψ)(ψ̄γµψ)

where GF ∼ 1/(300 GeV)2 is Fermi’s constant.
This is a dimension-6 operator (four fermion fields have total di-

mension 6, so the coefficient has dimension −2). It’s non-renormalizable.
But at energies well below 300 GeV, it works perfectly well. You can
compute loop corrections, renormalize the theory order by order in
E2GF, and make accurate predictions.

The non-renormalizable nature of Fermi’s theory was actually
a clue that new physics existed at the ∼ 100 GeV scale. That new
physics turned out to be the W and Z bosons. When you integrate
out these heavy particles, you recover Fermi’s theory as the low-
energy effective description.
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14.3 Matching and Running Between Scales

The full power of effective field theory emerges when we connect
descriptions at different scales. This is done through matching and
running.

Matching: At a scale where we integrate out heavy particles (like
the W and Z), we match the full theory to the effective theory. This
determines the coefficients of the effective operators.

Running: The renormalization group evolves these coefficients to
lower scales. Large logarithms are summed automatically.

Consider the running of α again. At very low energies, only elec-
trons contribute to vacuum polarization. But at energies above the
muon mass, muons contribute too. At energies above the tau mass,
taus contribute. Above the charm quark mass, charm quarks con-
tribute. And so on.

We handle this by matching at each threshold. Below the muon
mass, we use QED with one lepton flavor. Above it, we match to
QED with two lepton flavors. The matching conditions ensure that
physics is continuous across the threshold.

This "tower" of effective theories, matched at each threshold, is
how we actually compute the running of couplings from atomic
physics scales up to the electroweak scale. The result is α(MZ) ≈
1/128, not 1/137.

14.4 What We Measure Defines What We Predict

Renormalization teaches us that the parameters in a Lagrangian are
not the physical observables. Mass and charge are defined by what
we measure: the pole of the propagator, the long-range Coulomb
force, etc.

This might seem like a semantic point, but it’s conceptually im-
portant. We often speak of the electron having a "bare mass" and a
"physical mass," with quantum corrections relating them. But the
bare mass is not observable—it’s a parameter in the Lagrangian that
we’ve chosen to make predictions convenient. The physical mass is
what experiments measure.

One consequence is that the "hierarchy problem"—why is the
Higgs mass so much smaller than the Planck scale?—looks different
from the effective field theory perspective. The question isn’t "why
are quantum corrections to the bare Higgs mass so delicately can-
celled?" The question is "why does the physical Higgs mass, which is
what we measure, have the value it does?" The effective theory just
takes this as input.

This doesn’t solve the hierarchy problem, but it reframes it. Per-
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haps there’s a dynamical reason the Higgs mass is where it is. Or
perhaps it’s environmental selection. The effective theory is agnostic;
it just takes the measured value and predicts everything else.

14.5 Universality: The Gift of Irrelevance

The flip side of effective theories is universality. At low energies,
many different UV theories can give the same IR physics. The ir-
relevant (non-renormalizable) operators that distinguish them are
suppressed.

This is why we can do particle physics without knowing the fun-
damental theory. Whatever that theory is—string theory, loop quan-
tum gravity, or something we haven’t imagined—at energies below
the Planck scale, it must look like an effective field theory. The low-
energy physics is universal.

Condensed matter physicists encounter the same phenomenon.
The critical exponents of phase transitions are universal—they don’t
depend on microscopic details, only on symmetries and dimensional-
ity. A magnet at its critical point behaves the same whether it’s made
of iron or nickel.

This universality is what makes physics possible. We don’t need
to know everything to know something. The renormalization group
flow washes out irrelevant details, leaving behind a simple, predictive
description.

14.6 Renormalization and Condensed Matter

Speaking of condensed matter: we promised early on to connect the
particle physics perspective to the Wilsonian viewpoint familiar from
statistical mechanics. Let’s make that connection explicit.

In the Wilsonian picture, we start with a theory defined at some
UV cutoff Λ. We then integrate out the high-momentum modes be-
tween Λ and Λ′ < Λ. This changes the effective action, renormalizing
the couplings. Repeating this process gives a flow in the space of
theories.

In the particle physics picture, we measure parameters at some
scale µ0. We then use the renormalization group to predict parame-
ters at another scale µ. The beta functions govern this evolution.

These are the same thing. The Wilsonian flow from Λ to Λ′ is
mathematically equivalent to the particle physics running from µ =

Λ to µ = Λ′. The difference is philosophical:

• Wilson asks: "Given the UV theory, what’s the IR physics?"

• Particle physics asks: "Given measurements at µ0, what do we
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predict at µ?"

In practice, particle physicists usually work "upward"—measuring
at low energies and asking what happens at high energies. But the
mathematics is identical whether you’re going up or down.

The condensed matter intuition transfers directly. Fixed points
of the RG flow are scale-invariant theories (like conformal field the-
ories). Relevant operators grow in the IR and determine the low-
energy physics. Irrelevant operators shrink and can be neglected.
Marginal operators are the interesting ones—their fate is determined
by quantum corrections, encoded in the beta function.

14.7 Gauge Invariance and the Ward Identity

Throughout our QED calculations, gauge invariance constrained
what we could do. The Ward-Takahashi identity related vertex cor-
rections to propagator corrections, implying Z1 = Z2. This wasn’t an
accident; it was a consequence of the local U(1) symmetry of QED.

Symmetries in quantum field theory often survive renormaliza-
tion. The counterterms respect the symmetries of the original La-
grangian. This is crucial: it means that symmetry principles like
gauge invariance, which we believe in for good reasons, continue to
hold after we’ve dealt with the infinities.

But there are exceptions. Some symmetries are anomalous—
they hold classically but are broken by quantum effects. The chiral
anomaly in QED, for instance, breaks the classical conservation of
axial current. Anomalies have physical consequences, like the decay
π0 → γγ whose rate is determined by the anomaly.

Understanding which symmetries survive and which are anoma-
lous is part of the deep structure of quantum field theory. The renor-
malization program must respect these constraints.

14.8 Why Does This Work?

Looking back, it’s worth asking: why does any of this work?
We started with a few principles—relativity, quantum mechanics,

locality, gauge invariance—and derived QED. We encountered infini-
ties, dealt with them through regularization and renormalization, and
made predictions. Those predictions match experiment to one part in
a trillion.

But this success wasn’t guaranteed. We could imagine a world
where the procedure didn’t close—where new infinities kept appear-
ing no matter how many counterterms we added. Or a world where
the renormalized predictions disagreed with experiment by 10%.
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Neither happened.
Physicists have thought hard about why QFT works so well. Part

of the answer is that the principles we started with are very con-
straining. Relativity plus quantum mechanics plus locality doesn’t
leave much room. Another part is that we’re probably seeing effective
theories of something simpler—the low-energy limit of a more funda-
mental description that doesn’t have the infinities to begin with.

But honestly? We don’t fully understand why it works as well as it
does. We just know that it does.

14.9 What We Still Don’t Understand

For all its successes, quantum field theory and renormalization leave
open questions.

Why these parameters? QED has two parameters: the electron
mass and the fine structure constant. We measure them but don’t
explain them. A deeper theory might derive these values, or explain
why they’re (almost) what they are.

What about gravity? General relativity as a quantum field theory
is non-renormalizable in the traditional sense. The effective field
theory approach works at low energies, but the full quantum theory
of gravity remains elusive. String theory, loop quantum gravity, and
other approaches attempt to provide a UV completion, but none is
confirmed.

What sets the scales? The mass of the electron, the mass of the
proton, the Planck mass—there’s a vast hierarchy of scales in physics.
Why? This "hierarchy problem" is one of the great puzzles.

What is the vacuum? The QFT vacuum is not empty; it’s a com-
plex state with vacuum fluctuations, virtual particles, and a nonzero
energy density. But the calculated vacuum energy is absurdly larger
than the observed cosmological constant. This "cosmological constant
problem" remains unsolved.

14.10 What We’ve Learned

Let me summarize where we are. We started with a puzzle—loop
integrals that diverge—and developed machinery to handle it. The
key ideas:

• Regularization gives us a way to define the divergent integrals
(dimensional regularization, cutoffs, whatever works)

• Renormalization absorbs the infinities into parameters we measure
anyway
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• The renormalization group tells us how physics changes with scale

• Effective field theory explains why we don’t need to know the
ultimate UV theory

The practical payoff is that we can compute. Vacuum polarization,
electron self-energy, vertex corrections, running coupling, anoma-
lous magnetic moment—all calculable, all finite, all agreeing with
experiment.

The conceptual payoff is a shift in how we think about theories. A
quantum field theory isn’t a guess about what happens at arbitrarily
high energies. It’s a systematic expansion around the physics we
can actually measure. The unknown UV physics affects low-energy
predictions only through a finite number of parameters.

This framework—QFT plus renormalization—is how particle
physics actually gets done. The Standard Model is built on it. So
are effective theories of the strong force at low energies, neutrino
physics, and even speculative theories beyond the Standard Model.

The same ideas show up in condensed matter physics with differ-
ent words. “Integrating out high-momentum modes” is the same as
“running the couplings.” Universality near phase transitions is the
same as irrelevant operators dying out under RG flow. The mathe-
matics is the same; the physical systems are different.

14.11 Conclusion

The electron’s anomalous magnetic moment—α/(2π) at one loop,
refined at higher orders—matches experiment to one part in a tril-
lion. That’s the headline result, the poster child for QFT’s predictive
power.

But the deeper lesson is about how we think about theories. The
infinities that alarmed early physicists weren’t signs of a sick theory.
They were signs that we were treating our theory as more funda-
mental than it is. QED isn’t a guess about physics at arbitrarily high
energies. It’s a framework for organizing what we know at the ener-
gies we can probe.

From this perspective, renormalization isn’t a trick—it’s the point.
We don’t need a theory of everything to make predictions. We need
effective theories that work at accessible scales. The framework tells
us exactly which questions we can answer (predictions in terms of
measured parameters) and which we can’t (why the parameters have
the values they do).

There’s something satisfying about this. You might wish physics
could tell you the mass of the electron from first principles. It can’t,
not yet. But it can tell you, given the electron’s mass and charge,
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what happens when electrons scatter off each other, what the mag-
netic moment is, how the coupling runs with energy. And those
predictions work.

That’s what we’ve learned. Not a theory of everything, but a
framework that lets us compute everything we can measure, with
an honest accounting of what we put in and what we get out.

And yet. We’ve organized our ignorance, not eliminated it. The
infinities pointed at something—physics at short distances that we
don’t understand. They still do. Why is the electron mass what it is?
Why does the coupling have the value it does? Why is there some-
thing rather than nothing?

These are questions for another lecture—or perhaps for another
century. But understanding renormalization is the first step. You
can’t ask the right questions about what lies beyond until you under-
stand what we already have.



15
QED and the Classical Limit

We’ve spent many chapters developing quantum electrodynam-
ics and computing loop corrections. But let’s step back and ask:
does this elaborate machinery reproduce what we already know
about electromagnetism? At the end of the day, QED must reduce to
Maxwell’s equations and the Coulomb force in the classical limit. If it
doesn’t, something is seriously wrong.

In this chapter, we’ll show that QED does indeed reproduce classi-
cal electromagnetism. The exercise is satisfying not only as a consis-
tency check but also because it illuminates what Feynman diagrams
really mean. The “exchange of virtual photons” that physicists talk
about isn’t just a metaphor—it’s the quantum origin of the electro-
magnetic force.

15.1 What Is the Classical Limit?

The classical limit of quantum mechanics involves two related limits:

1. Large quantum numbers (many quanta, not just one)

2. Long distances / low momenta (wavelengths much larger than the
Compton wavelength)

For QED specifically, the classical limit means:

• Tree-level diagrams dominate (loop corrections are suppressed by
α)

• Non-relativistic motion of the charges

• Large occupation numbers for the electromagnetic field (many
photons→ classical field)

We’ll focus on the simplest case: the interaction between two non-
relativistic charged particles. This should give us the Coulomb poten-
tial.
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15.2 Electron-Electron Scattering at Tree Level

Consider two electrons scattering. At tree level, they exchange a
single photon:

p1

p′1

p2

p′2
q

The transferred momentum is q = p1 − p′1 = p′2 − p2.
Using the QED Feynman rules:

• Left vertex: −ieγµ

• Right vertex: −ieγν

• Photon propagator:
−igµν

q2 + iε

The amplitude is:

iM = ū(p′1)(−ieγµ)u(p1) ·
−igµν

q2 · ū(p′2)(−ieγν)u(p2) (15.1)

This simplifies to:

iM =
−ie2

q2

[
ū(p′1)γ

µu(p1)
] [

ū(p′2)γµu(p2)
]

(15.2)

The terms in brackets are the electromagnetic currents of the two
electrons.

15.3 The Non-Relativistic Limit

Now take the non-relativistic limit. For a slowly moving electron, the
four-momentum is approximately:

pµ ≈ (m, p) with |p| � m (15.3)

The Dirac spinor for a non-relativistic electron at rest (spin up) is:

u(p) ≈
√

2m


1
0
0
0

 (15.4)

In the non-relativistic limit, the gamma matrices simplify:
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• γ0 connects upper and upper (or lower and lower) spinor compo-
nents

• γi connects upper to lower components

For slowly moving electrons:

ū(p′)γ0u(p) ≈ 2m, ū(p′)γiu(p) ≈ 0 +O(|p|/m) (15.5)

The spatial components γi are suppressed because they mix large
and small spinor components.

So the amplitude becomes:

iM≈ −ie2

q2 · (2m) · (2m) · g00 =
−ie2 · 4m2

q2 (15.6)

But wait—what is q2 in this limit?

15.4 The Momentum Transfer

The transferred four-momentum is q = p1 − p′1. In components:

q0 = E1 − E′1 ≈ 0 (energy is approximately conserved) (15.7)

q = p1 − p′1 (momentum transfer) (15.8)

So q2 = (q0)2 − q2 ≈ −q2.
The amplitude is:

iM≈ ie2 · 4m2

q2 (15.9)

15.5 From Amplitude to Potential

How do we get a potential from a scattering amplitude? The connec-
tion comes from the Born approximation in quantum mechanics.

In non-relativistic quantum mechanics, the scattering amplitude
for a potential V(r) in the Born approximation is:

f (q) = − m
2π

Ṽ(q) (15.10)

where Ṽ(q) is the Fourier transform of the potential:

Ṽ(q) =
∫

d3r eiq·rV(r) (15.11)

The QED amplitudeM is related to the potential by matching to
the Born approximation. The precise relation involves normalization
conventions, but for our purposes:

Ṽ(q) =
M
4m2 =

e2

q2 (15.12)

where the factors of 4m2 account for relativistic spinor normalization.
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15.6 Fourier Transforming to Position Space

To find V(r), we need the inverse Fourier transform:

V(r) =
∫ d3q

(2π)3 e−iq·rṼ(q) = e2
∫ d3q

(2π)3
e−iq·r

q2 (15.13)

This is a standard integral. Using spherical coordinates with q · r =
qr cos θ:

∫ d3q
(2π)3

e−iq·r

q2 =
1

(2π)3

∫ ∞

0
q2dq

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ

e−iqr cos θ

q2

(15.14)
The φ integral gives 2π. The cos θ integral:

∫ 1

−1
e−iqr cos θd(cos θ) =

eiqr − e−iqr

iqr
=

2 sin(qr)
qr

(15.15)

So:∫ d3q
(2π)3

e−iq·r

q2 =
2π

(2π)3

∫ ∞

0
dq

2 sin(qr)
qr

=
1

2π2r

∫ ∞

0

sin(qr)
q

dq

(15.16)
The remaining integral is the Dirichlet integral. Substituting u =

qr: ∫ ∞

0

sin(qr)
q

dq =
∫ ∞

0

sin u
u

du =
π

2
(15.17)

Therefore: ∫ d3q
(2π)3

e−iq·r

q2 =
1

4πr
(15.18)

And the potential is:

V(r) =
e2

4πr
=

α

r
(15.19)

This is the Coulomb potential! For two particles of the same
charge, the potential is positive (repulsive). For opposite charges,
there would be a relative minus sign from the product of charges,
giving a negative (attractive) potential.

15.7 The Physical Picture

What have we learned? The Coulomb force between two charges
arises from the exchange of virtual photons. The photon propaga-
tor 1/q2 becomes 1/q2 in the non-relativistic limit, and its Fourier
transform gives 1/r.

The “virtual photon” is not a real photon traveling between the
charges. It doesn’t satisfy q2 = 0 (the on-shell condition for a real



qed and the classical limit 161

photon). Instead, q2 ≈ −q2 < 0. But this off-shell photon mediates a
very real force. e e

r
Figure 15.1: The Coulomb force arises
from virtual photon exchange. Many
photons are exchanged, creating a
classical field.

In the classical limit, many virtual photons are exchanged, creating
a coherent electromagnetic field. The quantum description (photon
exchange) and the classical description (field mediating force) are two
views of the same physics.

15.8 What About Magnetic Forces?

The Coulomb potential came from the γ0γ0 term. What about the
γiγj terms we neglected?

In the non-relativistic limit, these are suppressed by v/c where v
is the velocity. But they don’t vanish—they give the magnetic interac-
tion between moving charges. Let’s work this out carefully.

Return to the full amplitude:

iM =
−ie2

q2

[
ū(p′1)γ

µu(p1)
] [

ū(p′2)γµu(p2)
]

(15.20)

We’ve done the µ = 0 piece. Now consider µ = i (spatial indices).
In the non-relativistic limit, the Dirac spinor for an electron moving
with momentum p is:

u(p) ≈
√

2m

(
χ

σ·p
2m χ

)
(15.21)

where χ is a two-component Pauli spinor.
The spatial gamma matrices in the Dirac representation are:

γi =

(
0 σi

−σi 0

)
(15.22)

Working out the matrix element:

ū(p′)γiu(p) ≈ χ′†
[

p′ + p
2m

· σ σi + σi σ · p′ + p
2m

]
χ (15.23)

Using the identity σaσb = δab + iεabcσc, this simplifies. The sym-
metric part (in spin) gives:

ū(p′)γiu(p) ≈
p′i + pi

m
+ spin-dependent terms (15.24)

The leading velocity-dependent term is:

Mmag ≈
e2

q2 ·
(p′1 + p1) · (p′2 + p2)

m2 (15.25)

At small momentum transfer, p′1 ≈ p1 and p′2 ≈ p2, so:

Mmag ≈
4e2 p1 · p2

m2q2 (15.26)
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The Fourier transform gives:

Vmag(r) = −
α

m2
p1 · p2

r
(15.27)

This is the magnetic interaction between moving charges! It’s
exactly what classical electromagnetism predicts: moving charges
create magnetic fields that exert forces on other moving charges.

Note the minus sign—the magnetic force between parallel cur-
rents is attractive (they’re going the same direction), opposite to the
repulsive Coulomb force between like charges.

Spin-Dependent Forces

The spin-dependent terms we glossed over are equally important for
atomic physics. They include:

Spin-orbit coupling: The electron’s spin interacts with the mag-
netic field created by its orbital motion around the nucleus:

VSO =
α

2m2r3 L · S (15.28)

This causes the fine structure splitting in atomic spectra.
Spin-spin (hyperfine) interaction: Two spins interact via:

VSS =
8πα

3m1m2
S1 · S2 δ(3)(r) +

α

m1m2r3 [3(S1 · r̂)(S2 · r̂)− S1 · S2]

(15.29)
The contact term (the delta function) causes hyperfine splitting in
hydrogen.

Darwin term: There’s also a contact interaction:

VDarwin =
πα

2m2 δ(3)(r) (15.30)

This comes from the “zitterbewegung”—the rapid quantum jittering
of the electron. It only affects s-states (which have nonzero probabil-
ity at the origin).

The complete non-relativistic reduction of QED gives the Breit
Hamiltonian, which includes all these terms:

HBreit =
p2

1
2m1

+
p2

2
2m2

+
α

r
(15.31)

− α

m1m2

[
p1 · p2

r
+

(p1 · r)(p2 · r)
r3

]
+ spin-orbit + spin-spin + Darwin +O(v4/c4)

Every term has a clear physical origin in QED. The Breit Hamil-
tonian is exact to order v2/c2—all of atomic physics at this precision
follows from photon exchange.
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15.9 Classical Electromagnetic Waves

What about electromagnetic waves? In QED, these are coherent states
of many photons. Let’s understand this connection more carefully.

A classical electromagnetic wave with frequency ω and electric
field amplitude E0 carries energy density u = 1

2 ε0E2
0 (in SI units).

Each photon carries energy h̄ω. So the photon number density is:

n =
u

h̄ω
=

ε0E2
0

2h̄ω
(15.32)

For visible light (ω ∼ 1015 Hz) with E0 ∼ 1 V/m (a dim light),
this gives n ∼ 108 photons per cubic meter. A laser pointer has many
orders of magnitude more. When n� 1, the fractional fluctuations in
photon number scale as 1/

√
n, becoming negligible for macroscopic

fields.

The Propagator as Green’s Function

The photon propagator we used, Dµν(q) = −igµν/q2, is directly
related to the Green’s function for Maxwell’s equations.

In Lorenz gauge (∂µ Aµ = 0), Maxwell’s equations reduce to:

∂2 Aµ = −jµ (15.33)

where ∂2 = ∂2
t −∇2 is the d’Alembertian.

The formal solution is:

Aµ(x) =
∫

d4y G(x− y)jµ(y) (15.34)

where G(x− y) is the Green’s function satisfying ∂2G(x) = −δ(4)(x).
In momentum space, this is trivial:

q2G̃(q) = 1 =⇒ G̃(q) =
1
q2 (15.35)

This is exactly the photon propagator (up to the tensor structure
and factors of i from our conventions). The propagator is the Green’s
function—it describes how electromagnetic disturbances propagate.

Retarded Propagation

What about causality? The Feynman propagator 1/q2 isn’t obviously
causal—it seems to treat past and future symmetrically.

In position space, the Feynman propagator is:

DF(x) =
∫ d4q

(2π)4
e−iq·x

q2 + iε
(15.36)

The iε prescription determines how we handle the poles at q0 =

±|q|. Evaluating by contour integration:
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• For x0 > 0: close the contour in the lower half-plane, picking up
the pole at q0 = +|q| − iε

• For x0 < 0: close in the upper half-plane, picking up q0 = −|q|+ iε

The result involves both positive and negative frequency compo-
nents. For scattering processes, this is what we want: particles can
propagate both forward and backward in time (the latter interpreted
as antiparticles going forward).

For classical electromagnetism, we want the retarded Green’s func-
tion, which only propagates forward in time:

Gret(x) =
θ(x0)

4π|x| δ
(

x0 − |x|
)

(15.37)

This says: a disturbance at the origin at t = 0 reaches point x at
time t = |x|/c (with c = 1)—light-cone propagation. The θ(x0)

enforces causality.
The Feynman propagator and retarded propagator differ by terms

that contribute to vacuum fluctuations but not to classical field con-
figurations. In the classical limit (many photons), these differences
average out.

15.10 Why 1/r2 Forces?

The Coulomb force falls off as 1/r2. In QED, this comes from the
photon being massless. This connection between particle mass and
force range is deep and general.

The Yukawa Potential

Suppose the photon had a mass M. The propagator would become:

−igµν

q2 −M2 + iε
(15.38)

In the non-relativistic limit, q0 ≈ 0, so q2 ≈ −q2:

Ṽ(q) ∝
1

q2 + M2 (15.39)

The Fourier transform gives the potential in position space:

V(r) =
∫ d3q

(2π)3
e−iq·r

q2 + M2 (15.40)

Let’s evaluate this. In spherical coordinates:

V(r) =
1

(2π)3

∫ ∞

0
q2 dq

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ

e−iqr cos θ

q2 + M2 (15.41)
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The angular integrals give:

V(r) =
1

2π2r

∫ ∞

0

q sin(qr)
q2 + M2 dq (15.42)

This integral can be done by contour methods. Write sin(qr) =

Im(eiqr) and extend to the complex plane. The integrand has poles at
q = ±iM. Closing the contour in the upper half-plane (since r > 0
makes eiqr decay there), we pick up the pole at q = iM:∫ ∞

0

q sin(qr)
q2 + M2 dq =

π

2
e−Mr (15.43)

Therefore:

V(r) =
e−Mr

4πr
(15.44)

This is the Yukawa potential, discovered in 1935 when Yukawa
proposed that the nuclear force is mediated by a massive particle
(now called the pion).

Interpretation

The Yukawa potential has two factors:

• 1/r: the familiar Coulomb-like behavior from three spatial dimen-
sions

• e−Mr: exponential screening from the particle mass

At distances r � 1/M, the exponential is close to 1, and we re-
cover the 1/r potential. At r � 1/M, the exponential kills the interac-
tion.

The characteristic length scale is:

λ =
1
M

=
h̄

Mc
(15.45)

This is the Compton wavelength of the exchanged particle. It sets the
range of the force.

Examples

Electromagnetism: Mγ = 0 =⇒ λ = ∞. The Coulomb force has
infinite range.

Weak force: MW ≈ 80 GeV =⇒ λW = h̄/(MWc) ≈ 2× 10−18

m. This is about 1/1000 the size of a proton. The weak force is truly
short-ranged.

Strong force (naive): Yukawa predicted Mπ ≈ 100 MeV to get
λ ≈ 2 fm (the range of nuclear forces). The pion was discovered in
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1947 with Mπ ≈ 140 MeV, confirming his prediction. (The full story
of the strong force is more complex—QCD and confinement—but
Yukawa’s picture captures the right physics at nuclear scales.)

Gravity: Mgraviton = 0 (we think) =⇒ infinite range, just like
electromagnetism.

The inverse relationship between mass and range is a fundamental
feature of quantum field theory. It’s why we need particle accel-
erators to probe short distances: to create the heavy particles that
mediate short-range forces, we need high energies.

What If the Photon Had a Small Mass?

Experimentally, the photon mass is constrained to be extremely small:
Mγ < 10−18 eV. This corresponds to a Compton wavelength larger
than the observable universe!

If the photon had a tiny but nonzero mass, the Coulomb potential
would become:

V(r) =
α

r
e−Mγr (15.46)

At distances r � 1/Mγ, this is indistinguishable from Coulomb.
But at very large distances (galactic or cosmological scales), devi-
ations would appear. The tight experimental bounds come from
searches for such deviations in precision electromagnetism and cos-
mological observations.

15.11 Classical Fields from Coherent States

We’ve seen that forces arise from particle exchange, and that the
propagator is the classical Green’s function. But there’s still a puzzle:
how do we get a classical electromagnetic field from discrete photons?

The answer involves coherent states—quantum states that behave as
classically as quantum mechanics allows.

The Quantum Electromagnetic Field

In QED, the photon field operator is:

Aµ(x) = ∑
k,λ

1√
2ωkV

[
ε
(λ)
µ (k)ak,λe−ikx + h.c.

]
(15.47)

where ak,λ annihilates a photon of momentum k and polarization λ,

and ε
(λ)
µ is the polarization vector.

The operators satisfy the commutation relations:

[ak,λ, a†
k′ ,λ′ ] = δkk′δλλ′ (15.48)
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In the vacuum state |0〉, the field has zero expectation value:

〈0|Aµ(x)|0〉 = 0 (15.49)

But this doesn’t mean the field is zero! The vacuum has fluctua-
tions:

〈0|Aµ(x)Aν(y)|0〉 6= 0 (15.50)

These are the vacuum fluctuations that contribute to effects like
the Lamb shift.

What Are Coherent States?

A coherent state is an eigenstate of the annihilation operator:

a|α〉 = α|α〉 (15.51)

where α is a complex number.
Coherent states can be written explicitly as:

|α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 = eαa†−α∗a|0〉 (15.52)

where |n〉 is the state with exactly n photons.
Key properties of coherent states:

1. Superposition of number states: A coherent state is a superpo-
sition of states with 0, 1, 2, ... photons. The probabilities follow a
Poisson distribution with mean |α|2.

2. Nonzero field expectation: Unlike number states, coherent states
have a nonzero expectation value for the field:

〈α|Aµ(x)|α〉 = Aclassical
µ (x) (15.53)

This is the classical field.

3. Minimum uncertainty: Coherent states saturate the Heisenberg
uncertainty relation for the field quadratures. They’re as “classi-
cal” as quantum mechanics allows.

Classical Limit

For a coherent state with amplitude α, the mean photon number is
〈n〉 = |α|2 and the variance is also |α|2. The fractional fluctuation is:

∆n
〈n〉 =

1√
|α|2

=
1√
〈n〉

(15.54)

When 〈n〉 � 1, the fractional fluctuations become negligible. A
laser beam with 1015 photons has fractional fluctuations of 10−7—
completely negligible for practical purposes.
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Similarly, the quantum fluctuations in the field itself become small
compared to the classical amplitude:

∆A
|〈A〉| ∼

1√
〈n〉

(15.55)

This is the classical limit: when many photons are present, their
quantum nature averages out, and we see a smooth classical field.

Why Lasers Produce Classical Light

Lasers produce coherent states (approximately). This is why laser
light behaves so classically: it has a well-defined phase and ampli-
tude, with minimal quantum fluctuations.

In contrast, thermal light (from a hot filament) is in a thermal
state—an incoherent mixture of number states. Thermal light has
larger fluctuations and no well-defined phase. But when averaged
over many modes and long times, it too approaches classical behav-
ior.

The point is this: classical electromagnetism isn’t wrong—it’s the
limit of QED when many photons are present. The discrete nature of
photons only matters when photon numbers are small, as in single-
photon detectors, quantum optics experiments, or atomic transitions.

15.12 Summary

QED reproduces classical electromagnetism in the appropriate limits:

• The Coulomb potential V = α/r comes from tree-level photon
exchange in the non-relativistic limit.

• The 1/r dependence arises from the massless photon propagator
1/q2.

• Magnetic forces come from the velocity-dependent (γi) parts of the
vertex.

• Classical electromagnetic waves are coherent states of many pho-
tons.

• The range of a force equals the inverse mass of the exchanged
particle.

This is deeply satisfying. The elaborate machinery of quantum
field theory—propagators, vertices, Feynman diagrams—isn’t just an
abstract formalism. It describes real physics. Photon exchange is how
charged particles interact, and in the classical limit, this exchange
manifests as the familiar electromagnetic force.
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The “virtual particles” that we integrate over in loop diagrams
aren’t figments of mathematical imagination. They’re the quantum
mechanical origin of forces. When you feel the push of two magnets
repelling, you’re experiencing the collective effect of countless virtual
photon exchanges.

QED is not a replacement for Maxwell’s equations—it’s their quan-
tum completion. At macroscopic scales, QED reduces to classical
electromagnetism. At atomic scales, quantum effects become im-
portant. And at very short distances (high energies), the quantum
corrections we’ve computed throughout these lectures become domi-
nant.

The success of this reduction—that the most fundamental theory
we know reproduces the most successful classical theory we know—
is powerful evidence that we’re on the right track.
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