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Preface

These lectures aim to build physical intuition for magnetohydrodynamics—
the physics of conducting fluids threaded by magnetic fields. The
subject spans an enormous range: from laboratory plasma experi-
ments to accretion disks around black holes, from Earth’s liquid iron
core to the eleven-year solar cycle. What unites these phenomena is a
single coupling: moving conductors generate currents, currents create
magnetic fields, and those fields exert forces that change the motion.
This feedback loop creates the rich dynamics of MHD.

We assume familiarity with classical electromagnetism—Maxwell’s
equations, the Lorentz force, electromagnetic energy. We do not as-
sume extensive fluid mechanics background; we will build what
we need as we go. The emphasis throughout is on physical pictures
and order-of-magnitude estimates before mathematical machinery.
We want you to feel why magnetic fields and flows couple as they
do, and to develop intuition for when MHD applies, when it breaks
down, and what phenomena it explains.

The book has three parts. In Part I (Chapters 1–5), we establish
the foundations: the coupling between fields and flows, the MHD
equations and their approximations, the remarkable “frozen-in flux”
property, magnetic pressure and tension, and MHD waves. In Part
II (Chapters 6–11), we explore equilibria, instabilities, and dynamics:
the confinement problem that motivates fusion research, the toka-
mak, current-driven and pressure-driven instabilities, the magnetoro-
tational instability that drives accretion, and magnetic reconnection.
In Part III (Chapters 12–15), we go deeper into applications: MHD
turbulence, dynamo theory, stellar magnetism, and the spectacular
engines of accretion disks and jets.





Part I

Foundations





1
Why Magnetism and Flow Intertwine

1.1 The Dance of Current and Field

Watch a lightning bolt. In a fraction of a second, a channel of air
transforms from insulator to conductor, and current surges through
it. But the channel doesn’t hold still—it writhes, branches, flickers
across the sky. Why? The current creates a magnetic field; that field
exerts forces on the current; those forces reshape the channel; the
new shape changes the current distribution; and so on, in a feedback
loop faster than the eye can follow. The lightning bolt is dancing with
its own magnetic field.

Now consider something grander: the Sun’s corona, that ghostly
halo visible during eclipses. The corona is a million degrees hot—
far hotter than the six-thousand-degree surface below it. This is
deeply puzzling. Heat flows from hot to cold, so how can the outer
atmosphere be hotter than the surface beneath? The answer involves
magnetic fields threading through conducting plasma, twisted and
braided by convective motions, storing energy and releasing it in
flares and coronal loops. The same physics that makes lightning
dance makes the Sun’s atmosphere seethe.

And in the laboratory: liquid sodium pumped through pipes at
high speed, spontaneously generating magnetic fields. Experiments
in Riga and Karlsruhe that recreate, in a room-sized apparatus, the
physics that gives Earth its magnetic field.

What unites these phenomena? Whenever a conductor moves
through a magnetic field, or a magnetic field changes near a con-
ductor, something happens. Currents are induced. Those currents
feel forces. The forces change the motion. You cannot understand
the field without understanding the flow, or the flow without under-
standing the field. They are coupled, and that coupling is the subject
of magnetohydrodynamics—MHD.
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1.2 A Wire Loop Falls Through a Magnet

Let us begin with the simplest possible example: a rectangular loop
of wire falling through a region of magnetic field. This is freshman
physics, but it contains the seed of everything that follows. ⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗
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v
I

B into page
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Figure 1.1: A wire loop falling into a
region of magnetic field. As it enters,
the changing flux induces a current that
opposes the motion.

Imagine a loop of copper wire, 10 cm on a side, with total resis-
tance R = 0.01 Ω. Above the loop is empty space; below is a region
where a uniform magnetic field B = 0.1 T points into the page. The
loop is released and begins to fall.

As the loop enters the field region, the magnetic flux through it
increases. Faraday’s law is unforgiving: a changing flux induces an
electromotive force. The EMF drives a current, and that current flows
in a direction that opposes the change—this is Lenz’s law, nature’s
way of resisting disturbance.

Let us calculate. If the loop falls at speed v = 1 m/s and has width
L = 0.1 m, then the rate of flux change is

dΦ
dt

= BLv = (0.1 T)(0.1 m)(1 m/s) = 0.01 V.

This EMF drives a current I = E/R = 0.01 V/0.01 Ω = 1 A through
the loop.

Now comes the crucial part. The current-carrying wire, in the
portion that has entered the magnetic field, feels a force. The bottom
segment of the loop carries current horizontally (say, to the right),
and the magnetic field points into the page. The Lorentz force F =

IL× B points upward—opposing the fall.
The magnitude of this braking force is

F = BIL = (0.1 T)(1 A)(0.1 m) = 0.01 N.

Compare this to the gravitational force on a 10-gram loop: mg ≈
0.1 N. The magnetic braking force is about 10% of gravity. The loop
falls, but more slowly than it would in empty space.

You might ask: where does the energy go? The kinetic energy
the loop would have gained from falling is instead dissipated as
heat in the wire’s resistance. The current I = 1 A flowing through
R = 0.01 Ω produces Joule heating at a rate I2R = 0.01 W. Energy is
conserved; it simply goes into warming the wire rather than speeding
up the fall.

This is the essence of MHD in miniature: motion creates currents,
currents feel forces, forces affect motion. The loop and the field are
coupled. You cannot analyze one without considering the other.
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1.3 From Wire to Fluid

The wire loop is instructive, but MHD concerns itself with continu-
ous conducting media—plasmas, liquid metals, saltwater. Let us see
how the same physics extends.

Imagine replacing the wire loop with a blob of conducting fluid—
say, liquid mercury. The mercury falls through the magnetic field just
as the wire did. But now there is no discrete “loop”; instead, currents
flow throughout the volume of the fluid, following paths determined
by the field geometry and the fluid’s motion.

The key equations remain the same. In a conductor moving with
velocity v through a magnetic field B, the effective electric field in the
conductor’s rest frame is

E′ = E + v× B.

This is just the motional EMF, now expressed as a field rather than
an integrated voltage. If the conductor obeys Ohm’s law, the current
density is

J = σE′ = σ(E + v× B),

where σ is the electrical conductivity.
This equation is the heart of MHD. It says that motion through a

magnetic field (v× B) drives currents, just as an applied electric field
would. The currents, once established, create their own magnetic
fields (via Ampère’s law) and feel forces (via the Lorentz force). The
force per unit volume on the fluid is

f = J× B.

This force enters the fluid’s equation of motion, changing how it
flows. The changed flow alters v × B, which changes the currents,
which changes the forces. . . and we have a fully coupled system.

You might ask: why doesn’t this feedback loop always run away?
Sometimes it does—that’s called an instability, and we’ll spend sev-
eral chapters on instabilities. But often the system settles into a bal-
ance, with the magnetic forces providing a kind of friction or tension
that resists certain motions while permitting others.

1.4 The Coupling at Work: Two Examples

Let us make this concrete with two examples that span the range of
MHD phenomena.

Magnetic Braking in Metallurgy

In steel production, molten metal must be cast into molds without
excessive turbulence. Turbulence creates defects—bubbles, inclusions,
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uneven cooling. One solution is electromagnetic braking: apply a
strong magnetic field across the flow of liquid steel.

The physics is exactly our falling loop, writ large. Liquid steel has
conductivity σ ≈ 7× 105 S/m. If it flows at v ∼ 1 m/s through a field
B ∼ 0.3 T, the induced current density is roughly

J ∼ σvB ∼ (7× 105)(1)(0.3) ∼ 2× 105 A/m2.

The braking force density is

f ∼ JB ∼ (2× 105)(0.3) ∼ 6× 104 N/m3.

Over a region 0.1 m thick, this gives a pressure-like resistance of
∼ 6000 Pa, comparable to the dynamic pressure of the flow itself. The
field genuinely slows the steel.

This is MHD engineering: using the coupling between fields and
flows to control industrial processes. No moving parts, no contact
with the hot metal—just Maxwell’s equations doing the work. One
might call it “contactless plumbing,” except that phrase lacks the
gravitas demanded by engineering journals.

The Earth’s Core

At the other extreme of scale, consider the Earth’s liquid outer core.
Here we have liquid iron at temperatures around 4000–5000 K, con-
ductivity σ ≈ 106 S/m, churning due to convection driven by the
slow cooling of the planet.

The core is about 3500 km in radius. Convective velocities are
tiny by everyday standards—perhaps 10−4 m/s, inferred from the
slow drift of magnetic features at Earth’s surface over decades. The
magnetic field strength at the core-mantle boundary is about 5 ×
10−4 T.

Let us estimate the motional EMF across the core:

E ∼ vBL ∼ (10−4 m/s)(5× 10−4 T)(3.5× 106 m) ∼ 0.2 V.

That’s a fifth of a volt across 3500 kilometers! Not much by house-
hold standards, but with such enormous conductivity and volume,
even this modest EMF drives substantial currents.

The current density can be estimated as

J ∼ σvB ∼ (106)(10−4)(5× 10−4) ∼ 0.05 A/m2.

And the Lorentz force density:

f ∼ JB ∼ (0.05)(5× 10−4) ∼ 2.5× 10−5 N/m3.

This seems negligible—and compared to pressure forces in the core
(which run to ∼ 10−2 N/m3 from thermal buoyancy), it is small. The
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magnetic forces are perhaps 1% of the buoyancy forces that drive
convection.

You might ask: if magnetic forces are so weak, why do they mat-
ter? Because they have a special property: they can organize the flow
in ways that pressure and gravity cannot. Magnetic fields impose
structure, linking distant parts of the fluid. A magnetic field line is
like a rubber band stretched through the core—pull on one end, and
the other end feels it. This long-range coupling gives magnetic forces
an influence far beyond their magnitude.

And there’s something more: in the core, the currents that flow ac-
tually create the magnetic field in the first place. This is the geodynamo—
a self-sustaining engine where convective motion generates magnetic
field, and the magnetic field guides (and partially resists) the convec-
tion. Understanding how this works will occupy us in Chapter 13.
For now, the point is simply that MHD in the core is inescapably cou-
pled: you cannot compute the flow without knowing the field, and
you cannot compute the field without knowing the flow.

1.5 Historical Interlude: Faraday’s Saltwater

The coupling between conducting fluids and magnetic fields was
recognized almost as soon as electromagnetic induction itself was
discovered. Michael Faraday didn’t just experiment with coils and
magnets in his laboratory; he thought about the natural world.

In 1832, shortly after demonstrating induction, Faraday attempted
to detect the EMF induced in the River Thames as it flowed through
Earth’s magnetic field. He dangled electrodes from Waterloo Bridge
into the water and connected them to a galvanometer. The signal, he
hoped, would reveal the river as a moving conductor in a planetary
magnetic field.

The experiment failed—the signal was too small and too noisy to
detect reliably. But Faraday’s reasoning was impeccable. The Thames
flows at perhaps 1 m/s; Earth’s field has a vertical component of
about 5× 10−5 T in London; the river is perhaps 200 m wide. The
expected EMF is

E ∼ vBL ∼ (1)(5× 10−5)(200) ∼ 0.01 V.

Ten millivolts—detectable in principle, but swamped by electrochemi-
cal potentials between the electrodes and the dirty river water.

A century later, this same effect was successfully measured in
ocean channels. The Gulf Stream, flowing through Earth’s field, does
indeed generate measurable voltages—a fact now used to monitor
deep-ocean currents with seafloor cables. Faraday’s physical intuition
was correct; only his technology was inadequate.
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The quantitative foundations of MHD came later. Hannes Alfvén,
in the 1940s, developed the theory of hydromagnetic waves and the
concept of “frozen-in” magnetic flux that we’ll explore in Chap-
ter 3. His work earned the 1970 Nobel Prize. Meanwhile, in 1937,
Julius Hartmann and Freimut Lazarus performed careful experiments
on mercury flowing through magnetic fields, establishing the basic
physics of MHD channel flow. They were thinking about metallurgy
and liquid-metal technology. They could not have imagined that the
same equations would describe the solar corona.

1.6 The Essential Coupling

Let us now be precise about what makes MHD special. Many phys-
ical systems involve feedback—thermostats, predator-prey popula-
tions, electronic oscillators. What distinguishes the MHD coupling?

The answer lies in the structure of the equations. Start with Ohm’s
law in a moving conductor:

J = σ(E + v× B).

Take the curl and use Faraday’s law (∇× E = −∂B/∂t) and Ampère’s
law (∇× B = µ0J in the MHD limit where displacement current is
negligible). After some vector calculus, you arrive at the induction
equation:

∂B
∂t

= ∇× (v× B) + λ∇2B,

where λ = 1/(µ0σ) is the magnetic diffusivity.
This equation tells you how the magnetic field evolves. The first

term on the right describes how the flow drags and distorts the
field—the “advection” or “frozen-in” effect we’ll explore later. The
second term describes how the field diffuses due to finite conductivity—
the resistive decay that would cause any field to fade away if nothing
regenerated it.

Meanwhile, the magnetic field affects the flow through the Lorentz
force in the momentum equation:

ρ
Dv
Dt

= −∇p + J× B + (other forces).

The J× B term feeds back into the velocity field v, which appears in
the induction equation, which determines B, which determines J. . .

This is a genuine two-way coupling. Not “the field affects the
flow” or “the flow affects the field,” but both simultaneously and
inseparably. Solving MHD problems means solving these equations
together, self-consistently.

You might ask: when does this coupling matter? When can we ig-
nore it? The answer involves comparing the strength of the magnetic
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force to other forces in the problem. We’ll develop dimensionless
parameters—the magnetic Reynolds number, the Alfvén Mach num-
ber, the plasma beta—to quantify this. But roughly: if the magnetic
field is strong and the conductor is good, you cannot ignore the cou-
pling.

1.7 Why “Magnetohydrodynamics”?

The name itself tells a story. “Magneto-” for magnetic fields. “Hydro-
” for fluid flow (from the Greek for water, though MHD applies
to any conducting fluid). “Dynamics” for the study of forces and
motion.

The term was coined in the 1940s, during the explosive growth
of plasma physics driven by both astrophysical curiosity and the
quest for controlled fusion. One suspects the name was chosen by
physicists who wanted to ensure their grant applications looked
sufficiently impressive—“magnetohydrodynamics” has precisely
the polysyllabic gravitas to make administrators nervous about cut-
ting the budget. Before that, the coupling between fields and flows
was studied piecemeal—by electrical engineers worried about eddy
currents in motors, by geophysicists puzzling over Earth’s field, by
astrophysicists modeling sunspots. The unifying framework of MHD
revealed that these were all facets of the same physics.

You might ask: is MHD just applied electromagnetism? In a sense,
yes—Maxwell’s equations plus Ohm’s law plus fluid mechanics.
But the combination is more than the sum of its parts. The coupling
creates phenomena that exist in none of the parent subjects: Alfvén
waves, magnetic reconnection, the dynamo effect, magnetorotational
instability. These are emergent behaviors of the coupled system.

MHD is also an approximation. It assumes the fluid is dense
enough to treat as a continuum, conducting enough that currents
flow freely, and slow enough (compared to light) that we can ignore
displacement currents and relativistic effects. When these assump-
tions fail—in dilute plasmas, at very high frequencies, near black
holes—MHD gives way to more complete descriptions. But within its
domain of validity, MHD is remarkably powerful.

1.8 What Lies Ahead

We have seen that conducting fluids and magnetic fields are coupled
through Faraday’s law and the Lorentz force. Motion induces cur-
rents; currents create fields; fields exert forces; forces change motion.
This feedback loop is the engine of MHD.

But we have been waving our hands about “the equations.” What
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exactly are the equations of MHD? What approximations do we
make? What phenomena do we neglect? The next chapter will derive
the MHD equations carefully, starting from Maxwell and Newton
and ending with a closed system we can solve.

We will then explore the remarkable consequences: magnetic
flux frozen into moving fluid, the twin forces of magnetic pressure
and tension, waves that propagate along field lines like vibrations
on a string. And we will see how this simple physics—freshman
electromagnetism plus fluid mechanics—explains phenomena from
laboratory experiments to the most violent events in the universe.

The lightning bolt was just the beginning.



2
The Equations of a Conducting Fluid

2.1 The Art of Controlled Demolition

We want to write down the equations that govern a conducting fluid
in a magnetic field. But here is the remarkable thing: we already
know all the relevant physics. Maxwell’s equations describe the elec-
tromagnetic fields. Newton’s laws, in the form of fluid mechanics,
describe the motion of matter. Ohm’s law relates the current to the
electric field. There is nothing fundamentally new to discover.

And yet, if we simply combined all those equations without ap-
proximation, we would have an unholy mess. Electromagnetic
waves propagating at the speed of light. Charge separation on mi-
croscopic Debye scales. Plasma oscillations at frequencies we do not
care about. Displacement currents modifying Ampère’s law. The full
equations describe physics from radio waves to gamma rays, from
individual electrons to galaxy clusters—far more than we need for
the conducting-fluid problems that interest us.

The art of MHD is knowing what to throw away. The “MHD ap-
proximation” is a controlled demolition of the full equations, keeping
only the physics that matters for slow, large-scale, quasi-neutral con-
ducting flows. We are building a simpler theory by deliberately ig-
noring phenomena that occur on scales too fast or too small to affect
the dynamics we care about.

The payoff is a beautiful, closed set of equations—compact enough
to write on a single page, rich enough to describe sunspots and plan-
etary cores and fusion reactors. But we must earn this simplicity by
understanding precisely what we are neglecting and when those
approximations fail.
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2.2 Why We Can Ignore Displacement Current

Let us begin with the most consequential simplification. Maxwell’s
equation relating the curl of the magnetic field to currents reads

∇× B = µ0J + µ0ε0
∂E
∂t

.

The second term on the right—the displacement current—is what
allows electromagnetic waves to propagate. It is essential for radio
transmission, for light, for all of classical electrodynamics. Can we
really throw it away?

Let us estimate when the displacement current matters. Consider
a system of characteristic size L varying on a timescale τ. The electric
field has magnitude E, and the current density is related to the field
by Ohm’s law: J ∼ σE, where σ is the electrical conductivity.

The displacement current density has magnitude

Jdisp ∼ ε0
∂E
∂t
∼ ε0

E
τ

.

The ratio of displacement to conduction current is therefore

Jdisp

Jcond
∼ ε0E/τ

σE
=

ε0

στ
=

1
στ/ε0

.

For copper, σ ≈ 6× 107 S/m. Even for a process as fast as τ =

1 millisecond:

Jdisp

Jcond
∼ 8.85× 10−12

(6× 107)(10−3)
∼ 10−16.

The displacement current is sixteen orders of magnitude smaller than
the conduction current! We can neglect it without a second thought.

You might ask: when would the displacement current matter?
When τ ∼ ε0/σ ∼ 10−19 s for copper. That is the timescale on which
charge rearranges itself inside a conductor—effectively instantaneous
for any macroscopic process.

There is another way to see this. Displacement current matters
when electromagnetic waves are important, and EM waves travel at
speed c. For waves to significantly affect dynamics on length scale L,
we need the wave transit time L/c to be comparable to the timescale
of interest τ. For L = 1 m, that means τ ∼ 3 nanoseconds. MHD
phenomena—convection in stellar interiors, flow in liquid metal
experiments, dynamics of fusion plasmas—are vastly slower.

The MHD ordering can be summarized as: v � c and L � c/ωp,
where ωp is the plasma frequency. We are working in a regime where
light-speed effects are negligible.

With displacement current gone, Ampère’s law becomes simply

∇× B = µ0J. (2.1)
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This is a tremendous simplification. The current density is no longer
an independent variable—it is determined entirely by the magnetic
field configuration: J = (∇× B)/µ0.

2.3 The Full Set of Starting Equations

Before making further approximations, let us write down everything
we have. The electromagnetic sector gives us Maxwell’s equations:

∇ · E = ρc/ε0 (2.2)

∇ · B = 0 (2.3)

∇× E = −∂B
∂t

(2.4)

∇× B = µ0J (2.5)

where we have already dropped the displacement current in (2.5).
The fluid sector gives us the momentum equation:

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p + J× B + ρg + ν∇2v, (2.6)

where ρ is the mass density, p the pressure, g the gravitational accel-
eration, and ν the kinematic viscosity.

Mass conservation requires

∂ρ

∂t
+∇ · (ρv) = 0. (2.7)

We need an equation of state relating pressure to density and
temperature. For an ideal gas:

p =
ρkBT

m
, (2.8)

where m is the mean particle mass. From this we can define the
sound speed

cs =

√
∂p
∂ρ

=

√
γkBT

m
(2.9)

for adiabatic processes. The sound speed sets how fast pressure
disturbances propagate—a crucial velocity scale that we will compare
to the magnetic velocity scales later.

T (K)

cs (km/s)

Photosphere

Fusion

6000 108

8

500

Figure 2.1: Sound speed increases with
temperature. Solar photosphere: cs ∼
8 km/s. Fusion plasma: cs ∼ 500 km/s.

For the solar photosphere at T ∼ 6000 K with hydrogen (m ≈ mp),
the sound speed is about 8 km/s. For a fusion plasma at T ∼ 10 keV
(about 108 K) with deuterium, it rises to several hundred km/s—
the exact value depending on whether you use the electron or ion
temperature and what ratio of specific heats you assume, but the
order of magnitude is clear. These numbers will become important
when we discuss MHD waves.
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Finally, we need Ohm’s law relating current to electric field. The
generalized form is

E + v× B = ηJ +
1
ne

(J× B)− 1
ne
∇pe + · · · (2.10)

The left side is the electric field in the frame moving with the fluid.
The right side includes resistive effects (the ηJ term), the Hall effect,
electron pressure gradients, and potentially other terms we have
omitted.

2.4 The MHD Approximations

Now let us make the approximations that define MHD.

Quasi-Neutrality

In a plasma or conducting fluid, any charge imbalance creates electric
fields that immediately drive currents to neutralize it. The timescale
for this neutralization is the inverse plasma frequency, ω−1

p , which is
typically 10−9 s or faster for laboratory plasmas.

The length scale over which charge separation can persist is the
Debye length:

λD =

√
ε0kBT

ne2 .

For a fusion plasma with n ∼ 1020 m−3 and T ∼ 10 keV, this is about
10−5 m—utterly negligible compared to the meter-scale structures we
care about.

The MHD approximation treats the plasma as electrically neu-
tral: the charge density ρc is essentially zero on the scales of interest.
This does not mean there are no electric fields! Electric fields still
arise from electromagnetic induction (Faraday’s law) and from the
motional v× B EMF. We simply do not use Gauss’s law (2.2) to deter-
mine E; instead, E comes from Ohm’s law.

You might ask: if we set ρc = 0, how can there be currents? The
currents arise from the motion of the (neutral) fluid through mag-
netic fields, not from net charge. The current J represents a slight
difference in the velocities of electrons and ions, not an excess of one
species over the other.

Simplified Ohm’s Law

The generalized Ohm’s law (2.10) contains several terms beyond
simple resistivity. In standard MHD, we keep only the resistive term:

E + v× B = ηJ. (2.11)
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When is this valid? The Hall term (J× B)/ne becomes important
when the ion gyroradius ri = miv⊥/(eB) is comparable to the length
scales of interest. The electron pressure term matters when there are
sharp gradients in electron temperature or density.

For most MHD applications—stellar interiors, liquid metal exper-
iments, large-scale plasma dynamics—these corrections are small.
But they become crucial in certain situations. Magnetic reconnection,
which we will study in Chapter 11, is profoundly affected by Hall
physics. The simple Ohm’s law (2.11) predicts reconnection rates that
are far too slow; including the Hall term resolves the discrepancy.

You might ask: if the Hall term is so important for reconnection,
why not include it from the start? Because it complicates the equa-
tions substantially, introducing new wave modes and new insta-
bilities. The philosophy of MHD is to use the simplest model that
captures the essential physics, then add corrections when they matter.
We will see when they matter.

For now, we proceed with the simple form, remembering that it is
an approximation with known limitations.

2.5 The Induction Equation

Here is where the magic happens. Let us combine our simplified
equations to derive the evolution equation for the magnetic field.

Start with Faraday’s law:

∂B
∂t

= −∇× E.

Substitute Ohm’s law (2.11) solved for E:

E = −v× B + ηJ.

Use Ampère’s law to write J = (∇× B)/µ0:

E = −v× B +
η

µ0
∇× B.

Take the curl:

∇× E = −∇× (v× B) +
η

µ0
∇× (∇× B).

Using the vector identity ∇× (∇× B) = ∇(∇ · B)−∇2B and noting
that ∇ · B = 0:

∇× E = −∇× (v× B)− η

µ0
∇2B.

Finally, substitute into Faraday’s law:

∂B
∂t

= ∇× (v× B) + λ∇2B (2.12)
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where we have defined the magnetic diffusivity

λ ≡ η

µ0
(2.13)

with units of m2/s.
This is the induction equation, and it is the heart of MHD. Let us

understand its two terms.
The first term, ∇× (v × B), describes advection—how the flow

carries and distorts the magnetic field. If a fluid element moves,
it drags the magnetic field with it. If the flow shears, the field is
stretched. This term is responsible for the “frozen-in” behavior we
will explore in the next chapter.

The second term, λ∇2B, describes diffusion—how the magnetic
field spreads out due to finite resistivity, like heat diffusing through
a conductor or dye spreading in water. Without any flow to maintain
it, any magnetic field configuration would eventually decay away
through this diffusive process.

2.6 The Magnetic Reynolds Number

Which term dominates? Let us estimate their magnitudes for a sys-
tem of size L with characteristic velocity V and magnetic field B.

The advection term scales as

|∇ × (v× B)| ∼ VB
L

.

The diffusion term scales as

|λ∇2B| ∼ λB
L2 .

Their ratio defines the magnetic Reynolds number:

Rm =
advection
diffusion

=
VB/L
λB/L2 =

VL
λ

. (2.14)

This dimensionless number controls the character of MHD dynam-
ics:

log(L)

log(Rm)

Rm = 1
Lab

Earth core

Sun

Diffusion

Frozen-in

Figure 2.2: Magnetic Reynolds number
increases with system size. Laboratory
experiments struggle to reach Rm > 1;
astrophysical systems easily exceed
Rm ∼ 106.

When Rm � 1: Diffusion dominates. The magnetic field slips
through the fluid, decaying on the diffusion timescale τdiff ∼ L2/λ.
This is the regime of small laboratory experiments and highly resis-
tive plasmas.
When Rm � 1: Advection dominates. The magnetic field is ef-
fectively “frozen” to the fluid, carried along with it like threads
embedded in a moving gel. This is the regime of astrophysics and
large-scale plasma physics.
When Rm ∼ 1: Both effects matter, and the full equation must be
solved.
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Let us put in numbers for some representative systems:
Laboratory liquid metal (L ∼ 0.1 m, V ∼ 1 m/s, λ ∼ 1 m2/s for

liquid sodium):

Rm ∼
(1)(0.1)

1
∼ 0.1.

Diffusion wins. This is why liquid metal dynamo experiments are so
difficult—they operate right at the margin where Rm ∼ 1.

Earth’s outer core (L ∼ 106 m, V ∼ 10−4 m/s, λ ∼ 1 m2/s):

Rm ∼
(10−4)(106)

1
∼ 100.

Advection wins handily. The geodynamo operates in the frozen-in
regime.

Solar convection zone (L ∼ 108 m, V ∼ 100 m/s, λ ∼ 102 m2/s):

Rm ∼
(100)(108)

102 ∼ 108.

Overwhelmingly frozen-in. The Sun’s magnetic field is dragged
around by convection, sheared by differential rotation, wound up and
amplified. Diffusion is almost irrelevant on dynamical timescales.

You might ask: why does size matter so much more than velocity?
Because diffusion scales with L2 while advection scales with L—the
magnetic Reynolds number grows linearly with size. The same flow
that barely stirs a laboratory beaker will utterly dominate diffusion
in a planetary core. This is why astrophysicists work in the frozen-
in limit almost always, while experimentalists in liquid-metal labs
struggle to reach Rm ∼ 1.

2.7 Diffusion Time Versus Dynamical Time

You might ask: if diffusion is irrelevant for the Sun, why do sunspots
disappear in a few weeks rather than lasting forever?

This question cuts to the heart of the distinction between diffusion
and dynamics. Let us work through it carefully.

A sunspot is a region of strong magnetic field, roughly B ∼ 0.3 T,
with a radius of about L ∼ 107 m (10,000 km). The magnetic diffusiv-
ity in the solar photosphere is λ ∼ 1 m2/s.1 1 This comes from the Spitzer resistivity

formula, which depends on tempera-
ture and is about η ∼ 10−6 Ωm for the
photosphere.

The diffusion timescale is

τdiff ∼
L2

λ
∼ (107)2

1
∼ 1014 s ∼ 3 million years.

If sunspots decayed by diffusion alone, they would persist for geolog-
ical time!

But sunspots vanish in weeks. What gives?
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The answer is that sunspots do not decay by diffusion—they are
destroyed by dynamics. Convective motions in the photosphere, with
velocities v ∼ 1 km/s, operate on a timescale

τdyn ∼
L
v
∼ 107

103 ∼ 104 s ∼ hours.

The ratio of these timescales is precisely the magnetic Reynolds
number:

τdiff
τdyn

=
L2/λ

L/v
=

vL
λ

= Rm ∼ 1010.

The field is frozen to the plasma on dynamical timescales. When
the sunspot disappears, the magnetic flux is not destroyed—it is
rearranged, dispersed by convective motions into structures too small
and fragmented to see as a coherent spot. The total unsigned flux
may persist for much longer; it is only the organized structure that is
lost.

This distinction is crucial throughout MHD. Diffusion times tell
you how long a field would persist in a static medium. Dynamical
times tell you how fast the field is rearranged. In high-Rm systems,
the dynamics always wins.

2.8 Historical Note: Alfvén and the Frozen Field

The equations we have derived were known, in pieces, before the
1940s. Maxwell’s equations dated from the 1860s. Fluid mechanics
was well established. Ohm’s law was understood. But nobody had
synthesized them into a coherent framework for conducting fluids
until Hannes Alfvén.

Alfvén was a Swedish physicist interested in cosmic electrodynamics—
the physics of sunspots, cosmic rays, and magnetized plasmas in
space. In a series of papers in the 1940s, he developed the theory of
hydromagnetic waves (now called Alfvén waves) and articulated the
concept of magnetic field lines “frozen” to the conducting fluid.

The frozen-in picture was controversial. Many physicists, trained
to think of field lines as mathematical conveniences, were uncomfort-
able with the idea that these abstract curves could behave like phys-
ical strings embedded in a material. Sydney Chapman, the doyen of
geomagnetism, was skeptical. The debate had the flavor of an argu-
ment between a mathematician who insists that π is merely a ratio
and an engineer who wants to wrap it around a cylinder.

Alfvén won the 1970 Nobel Prize in Physics “for fundamental
work and discoveries in magnetohydrodynamics with fruitful appli-
cations in different parts of plasma physics.” His frozen-in picture
became the conceptual foundation of space physics.
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But Alfvén himself grew frustrated with how literally people took
the picture. In his later years, he repeatedly warned against treat-
ing field lines as real objects.2 They are useful for intuition, but the 2 “The concept of frozen-in field lines

is of great use when one starts to learn
about cosmic plasmas. However, at a
more advanced level it is misleading,
especially in the case of reconnection.”
—Alfvén, 1976

physics is in the equations, not in the visualization.
We will take the frozen-in theorem seriously in the next chapter—

derive it properly, understand its limits, and see what it tells us about
MHD dynamics. But we will also keep Alfvén’s warning in mind.

2.9 The Complete MHD System

Let us collect the equations that define standard MHD. The induction
equation:

∂B
∂t

= ∇× (v× B) + λ∇2B. (2.15)

The momentum equation:

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p +

1
µ0

(∇× B)× B + ρg. (2.16)

Here we have used J = (∇ × B)/µ0 to eliminate the current, and
dropped viscosity for simplicity.

The continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0. (2.17)

And an energy equation or equation of state to close the system.
For an adiabatic ideal gas:

d
dt

(
p

ργ

)
= 0, (2.18)

or for incompressible flow simply ∇ · v = 0.
The constraint ∇ · B = 0 must be satisfied at all times. If it holds

initially and the induction equation is used to evolve B, it will con-
tinue to hold.3 3 This follows from taking the di-

vergence of the induction equation:
∂(∇ · B)/∂t = ∇ · [∇ × (v × B)] +
λ∇2(∇ · B) = 0 + λ∇2(∇ · B). If
∇ · B = 0 initially, it stays zero.

These equations—four in all—are the foundation of MHD. Ev-
erything else we will study, from Alfvén waves to the geodynamo to
accretion disk jets, emerges from this system.

2.10 What Lies Ahead

We now have the equations. But equations are just the beginning;
what matters is understanding their behavior.

The induction equation contains a competition between advection
and diffusion. In the limit where advection dominates (Rm � 1),
something remarkable happens: the magnetic field becomes “frozen”
to the fluid, unable to diffuse through it. Field lines move with the
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flow like elastic threads embedded in a deforming jelly. This is
Alfvén’s theorem, and we will derive it properly in the next chap-
ter.

But first, consider what this means. If field lines are frozen in, they
can be stretched, compressed, and twisted by fluid motions. Stretch-
ing a field line increases the magnetic energy density, like stretching
a rubber band. That energy has to come from somewhere—it comes
from the kinetic energy of the flow. The field exerts a back-reaction,
a tension force, on the fluid. This is magnetic tension, and together
with magnetic pressure, it gives magnetic fields a mechanical reality
that we will explore in Chapter 4.

The MHD equations are deceptively simple. Within them lies a
universe of phenomena—and we have only begun to explore it.
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Frozen-In Flux and Alfvén’s Theorem

3.1 Painting a Field Line

Imagine you could paint a magnetic field line with luminous dye and
watch what happens. In a perfect conductor, that glowing line moves
with the fluid. Stretch the fluid, and the field line stretches. Twist the
fluid, and the field line twists. Compress the fluid perpendicular to
the field, and the field grows stronger. The field line behaves as if it
were a material thread embedded in the conducting medium.

This is Alfvén’s theorem, and it sounds like a metaphor—the kind
of loose talk physicists use at colloquia when they want to seem
insightful without committing to a calculation. But here, for once, the
loose talk is exactly right. The magnetic flux through any material
surface—a surface that moves and deforms with the fluid—is exactly
constant in time, provided the fluid is a perfect conductor.

The consequences are profound. Magnetic topology is preserved:
knots in the field cannot untangle themselves; linked loops remain
linked. Energy stored in twisted field configurations cannot easily
escape. The frozen-in constraint shapes everything from solar flares
to accretion disk dynamics.

But we must not forget that frozen-in is an approximation. Real
conductors have finite resistivity. On small enough scales or long
enough times, the field can slip through the fluid, diffusing and
dissipating. Understanding when frozen-in holds, and when it fails
catastrophically, is essential for understanding MHD phenomena.

3.2 Stretching a Flux Tube

Let us see the frozen-in constraint in action with the simplest possible
example: stretching a tube of magnetized fluid.

A0 B0

Initial

A0/2 2B0

Stretched
Figure 3.1: Stretching a flux tube:
doubling the length halves the cross-
section and doubles the field strength.

Take a cylindrical tube of conducting fluid with magnetic field B0

pointing along its axis. The tube has initial cross-sectional area A0

and length L0.
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Now stretch the tube to twice its original length: L1 = 2L0. If
the fluid is incompressible, the volume must remain constant, so the
cross-sectional area shrinks: A1 = A0/2. (This is why pasta makers
must work fast—their noodles are trying to conserve volume too.)

What happens to the magnetic field? The frozen-in constraint says
that the magnetic flux through any material surface is conserved.
Take a cross-section of the tube—a material surface that moves with
the fluid. The flux through it is Φ = BA. Since Φ is conserved:

B0 A0 = B1 A1 ⇒ B1 = B0
A0

A1
= 2B0.

The field has doubled! Stretching the fluid amplifies the magnetic
field.

Let us check the energy budget. The magnetic energy density is
B2/(2µ0). The initial energy is

U0 =
B2

0
2µ0
× A0L0.

The final energy is

U1 =
(2B0)

2

2µ0
× A0

2
× 2L0 =

4B2
0

2µ0
× A0L0 = 2U0.

The magnetic energy has doubled. Where did this energy come
from?

It came from the work done to stretch the tube against the mag-
netic tension. The field lines resist being stretched, like rubber bands.
You have to do work to pull them longer, and that work goes into
magnetic energy.

A Solar Example

This mechanism is not merely academic. It explains how sunspots get
their intense magnetic fields.

Consider a flux tube in the Sun’s convection zone with initial field
B0 = 0.01 T and cross-sectional area A0 = (1000 km)2 = 1012 m2.
Convective downdrafts grab the flux tube and drag it downward,
stretching it. If the tube is stretched to three times its original length,
the cross-section shrinks to A0/3 and the field increases to 3B0 =

0.03 T.
Further stretching by buoyant rise through the convection zone can

amplify the field to 0.1–0.3 T—precisely the field strengths observed
in sunspots. We will return to this flux tube amplification mechanism
in Chapter 14 when we discuss the solar dynamo. It is the key to
understanding how the Sun builds and maintains its magnetic field.
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3.3 Deriving Alfvén’s Theorem

Let us now prove the frozen-in property rigorously. We start with the
ideal MHD induction equation—the induction equation in the limit
of zero resistivity:

∂B
∂t

= ∇× (v× B). (3.1)

We want to show that the magnetic flux through any material
surface S is constant:

dΦ
dt

=
d
dt

∫
S

B · dA = 0.

The flux through a moving, deforming surface changes for two
reasons. First, the magnetic field B changes in time at each point
in space. Second, the surface S itself moves and deforms, sweeping
through regions of different field.

The mathematical expression for this total derivative is1 1 This is Reynolds transport theorem
applied to a vector field. The derivation
can be found in any advanced fluid
mechanics text.

dΦ
dt

=
∫

S

∂B
∂t
· dA +

∮
C

B · (v× dl), (3.2)

where C is the boundary curve of S, and v is the velocity of the fluid
(and hence of the material surface).

The second term accounts for the flux swept out by the moving
boundary. Using the vector identity B · (v× dl) = −(v× B) · dl and
Stokes’ theorem:∮

C
B · (v× dl) = −

∮
C
(v× B) · dl = −

∫
S
∇× (v× B) · dA.

Substituting into (3.2):

dΦ
dt

=
∫

S

[
∂B
∂t
−∇× (v× B)

]
· dA.

But the ideal induction equation (3.1) tells us that the bracketed
quantity is exactly zero! Therefore:

dΦ
dt

= 0 (3.3)

This is Alfvén’s theorem: the magnetic flux through any material
surface is conserved in ideal MHD.

3.4 What Frozen-In Really Means

The mathematical statement dΦ/dt = 0 has several intuitive conse-
quences:

Field lines move with the fluid. If we define a magnetic field line
as the curve threading through a particular set of fluid elements, that
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field line continues to thread through the same fluid elements forever.
Field lines have a material identity—you can track them, name them,
watch them evolve.

Flux is conserved through material loops. Take any closed loop
of fluid elements. The magnetic flux threading that loop is constant
in time. Shrink the loop, and the field inside it must intensify. Stretch
the loop, and the field weakens.

Topology is preserved. This is the most profound consequence. If
two field lines are linked—if one threads through the loop formed by
the other—they remain linked for all time. If a field line is knotted,
it stays knotted. No amount of smooth fluid motion can change the
topology of the magnetic field.

You might ask: if field lines are frozen in, why do solar flares
happen? Flares involve rapid reconfiguration of the magnetic field,
breaking and reconnecting field lines. The answer is that frozen-in
eventually fails. When the field develops steep gradients, the resistive
term in the induction equation—negligible at large scales—becomes
important locally. Field lines can slip through the fluid, reconnect,
and release energy. We will study this process, called magnetic recon-
nection, in Chapter 11.

You might ask: is the frozen-in picture unique to MHD? No! Vor-
tex lines in an inviscid fluid obey an identical theorem—they are
frozen to the fluid. This is Kelvin’s circulation theorem, and the
mathematics is the same. Replace B with the vorticity ω = ∇× v,
and the induction equation becomes the vorticity equation for an
ideal fluid.

3.5 Magnetic Helicity: Topology Made Quantitative

The topological content of a magnetic field—its knottedness, its
linkage—can be quantified by a single number called magnetic he-
licity:

H =
∫

V
A · B dV, (3.4)

where A is the magnetic vector potential satisfying B = ∇×A.
In ideal MHD, helicity is exactly conserved. To see why, note that

the time derivative of helicity is2 2 The derivation involves some vector
calculus and boundary terms that van-
ish for a closed system. See textbooks
on MHD for details.

dH
dt

= −2
∫

V
E · B dV.

In ideal MHD, E = −v× B, so

E · B = (−v× B) · B = 0,

since any vector is perpendicular to its own cross product. Therefore
dH/dt = 0.

Φ1

Φ2

H = ±2Φ1Φ2

Figure 3.2: Two linked flux rings.
Their helicity is ±2Φ1Φ2, with sign
depending on the handedness of the
linkage.
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What does helicity measure physically? Consider two circular
flux rings, each carrying magnetic flux Φ. If the rings are unlinked—
far apart, not threading through each other—the helicity is zero.
But if they are linked once (one ring passes through the hole of the
other), the helicity is H = ±2Φ1Φ2, with the sign depending on the
handedness of the linkage.

In ideal MHD, you cannot unlink the rings. That would require
cutting a field line and rejoining it elsewhere, which is forbidden by
the frozen-in constraint. Helicity conservation is the mathematical
statement of this topological impossibility.

Even in resistive MHD, where frozen-in breaks down, helicity
decays much more slowly than magnetic energy. Energy cascades to
small scales and dissipates; helicity is more “rugged,” surviving the
turbulent cascade. This has profound consequences for the relaxation
of magnetic fields in stars and in laboratory plasmas.

You might ask: why should we care about such an abstract quan-
tity? Because helicity constrains how magnetic fields can evolve. A
field with nonzero helicity cannot decay to zero—it must retain some
structure. When a twisted coronal loop flares, releasing magnetic
energy, the helicity is approximately conserved; this constrains what
final states are accessible. We will see helicity again in Chapter 11

(reconnection) and Chapter 13 (dynamos), where it plays a central
role.

3.6 Compression and the B/ρ Invariant

So far we have considered incompressible flows. What happens when
the fluid compresses?

Consider a fluid element with density ρ and magnetic field B
parallel to some direction. If the fluid compresses perpendicular to
the field—squeezing the field lines closer together—the field strength
increases. But so does the density.

The frozen-in constraint implies that for motions perpendicular to
B, the ratio B/ρ is conserved:3 3 More precisely, (B/ρ) is constant

following a fluid element for one-
dimensional compression perpendicular
to B. The full statement involves the
component of B/ρ along the direction
of motion.

d
dt

(
B
ρ

)
= 0.

This makes physical sense. If you squeeze a bundle of field lines
into a smaller volume, both the number of field lines per unit area
(the field strength B) and the mass per unit volume (the density ρ)
increase in the same proportion.

You might ask: what if the flow is compressible but the compres-
sion is along the field lines? Then the density changes but the field
does not—the field lines are not being squeezed closer together, just
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shortened. The frozen-in constraint still holds, but the relationship
between B and ρ is different.

3.7 A Worked Example: The Z-Pinch

Let us see frozen-in flux in a laboratory context: the Z-pinch.
A Z-pinch is a cylinder of plasma with a large current flowing

axially (in the z-direction). The current creates an azimuthal magnetic
field Bφ that wraps around the plasma column. This field exerts an
inward pressure on the plasma, pinching it radially.

R0

Bz,0

R0/3

9Bz,0

Figure 3.3: Z-pinch compression:
reducing the radius by a factor of 3

increases the axial field by a factor of 9.

Suppose the plasma also has an axial magnetic field Bz,0 initially.
The initial radius is R0 = 1 cm, and the pinch compresses the plasma
to R1 = R0/3 ≈ 3 mm.

What happens to the axial field?
The axial flux must be conserved (frozen-in):

Bz,0 × πR2
0 = Bz,1 × πR2

1.

Therefore:

Bz,1 = Bz,0 ×
(

R0

R1

)2
= Bz,0 × 9 = 9Bz,0.

If Bz,0 = 0.1 T initially, the compressed field is Bz,1 = 0.9 T. The
field increased by a factor of nine—the square of the compression
ratio.

Let us check the energy. The magnetic energy in the axial field
goes as B2

z × volume. The volume decreases as R2, so:

U1

U0
=

B2
z,1 × R2

1

B2
z,0 × R2

0
=

81B2
z,0 × R2

0/9

B2
z,0 × R2

0
= 9.

The magnetic energy increased ninefold. That energy came from
the work done by the azimuthal field compressing the plasma—
mechanical work converted to magnetic energy. This is one way
Z-pinches can achieve intense magnetic fields and high temperatures.

3.8 Historical Note: The Frozen-In Controversy

When Hannes Alfvén proposed the frozen-in concept in the 1940s,
it was not immediately embraced. Many physicists, trained to think
of magnetic field lines as mathematical conveniences—contours of
a potential, perhaps, or solutions to differential equations—were
uncomfortable with the idea that these abstract curves could behave
like material objects.

Sydney Chapman, the leading figure in geomagnetism, was par-
ticularly skeptical. For him, the global structure of Earth’s magnetic
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field was captured by spherical harmonic expansions, not by track-
ing individual field lines through a moving medium. The frozen-in
picture seemed too mechanical, too literal.

Alfvén’s genius was to recognize that in a perfect conductor, field
lines do have a kind of material identity. You can track them, watch
them evolve, see cause and effect as fluid motions stretch and twist
the field. The picture is not merely a visualization aid; it captures the
dynamics.

In later writings, Alfvén both celebrated and cautioned about
frozen-in flux. The concept had proven enormously fruitful for space
physics and astrophysics. But Alfvén worried that people took it
too literally, forgetting that it is an approximation. In a 1976 paper,
he wrote: “The concept of frozen-in field lines may be useful for
pedagogical purposes... [but] in many cases its physical relevance is
doubtful, and sometimes it is definitely misleading.” The warning
was characteristically blunt: frozen-in is a tool, not a truth.

We will heed his warning. Frozen-in is a powerful intuition, but
it has limits. Knowing those limits is as important as knowing the
theorem itself.

3.9 When Frozen-In Fails

The frozen-in theorem requires perfect conductivity: η = 0. Real ma-
terials have finite resistivity, so frozen-in is always an approximation.
When does the approximation fail?

Recall the magnetic Reynolds number:

Rm =
vL
λ

,

where λ = η/µ0 is the magnetic diffusivity. When Rm � 1, advec-
tion dominates and the field is effectively frozen in. When Rm . 1,
diffusion competes with advection, and the field can slip through the
fluid.

But there is a subtlety. Even when the global Rm is enormous,
the local Rm can be small if gradients are steep. If the field develops
structure on scale ` � L, then the relevant Reynolds number is
Rmlocal = v`/λ, which may be order unity even when vL/λ� 1.

This is exactly what happens in magnetic reconnection. The global
field configuration has Rm ∼ 1010 or more, but the field is forced into
thin current sheets where ` becomes small enough that diffusion mat-
ters. In these sheets, field lines can slip through the plasma, break,
and reconnect. The result is a topological change—linked field lines
become unlinked—forbidden by ideal MHD but permitted when
resistivity locally dominates.
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You might ask: doesn’t this mean frozen-in is useless, since it
always fails somewhere? Not at all. Frozen-in controls the global
evolution of the field. Reconnection events are localized in space and
time. The overall topology changes slowly, punctuated by rapid re-
connection episodes. Understanding MHD means understanding
both the frozen-in evolution and the reconnection events that inter-
rupt it.

3.10 Looking Ahead

We have established that magnetic field lines in ideal MHD be-
have like elastic threads frozen into the conducting fluid. Stretch
the fluid, and the field amplifies. Compress it perpendicular to the
field, and the field intensifies. Twist it, and the field twists. Topology
is preserved—knots remain knotted, links remain linked.

But we have been vague about the forces involved. We said the
field “resists” stretching, like a rubber band. But what is the actual
force? How does it enter the momentum equation?

Magnetic fields exert two kinds of forces on conducting fluids:
pressure and tension. Understanding these forces—their magnitude,
their direction, their effect on fluid motion—is essential for intuition
about MHD equilibria, waves, and instabilities. That mechanical
picture is the subject of the next chapter.
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Magnetic Pressure and Tension

4.1 The Rubber Band and the Balloon

Put your hands on opposite sides of a balloon and squeeze. The air
inside pushes back equally in all directions—that is pressure. Now
take a rubber band and stretch it between your fingers. It pulls along
its length, trying to contract, but it does not push sideways—that is
tension.

Magnetic fields do both.
A magnetic field exerts a pressure B2/(2µ0) perpendicular to

itself, pushing field lines apart. And it exerts a tension B2/µ0 along
itself, trying to shorten field lines like stretched rubber bands. This
dual character is not a metaphor or an approximation. It is an exact
rewriting of the Lorentz force J × B in terms of the Maxwell stress
tensor.

This mechanical picture transforms how we think about MHD.
Want to confine a plasma? You need magnetic pressure to balance
gas pressure. Want to understand why sunspot umbrae are dark?
Magnetic pressure suppresses convection. Want to know how Alfvén
waves propagate? Magnetic tension provides the restoring force.

The rubber band will become our workhorse analogy. We will use
it to understand waves in Chapter 5, the kink instability in Chapter 8,
and the magnetorotational instability in Chapter 10. Master it now,
and the rest of MHD becomes far more intuitive.

4.2 Pressure Balance in a Solar Flux Tube

Let us see magnetic pressure in action with a concrete example: a
vertical magnetic flux tube in the solar photosphere.

pe

pi + B2/2µ0

Flux tube
Figure 4.1: Pressure balance at a flux
tube boundary: external gas pressure
equals internal gas pressure plus
magnetic pressure.

Inside the tube there is a strong magnetic field B and a gas pres-
sure pi. Outside there is no field (or a much weaker one) and a
higher gas pressure pe. At the boundary, total pressure must balance:
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pi +
B2

2µ0
= pe. (4.1)

The magnetic pressure B2/(2µ0) supplements the internal gas
pressure. This is why the gas pressure inside a flux tube is lower than
outside—the magnetic field “makes up the difference.”

Let us put in numbers for the solar photosphere. The external gas
pressure is approximately pe ≈ 1.2× 104 Pa, about 0.12 atmospheres.
A typical photospheric flux tube has a field strength B ≈ 0.15 T (1500

gauss). The magnetic pressure is

B2

2µ0
=

(0.15)2

2× 4π × 10−7 ≈ 9000 Pa.

From the pressure balance equation (4.1):

pi ≈ 12000− 9000 = 3000 Pa.

The internal gas pressure is only about 25% of external. Using the
ideal gas law p = ρkBT/m with roughly equal temperatures inside
and outside, this means the internal density is also about 25% of
external.

Lower density means lower opacity. We see deeper into the Sun
inside the flux tube than outside. Since deeper means hotter, flux
tubes appear bright—they are the “faculae” and “plage” that make
the Sun slightly brighter during periods of high magnetic activity.

You might ask: if lower density makes flux tubes bright, why are
sunspots dark? The answer is that sunspots have much stronger
fields, B ≈ 0.2–0.3 T, and the field is strong enough to suppress
convection entirely. Without convective heat transport, the sunspot
interior cools. The magnetic pressure still works the same way—
it still reduces the internal gas pressure and density—but now the
temperature is also lower, and lower temperature wins: sunspots are
dark.

4.3 The Lorentz Force Decomposed

Now let us derive the pressure-tension picture rigorously. The mag-
netic force per unit volume on a current-carrying fluid is the Lorentz
force:

f = J× B. (4.2)

Using Ampère’s law J = (1/µ0)∇× B:

f =
1

µ0
(∇× B)× B.

There is a standard vector identity:1 1 This identity can be verified by writ-
ing out components, but it is worth
memorizing: the cross product of a curl
with itself gives a gradient minus a
directional derivative.
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(∇× B)× B = (B · ∇)B−∇
(

B2

2

)
.

Therefore:

f =
1

µ0
(B · ∇)B−∇

(
B2

2µ0

)
. (4.3)

The two terms have distinct physical meanings.

Magnetic Pressure

The second term, −∇(B2/2µ0), is the gradient of a scalar quantity. It
acts exactly like a pressure gradient. The “magnetic pressure” is

pB =
B2

2µ0
. (4.4)

This pressure pushes from regions of strong field to regions of
weak field, perpendicular to the field lines. It is isotropic in the plane
perpendicular to B—it pushes equally in all directions within that
plane.

For the solar photosphere example, with B = 0.15 T, we computed
pB ≈ 9000 Pa. For comparison, atmospheric pressure at sea level is
about 105 Pa, so the magnetic pressure in a sunspot is roughly 10%
of atmospheric. Not huge, but comparable to the gas pressure in the
solar photosphere.

Magnetic Tension

The first term, (1/µ0)(B · ∇)B, is more subtle. The operator B · ∇ is a
directional derivative along the field line. It measures how B changes
as you move along the field.

Let us write B = Bb̂, where B = |B| is the magnitude and b̂ is the
unit vector along the field. Then:

(B · ∇)B = B(b̂ · ∇)(Bb̂) = B
∂B
∂s

b̂ + B2(b̂ · ∇)b̂,

where ∂/∂s denotes the derivative along the field line.
The second part involves (b̂ · ∇)b̂. For a unit vector, this is the

curvature vector:
(b̂ · ∇)b̂ =

n̂
R

,

where n̂ is the principal normal (pointing toward the center of curva-
ture) and R is the radius of curvature.

Center

R

B2/(µ0R)
b̂

Figure 4.2: Magnetic tension: a curved
field line exerts a force toward its
center of curvature, with magnitude
B2/(µ0R).

Therefore the tension contribution to the force is:

ftension =
B2

µ0R
n̂. (4.5)
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This is exactly like the tension in a stretched string. A taut string
under tension T, curved with radius R, exerts a restoring force per
unit length T/R toward the center of curvature. For magnetic field
lines, the “tension per unit area” is B2/µ0.

You might ask: why is the tension B2/µ0 but the pressure only
B2/(2µ0)? This asymmetry has a simple origin. Consider a field B
pointing in the z-direction. The stress tensor (which we will meet
shortly) has components −B2/(2µ0) in the x and y directions (pres-
sure) but +B2/(2µ0) in the z direction. The tension force on a curved
field line involves the change in this z-component as the direction
changes, and the geometry gives an extra factor of 2.

4.4 The Maxwell Stress Tensor

The magnetic force can be written more elegantly as the divergence
of a stress tensor. Define:2 2 The negative sign in front of the

B2δij/2 term is crucial. It ensures that
the magnetic force is compressive (like
pressure) in directions perpendicular to
B.

Tij =
1

µ0

(
BiBj −

B2

2
δij

)
. (4.6)

Then the force per unit volume is

fi =
∂Tij

∂xj
.

To see what this tensor means, consider a field pointing in the
z-direction: B = Bẑ. The stress tensor becomes

T =
1

µ0

−B2/2 0 0
0 −B2/2 0
0 0 +B2/2

 .

The diagonal elements tell the story:

• Txx = Tyy = −B2/(2µ0): negative stress (compression/pressure)
perpendicular to B

• Tzz = +B2/(2µ0): positive stress (tension) along B

The magnetic field pushes outward perpendicular to itself and
pulls inward along itself. This is precisely the balloon-and-rubber-
band picture we started with.

You might ask: is this “real” stress, like the stress in a steel beam?
Yes. You can integrate the Maxwell stress tensor over any closed
surface to get the total electromagnetic force on the enclosed volume.
If you build a box around a current-carrying wire in a magnetic
field, the stress tensor correctly computes the force on the wire. The
magnetic field transmits force through empty space via this stress.
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4.5 The Plasma Beta

The ratio of gas pressure to magnetic pressure appears constantly in
MHD. It has a name: the plasma beta.

β ≡ p
B2/(2µ0)

=
2µ0 p

B2 . (4.7)

This parameter tells you who is winning the tug-of-war between
gas and field:

• β � 1: gas pressure dominates. The magnetic field is “weak”—it
gets pushed around by the gas.

• β � 1: magnetic pressure dominates. The field is “strong”—the
gas must conform to magnetic geometry.

• β ∼ 1: equipartition. Neither dominates; they negotiate as equals.
log10 β

−2 0 2

Field
dominates

Gas
dominates

CoronaTokamakSunspot Earth
core

Figure 4.3: The plasma beta in various
environments. The most interesting
MHD physics often happens near
β ∼ 1.

Let us compute β for some astrophysical and laboratory plasmas.
Solar corona: B ∼ 0.01 T, ne ∼ 1015 m−3, T ∼ 106 K. Gas pressure

p = 2nekBT ≈ 0.03 Pa. Magnetic pressure B2/(2µ0) ≈ 40 Pa.
Therefore β ≈ 0.001. The corona is magnetically dominated—plasma
flows along field lines like cars on a highway, with no freedom to
cross.

Tokamak: B ∼ 5 T, ne ∼ 1020 m−3, T ∼ 108 K (10 keV). Gas
pressure p ≈ 3 × 105 Pa. Magnetic pressure B2/(2µ0) ≈ 107 Pa.
Therefore β ≈ 0.03. Achieving higher β is a major goal of fusion
research—it means confining more plasma with the same magnet.

Earth’s outer core: B ∼ 3× 10−4 T (at the core-mantle boundary),
ρ ∼ 104 kg/m3, pressure p ∼ 1011 Pa. Magnetic pressure B2/(2µ0) ≈
0.04 Pa. Therefore β ∼ 1012. The field is utterly negligible for the
pressure balance—the core’s structure is determined by gravity and
rotation, not magnetism. Yet this tiny field is what gives Earth its
magnetic field!

You might ask: if the core’s field is so weak, how does it matter at
all? The answer is that β measures pressure balance, not dynamical
importance. Even a weak field can affect fluid motions through the
Lorentz force, especially on large scales and long times. The geody-
namo operates in the β� 1 regime, yet it works.

4.6 Force-Free Fields

There is a special class of magnetic configurations in which the
Lorentz force vanishes entirely: J × B = 0. These are called force-
free fields.
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For J× B = 0, the current must be parallel to the field: J = αB for
some scalar α. Using Ampère’s law:

∇× B = µ0J = µ0αB. (4.8)

This is an eigenvalue equation for the curl operator.3 3 The solutions are called “Beltrami
fields” in the mathematical literature.
They have remarkable topological
properties—the field lines can be
knotted and linked in complex ways.

Three important cases:

1. α = 0: current-free or “potential” field. Then ∇ × B = 0, so
B = −∇ψ for some scalar potential, and ∇2ψ = 0 (Laplace’s
equation).

2. α = constant: linear force-free field. The equation ∇× B = αB has
analytical solutions.

3. α = α(x): nonlinear force-free field. Much harder to solve; requires
numerical methods.

Force-free fields are excellent models for the solar corona, where
β� 1. The gas pressure is negligible, so there is no pressure gradient
to balance the Lorentz force. The only way the magnetic field can be
in equilibrium is if the Lorentz force is zero.

A Worked Example: The Coronal Arcade

Consider a simple model of magnetic loops in the solar corona. The
photospheric magnetic field varies sinusoidally: Bz(x, z = 0) =

B0 sin(kx), representing alternating magnetic polarities on the solar
surface. Photosphere

+ − +

Figure 4.4: A potential-field arcade:
field lines arch from positive (red) to
negative (blue) polarity regions on the
solar surface.

For a potential field (α = 0), we solve ∇2ψ = 0 with the boundary
condition ∂ψ/∂z = −B0 sin(kx) at z = 0, and requiring the field to
decay as z→ ∞. The solution is:

ψ =
B0

k
sin(kx)e−kz,

giving field components

Bx = −∂ψ

∂x
= −B0 cos(kx)e−kz, Bz = −

∂ψ

∂z
= B0 sin(kx)e−kz.

The field lines are the curves ψ = constant, which form arched
loops connecting regions of opposite polarity. The height of the ar-
cade is set by the wavelength: loops with wavelength λ = 2π/k rise
to heights of order λ.

This is a current-free solution. Adding twist to the field lines—
having α 6= 0—changes the arcade shape. More twisted fields (larger
|α|) have lower-lying loops. This makes physical sense: the tension in
twisted field lines pulls them down, while potential fields maximize
their height.
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4.7 Historical Note: Maxwell’s Mechanical Universe

The Maxwell stress tensor carries his name because Maxwell himself
introduced it in 1861. But for Maxwell, it was not merely a math-
ematical convenience. He believed it described real mechanical
stresses in a physical medium—the luminiferous aether.

Maxwell imagined space filled with rotating molecular vortices,
and the magnetic field as the rotation of these vortices. Neighbor-
ing vortices rotating in the same direction would push apart (like
two meshing gears trying to turn the same way), creating magnetic
pressure. The stress tensor emerged naturally from this mechanical
picture.

We have long since abandoned the aether. There is no medium, no
vortices, no gears. Yet the stress tensor survives intact. You can still
use it to compute the force on any current-carrying conductor—the
mathematics does not care whether the aether exists.

This is a common pattern in physics: a model may be wrong,
but if it predicts correctly, the mathematical structures often sur-
vive. Maxwell’s “wrong” model gave us the “right” stress tensor.
One wonders how many of our current models will suffer the same
fate—correct predictions emerging from incorrect ontology, with the
mathematics outliving the physical picture that birthed it.

4.8 Why Sunspots Are Dark

Let us return to sunspots with our new tools. A sunspot is a region
of intense magnetic field, B ≈ 0.2–0.3 T, much stronger than the
surrounding photosphere where B ≈ 0.01 T or less.

The magnetic pressure in a sunspot is

pB =
B2

2µ0
≈ (0.25)2

2× 4π × 10−7 ≈ 25000 Pa.

This is larger than the external gas pressure (∼ 12000 Pa), which
seems paradoxical. How can the sunspot be in pressure balance?

The answer involves depth. The pressure balance condition pi +

B2/(2µ0) = pe holds at each depth, but the external gas pressure
increases rapidly with depth in the solar atmosphere. The sunspot
field spreads out (becomes weaker and occupies more area) with
depth, so the magnetic pressure decreases. At some depth, pB and pe

become comparable, and below that depth, the flux tube maintains
equilibrium.

At the visible surface, the sunspot interior has much lower gas
pressure and density than the surroundings. But here is the crucial
point: the sunspot is also cooler.
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You might ask: why is it cooler? Because the magnetic field sup-
presses convection. Convection requires fluid elements to move
across field lines, but with β � 1 in the sunspot interior, cross-field
motion is strongly inhibited. Heat that would normally be carried
upward by convection is blocked. The sunspot interior cools.

The effective temperature of a sunspot umbra is about 4000 K,
compared to 5800 K in the surrounding photosphere. By the Stefan-
Boltzmann law, the radiative flux goes as T4, so the sunspot radiates

Fspot

Fphot
=

(
4000
5800

)4
≈ 0.23.

The sunspot emits only about 23% as much light as its surround-
ings. It appears dark—not because it emits no light (a sunspot would
outshine the full Moon if seen in isolation), but because the contrast
with the surrounding photosphere is so stark.

This example shows how pressure and tension combine with the
frozen-in constraint and energy transport to create observable phe-
nomena. The magnetic field does not merely sit there; it actively
shapes the thermal structure of the Sun.

4.9 Looking Ahead

We have established the mechanical picture of magnetic fields: pres-
sure perpendicular to the field, tension along it. This picture becomes
dynamical when we ask what happens when the field is perturbed.

Pluck a rubber band and it vibrates. The tension provides a restor-
ing force; the mass provides inertia; together they produce oscilla-
tions. Magnetic field lines do the same thing. Perturb them, and they
vibrate—these are Alfvén waves, carried by magnetic tension at the
Alfvén speed vA = B/

√
µ0ρ.

But magnetic pressure can also propagate disturbances, combining
with gas pressure to create magnetosonic waves. The full story of
MHD waves—their speeds, polarizations, and physical character—is
the subject of the next chapter.
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Waves in a Magnetized Fluid

5.1 The Plucked String

Pluck a guitar string and it vibrates. The tension in the string pro-
vides the restoring force; the string’s mass provides the inertia.
Together, they set the oscillation frequency and the wave speed:
v =

√
T/µ, where T is the tension and µ is the mass per unit length.

Now imagine the string is made of plasma, and the tension comes
from a magnetic field. We learned in the last chapter that magnetic
field lines act like rubber bands under tension B2/µ0. If we “pluck”
the field—displace a parcel of plasma perpendicular to the field
direction—magnetic tension will try to restore it. But the plasma has
inertia. The result is oscillation: the field line swings back and forth,
and this disturbance propagates along the field.

This is an Alfvén wave, the signature oscillation of magnetohydro-
dynamics.

But that is not all. A magnetized plasma supports two additional
wave modes: the fast and slow magnetosonic waves. These mix mag-
netic pressure with gas pressure, and their speeds depend on the
angle of propagation relative to the field. Together, the three modes
form a complete picture of how disturbances travel through a con-
ducting fluid.

Understanding these waves is essential for everything from coro-
nal heating to fusion plasma diagnostics to interstellar turbulence.
And there is something remarkable about their discovery: Alfvén
waves were predicted theoretically in 1942, in wartime Sweden, be-
fore anyone had seen them in a laboratory. Hannes Alfvén imagined
them into existence by taking the frozen-in picture seriously.

5.2 The Alfvén Speed

Let us derive the wave speed by the simplest possible argument:
dimensional analysis combined with physical intuition. B0

equil.
ξ

Tension restores

Figure 5.1: A kinked field line. Dis-
placement ξ bends the line; mag-
netic tension pulls from both sides to
straighten it.
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Consider a uniform magnetic field B0 threading a conducting fluid
of density ρ. Displace a fluid element perpendicular to the field. The
field line bends, creating a kink. Magnetic tension—acting like the
tension in a stretched string—tries to straighten the kink. But the
fluid element has mass, so it overshoots. The result is oscillation.

For a string, the wave speed is v =
√

T/µ, where T is tension
(force) and µ is mass per unit length. For a magnetized plasma, the
analogous quantities are:

• Tension per unit area: B2
0/µ0 (units: Pa = N/m2)

• Mass per unit volume: ρ (units: kg/m3)

The ratio has units of (velocity)2:

B2
0/µ0

ρ
=

B2
0

µ0ρ
[m2/s2].

Taking the square root gives the Alfvén speed:

vA =
B0√
µ0ρ

. (5.1)

This is the characteristic velocity of MHD, as fundamental to mag-
netized plasmas as the speed of sound is to ordinary gases.

Numerical Examples

Let us compute vA for some important environments.
Solar corona: B ∼ 10−3 T (10 gauss), ρ ∼ 10−12 kg/m3 (corre-

sponding to ne ∼ 1015 m−3). Then:

vA =
10−3

√
4π × 10−7 × 10−12

≈ 10−3

1.1× 10−9 ≈ 900 km/s.

Alfvén waves in the corona are fast—comparable to the solar wind
speed. They can carry significant energy from the photosphere into
the corona.

Tokamak fusion plasma: B ∼ 5 T, deuterium density n ∼
1020 m−3, giving ρ ∼ 3× 10−7 kg/m3. Then:

vA =
5√

4π × 10−7 × 3× 10−7
≈ 8× 106 m/s ≈ 3% c.

The Alfvén speed in a tokamak is a significant fraction of the speed
of light. This makes some relativistic corrections necessary for accu-
rate wave physics.

Earth’s outer core: B ∼ 3× 10−4 T, ρ ∼ 104 kg/m3 (liquid iron).
Then:

vA =
3× 10−4

√
4π × 10−7 × 104

≈ 3× 10−4

0.11
≈ 3 mm/s.
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Alfvén waves in Earth’s core are glacially slow—comparable to the
convective velocities that drive the geodynamo. This similarity of
timescales is not a coincidence; it reflects the intimate coupling be-
tween flow and field in the dynamo process.

5.3 Linearizing the MHD Equations

Let us now derive the wave modes rigorously. We start with the ideal
MHD equations:

∂ρ

∂t
+∇ · (ρv) = 0, (5.2)

ρ
Dv
Dt

= −∇p +
1

µ0
(∇× B)× B, (5.3)

∂B
∂t

= ∇× (v× B), (5.4)

p = p(ρ), c2
s =

dp
dρ

, (5.5)

where cs is the sound speed, defined in Chapter 2.
Consider a uniform equilibrium: B = B0 = B0ẑ, ρ = ρ0, p = p0,

v = 0. Now perturb this equilibrium:

B = B0 + b, (5.6)

ρ = ρ0 + ρ1, (5.7)

p = p0 + p1, (5.8)

v = v1, (5.9)

where the perturbations are small: |b| � B0, etc.
Substituting into the MHD equations and keeping only first-order

terms, we get the linearized equations:1 1 The linearization discards products of
small quantities like v1 · ∇v1 or ρ1v1.
This is valid when the perturbations are
small compared to equilibrium values.

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (5.10)

ρ0
∂v1

∂t
= −c2

s∇ρ1 +
1

µ0
(∇× b)× B0, (5.11)

∂b
∂t

= ∇× (v1 × B0). (5.12)

5.4 Plane Wave Solutions

Assume plane wave solutions where all perturbations vary as exp[i(k ·
r−ωt)]. This replaces ∂/∂t→ −iω and ∇ → ik.

Let us choose coordinates so that B0 = B0ẑ and k lies in the x-z
plane at angle θ to B0:

k = k(sin θ x̂ + cos θ ẑ).
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x

z

B0
k

θ

Figure 5.2: Geometry of wave propaga-
tion. The wavevector k makes angle θ
with the background field B0.

The linearized equations become algebraic:

ωρ1 = ρ0k · v1, (5.13)

ωρ0v1 = c2
s ρ1k− 1

µ0
(k× b)× B0, (5.14)

ωb = −k× (v1 × B0). (5.15)

After substantial algebra—which we will not inflict upon you
in full, though it is a worthwhile exercise—the dispersion relation
emerges:2 2 The key steps involve eliminating ρ1

and b in favor of v1, obtaining a matrix
equation, and requiring the determinant
to vanish for nontrivial solutions.

(
ω2 − k2v2

A cos2 θ
) [

ω4 −ω2k2(v2
A + c2

s ) + k4v2
Ac2

s cos2 θ
]
= 0. (5.16)

This factors into three modes.

5.5 The Three MHD Wave Modes

The Alfvén Wave

The first factor in (5.16) gives:

ω2 = k2v2
A cos2 θ. (5.17)

The phase velocity is:

vph =
ω

k
= vA| cos θ|.

This is the Alfvén wave. Its properties:

• The wave propagates fastest along the field (θ = 0), with vph = vA.

• At θ = 90 (perpendicular to B0), the phase velocity is zero. Alfvén
waves cannot propagate perpendicular to the field.

• The velocity perturbation v1 is perpendicular to both k and B0—it
points in the y-direction in our coordinate system.

• The wave is transverse and incompressible: ∇ · v1 = 0, so there is
no density perturbation.

You might ask: if Alfvén waves don’t compress the plasma, what
do they do? They shake the field lines sideways. Imagine wiggling a
garden hose—the hose itself moves, but the water inside doesn’t com-
press. Similarly, Alfvén waves displace field lines without changing
the magnetic field strength or the plasma density.

The group velocity of the Alfvén wave is particularly interesting.
Since ω = kvA cos θ, we have:

vg = ∇kω = vAẑ = vAb̂0.
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The group velocity points along the background field, regardless
of the direction of k. Energy in Alfvén waves travels strictly along
field lines. This is the mathematical statement of the “plucked string”
picture: disturbances propagate along the string, not perpendicular
to it.

The Fast and Slow Magnetosonic Waves

The second factor in (5.16) gives a quadratic in ω2:

ω4 −ω2k2(v2
A + c2

s ) + k4v2
Ac2

s cos2 θ = 0. (5.18)

Solving for the phase velocity:

v2
ph =

1
2

[
(v2

A + c2
s )±

√
(v2

A + c2
s )

2 − 4v2
Ac2

s cos2 θ

]
. (5.19)

The + sign gives the fast magnetosonic wave; the − sign gives the
slow magnetosonic wave. Unlike the Alfvén wave, these modes involve
compression of both the plasma and the magnetic field.

Along the field (θ = 0):

vfast = max(vA, cs), vslow = min(vA, cs).

One mode propagates at the Alfvén speed, the other at the sound
speed. Which is which depends on whether vA > cs (low β) or
vA < cs (high β).

Perpendicular to the field (θ = 90):

vfast =
√

v2
A + c2

s , vslow = 0.

The fast wave combines magnetic and gas pressure, propagating
faster than either alone. The slow wave cannot propagate perpen-
dicular to the field—like the Alfvén wave, it is “guided” by the field
lines.

You might ask: what happens at intermediate angles? The waves
interpolate smoothly between these limits. A useful mnemonic: at
any angle, vslow ≤ vAlfvén ≤ vfast. The three speeds are nested, with
the Alfvén wave always between the magnetosonic pair.

5.6 The Friedrichs Diagram

The angular dependence of the wave speeds is best visualized with a
Friedrichs diagram: a polar plot of phase velocity versus propagation
angle.

B0

— Fast
— Alfvén
— Slow

Figure 5.3: Friedrichs diagram for
vA > cs. The radial distance from the
origin is the phase velocity at that angle
relative to B0.

In this diagram, the radial distance from the origin at angle θ

represents the phase velocity for propagation at that angle to B0. For
the typical case vA > cs (low β plasma):
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• The fast wave forms the outermost curve, roughly elliptical.

• The Alfvén wave forms a figure-eight that touches the origin at
θ = 90.

• The slow wave forms the innermost curve, also touching the ori-
gin at θ = 90.

When vA < cs (high β), the diagram changes: the fast wave is more
nearly circular, and the slow wave shrinks. In the special case vA = cs

(β = 1, equipartition), the Alfvén and slow waves become degenerate
along the field direction.

This single diagram communicates what pages of equations can-
not: the three-dimensional structure of wave propagation in MHD.
Any disturbance can be decomposed into these three modes, each
carrying energy at its own speed and direction.

5.7 A Worked Example: Wave Damping in the Solar Wind

Alfvén waves have been observed in the solar wind since the 1960s.
Spacecraft measurements show correlated fluctuations in v and B,
with the characteristic phase relationship δv ∝ ±δB/

√
µ0ρ—the +

sign for outward-propagating waves, the − sign for inward.
But here is a puzzle: if Alfvén waves propagate without compres-

sion, they should not dissipate in ideal MHD. Yet the fluctuation
amplitude decreases with distance from the Sun. Why?

Several mechanisms contribute:

1. Geometric expansion: As the solar wind expands, the wave am-
plitude scales with the background field strength. B ∝ r−2 for a
radial field, so δB decreases even without dissipation.

2. Nonlinear steepening: Large-amplitude Alfvén waves can steepen
into shocks or generate compressional waves at higher harmonics.
These compressional components can dissipate.

3. Parametric decay: An Alfvén wave can decay into a backward-
propagating Alfvén wave plus a slow magnetosonic wave. This
cascades energy to smaller scales.

4. Turbulent cascade: Counterpropagating Alfvén waves interact
nonlinearly, transferring energy to smaller scales where it eventu-
ally dissipates.

Let us estimate the expansion effect. At 1 AU, B ∼ 5 nT and
ρ ∼ 5× 10−21 kg/m3, giving vA ≈ 60 km/s. At 0.3 AU (near Parker
Solar Probe’s closest approach), B ∼ 50 nT and ρ ∼ 5× 10−20 kg/m3

(scaling roughly as r−2), giving vA ≈ 200 km/s.
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The ratio of Alfvén speeds is 200/60 ≈ 3. Meanwhile, B decreases
by a factor of 10 from 0.3 AU to 1 AU. If wave amplitude δB scales
with the background field, this geometric dilution alone accounts
for much of the observed decrease—without any true dissipation.
Disentangling geometric expansion from actual energy loss is an
active area of research.

5.8 Historical Note: Alfvén’s Prediction

In 1942, Hannes Alfvén published a remarkable paper in Nature titled
“Existence of Electromagnetic-Hydrodynamical Waves.” The paper
is barely a page long. Alfvén simply writes down the wave equation,
solves it, and states the result:

“If a conducting liquid is placed in a constant magnetic field, every
small transverse disturbance of the liquid will be propagated along the
lines of force with the velocity v = H/

√
4πρ.”

(Here H is the magnetic field in Gaussian units.)
The prediction was not immediately accepted. Some physicists ar-

gued that resistivity would damp the waves before they could prop-
agate. Others were skeptical of the idealized “infinite conductivity”
assumption.

The first laboratory confirmation came in 1949, when Stig Lundquist
in Sweden detected oscillations in liquid mercury at roughly the pre-
dicted frequency. The experiments were difficult—mercury is a poor
conductor, so the waves were strongly damped—but the frequency
dependence on field strength and density matched Alfvén’s formula.

Definitive confirmation came from space. In the 1960s, the Mariner
spacecraft detected clear Alfvén wave signatures in the solar wind:
correlated oscillations of velocity and magnetic field, propagating
outward from the Sun at the local Alfvén speed.

Alfvén received the Nobel Prize in Physics in 1970 for “funda-
mental work and discoveries in magnetohydrodynamics.” The prize
citation specifically mentioned the discovery of the waves that bear
his name.

You might ask: how did Alfvén know to look for such waves in
the first place? His insight came from taking the frozen-in picture
seriously. If field lines are like strings attached to the fluid, and if
strings can vibrate, then so can field lines. The mathematics followed
from the physical intuition—not the other way around. This is a
lesson worth remembering: the best predictions often come from
taking your physical pictures more seriously than you think you
should.
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5.9 Waves in Inhomogeneous Media

So far we have assumed a uniform equilibrium. Real plasmas have
gradients in density, temperature, and magnetic field strength. What
happens to MHD waves in such environments?

The short answer: they reflect, refract, and convert between modes.
A fast wave encountering a density gradient can partially convert
into a slow wave or Alfvén wave. An Alfvén wave reaching a region
where vA changes will partially reflect.

Consider Alfvén waves in the solar atmosphere. Near the pho-
tosphere, vA ∼ 10 km/s. In the corona, vA ∼ 1000 km/s. This
hundredfold increase in Alfvén speed means that waves propagating
upward encounter a strong gradient.

The reflection coefficient for a wave at an interface where vA

changes from v1 to v2 is approximately:

R ≈
(

v2 − v1

v2 + v1

)2
.

For v2/v1 = 100, this gives R ≈ 0.96. Almost all the wave energy
reflects! Only about 4% is transmitted into the corona.

This presents a problem for coronal heating models that rely on
Alfvén wave dissipation. How do the waves get into the corona if
they mostly reflect at the transition region? Part of the answer is that
the transition is not sharp—it has structure on scales comparable to
the wavelength, reducing the reflection. Part is that higher-frequency
waves have shorter wavelengths and can “tunnel” through the gradi-
ent. The full answer involves sophisticated wave physics that remains
an active research area.

5.10 Philosophical Interlude: Why Three Modes?

You might wonder: why exactly three wave modes? Why not two, or
four, or infinitely many?

The answer lies in the symmetries of the system. Ideal MHD has
three fundamental degrees of freedom: the magnetic field (con-
strained by ∇ · B = 0, leaving two independent components), the
velocity (three components), and the density (one component, with
pressure determined by the equation of state). But these are coupled
by the equations of motion. The number of independent wave modes
equals the number of degrees of freedom, which for MHD is three.

In full plasma physics (without the MHD approximations), there
are many more modes: Langmuir waves, ion acoustic waves, whistler
waves, ion cyclotron waves, and so on. The MHD approximation
filters these out by assuming quasineutrality and low frequency.
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What remains are the three modes that survive on large scales and
slow timescales.

This is a general principle: the number of wave modes tells you
about the effective degrees of freedom in your system. One mode
(like ordinary sound in a gas) means one restoring mechanism. Three
modes in MHD means the interplay of gas pressure, magnetic pres-
sure, and magnetic tension, each providing different restoring forces
at different angles.

5.11 Looking Ahead

We have learned how disturbances propagate in a magnetized fluid:
Alfvén waves along field lines, fast waves in all directions, slow
waves guided by the field. But propagation is only half the story.
What about equilibrium? Can a magnetic field confine a plasma—
hold it in place against its thermal pressure? And if equilibrium is
achieved, is it stable?

These questions lead us to MHD equilibria and the confinement
problem. The tension and pressure we have studied create forces;
when those forces balance, the plasma sits still. But balanced forces
are not always stable forces. A ball at the top of a hill is in equilib-
rium, but a small push sends it rolling. Magnetic confinement faces
similar challenges, and understanding them is essential for fusion
energy. That is the subject of the next chapter.
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Instabilities and Dynamics





6
Equilibria and the Confinement Problem

6.1 The Dream and Its Difficulty

Imagine building a cage out of nothing but magnetic fields—invisible
walls that push without touching, that hold a hundred million de-
grees without melting. No material wall could survive such tem-
peratures; tungsten melts at 3700 K, and we need 100 million K. But
magnetic fields are immune to heat. Wrap the plasma in a sufficiently
clever field configuration, and you might have a miniature star in a
bottle.

The trouble is, the cage keeps trying to fall apart.
Magnetic confinement of hot plasma is one of the hardest en-

gineering challenges ever attempted. The difficulty is not merely
practical—better materials, stronger magnets, more power. The dif-
ficulty is mathematical. A fundamental theorem from MHD tells us
that a plasma cannot confine itself. The field may push inward here,
but it must push outward there. You cannot build a magnetic pres-
sure cooker that is higher pressure inside than outside everywhere on
the boundary.

This is why fusion reactors are so complicated. The magnetic cage
cannot be built from the inside. It must be imposed from outside by
massive superconducting magnets surrounding the machine. The
plasma is caged, not self-confined. Understanding why the cage
needs external support—and what we can do about it—is the subject
of this chapter.

6.2 The Simplest Attempt: The Theta-Pinch

Let us try to confine a plasma with the simplest possible configura-
tion: a straight cylinder with an axial magnetic field.

θ-pinch

p
Bz

Figure 6.1: The θ-pinch: an axial mag-
netic field compresses the plasma
radially. But particles escape freely
along the field lines.

Imagine a cylinder of plasma with magnetic field Bz(r) pointing
along the axis. The field is stronger at the edge than in the middle.
This creates a magnetic pressure gradient that pushes inward, confin-
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ing the plasma radially.
The force balance in the radial direction is:

−dp
dr

+ Jθ Bz = 0.

Using Ampère’s law, Jθ = −(1/µ0)∂Bz/∂r, we get:

dp
dr

= − 1
µ0

∂Bz

∂r
Bz = −

1
2µ0

∂(B2
z)

∂r
.

Integrating from the center (where Bz = Bcenter, p = p0) to the edge
(where Bz = Bedge, p = 0):

p0 +
B2

center
2µ0

=
B2

edge

2µ0
. (6.1)

This is pressure balance: the sum of gas pressure and magnetic
pressure is constant across the plasma. The external field squeezes
the plasma, and equilibrium is achieved.

So the θ-pinch works—radially. But what about the ends?
The field lines run straight through the cylinder and out both

ends. Particles spiral along field lines freely. A thermal particle with
speed vth ∼ 106 m/s (at 10 keV) crosses a 1-meter device in about
1 microsecond. The plasma leaks out the ends like water through a
pipe.

For fusion, we need confinement times of order 1 second. The
θ-pinch gives us 1 microsecond. We are off by a factor of a million.

You might ask: can we plug the ends? We could curve the field
lines back on themselves, making a torus. Or we could add mag-
netic mirrors—regions of strong field that reflect particles. Both ap-
proaches have been tried. Both introduce new problems. The simple
picture of straight field lines confining plasma radially captures the
essence of the challenge: magnetic fields confine perpendicular to B,
not along B.

6.3 The Equilibrium Equation

Let us now write down the general condition for MHD equilibrium.
When the plasma is at rest (v = 0), the momentum equation be-
comes:

∇p = J× B. (6.2)

The pressure gradient is balanced by the Lorentz force. Using Am-
père’s law J = (1/µ0)∇× B and the vector identity from Chapter 4:

∇p =
1

µ0
(∇× B)× B =

1
µ0

(B · ∇)B−∇
(

B2

2µ0

)
. (6.3)
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Rearranging:

∇
(

p +
B2

2µ0

)
=

1
µ0

(B · ∇)B. (6.4)

The left side is the gradient of total pressure (gas plus magnetic).
The right side is the magnetic tension force. In equilibrium, the total
pressure gradient equals the tension.

Pressure Is Constant Along Field Lines

Taking the dot product of (6.2) with B:

B · ∇p = B · (J× B) = 0,

since B is perpendicular to J× B.
This means p is constant along each field line. In equilibrium,

every field line is an isobar—a surface of constant pressure. The field
lines and isobars coincide.

Similarly, taking the dot product with J:

J · ∇p = 0.

Current also flows along isobars. The current lines, field lines, and
isobars all lie on the same surfaces.

These surfaces are called flux surfaces. In a well-confined plasma,
flux surfaces are nested like the layers of an onion, with pressure
decreasing from the hot core to the cool edge.

6.4 The Virial Theorem: Why Self-Confinement Fails

Now we come to the fundamental obstruction. Can a plasma con-
fine itself—generate its own magnetic field and use it to hold itself
together?

The virial theorem says no.

Physical Intuition

Think of a blob of plasma in empty space, carrying currents that
generate a magnetic field. The gas pressure pushes outward every-
where. The magnetic pressure B2/(2µ0) is always positive, so it also
pushes outward. Magnetic tension can pull inward where field lines
are curved, but can the tension everywhere exceed the pressure?

Imagine integrating over the boundary of the plasma. The out-
ward push of both gas and magnetic pressure must be balanced by
the inward pull of tension. But tension only acts where field lines
curve into the plasma. For a self-contained field—one that closes
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on itself without external sources—the total magnetic force on any
volume integrates to zero. The field can redistribute pressure, but it
cannot provide net confinement.

The Mathematical Statement

Let us prove this rigorously. Consider a volume V bounded by a
surface S that encloses the plasma. Take S to be a large sphere at
radius R, far from the plasma, where both p and B fall to zero.

Start with the equilibrium equation (6.2) and take the dot product
with the position vector r:

r · ∇p = r · (J× B).

Integrate over the volume V:1 1 The identity ∇ · (pr) = r · ∇p + 3p
helps convert the left side to a surface
integral.

∫
V

r · ∇p dV =
∫

S
p r · dA− 3

∫
V

p dV.

For large S where p → 0, the surface integral vanishes, leaving
−3
∫

V p dV.
For the right side, after some vector calculus:2 2 The manipulation involves the identity

r · (J× B) = J · (B× r) and integration
by parts. See Freidberg’s Ideal MHD for
details.

∫
V

r · (J× B) dV = −
∫

V

B2

2µ0
dV + surface terms.

For a field that falls off at large distances (faster than 1/R), the
surface terms vanish. We are left with the virial theorem:

3
∫

V
p dV +

∫
V

B2

2µ0
dV = 0. (6.5)

But both integrals are positive! Gas pressure p > 0, and magnetic
energy density B2/(2µ0) > 0. The only way their sum can be zero is
if both are zero—no plasma, no field.

Conclusion: A plasma cannot confine itself by its own magnetic
field. External sources—currents in coils outside the plasma—are
required.

This is not a technical limitation that better engineering might
overcome. It is a mathematical impossibility, as certain as the impos-
sibility of a perpetual motion machine. The virial theorem closes the
door on self-confinement.

You might ask: surely with enough cleverness in the field ge-
ometry, one could evade this constraint? No. The virial theorem is
not about local force balance—it is about global integrals. You can
arrange for the field to push inward here and there, but the total
inward push from a self-generated field must equal the total out-
ward push. There is no topological trick, no clever configuration, that
changes this arithmetic. The theorem is as fundamental as conserva-
tion of energy.
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6.5 Confinement With External Coils

If self-confinement is impossible, we must use external coils. The
virial theorem still applies, but now there is a surface contribution
from the coil currents that can provide the missing inward force.

Consider a plasma surrounded by a perfectly conducting wall
at the boundary S. The wall carries surface currents that support a
jump in the tangential magnetic field. Inside the plasma, the equilib-
rium equation holds:

∇p = J× B.

At the plasma-wall interface:

p +
B2

2µ0
=

B2
wall

2µ0
, (6.6)

where Bwall is the field just inside the wall (supported by the wall
currents).

The coils do not violate the virial theorem; they provide the exter-
nal pressure that the theorem demands. The magnetic cage is held
together by the scaffolding of the coils—remove the scaffolding, and
the cage collapses. The plasma plus coils together satisfy force bal-
ance, but the plasma alone cannot.

Boundary Conditions

Real experiments have more complicated boundaries. Some impor-
tant cases:

Perfectly conducting wall: The normal component of B must
vanish at the wall: B · n̂ = 0. Field lines are tangent to the wall. This
is an idealization—real walls have finite resistivity—but it is often a
good approximation on short timescales.

Vacuum region: Outside the plasma but inside the wall, there
may be a vacuum region with no current. In this region, ∇× B = 0,
so B = −∇χ for some scalar potential χ satisfying ∇2χ = 0. The
vacuum field connects the plasma to the coils.

Pressure discontinuity: If there is a sharp plasma edge with a
current sheet, the tangential field jumps across the boundary: [[Bt]] =

µ0K, where K is the surface current density.

6.6 A Worked Example: The Bennett Pinch

Let us work through a simple equilibrium analytically: the Bennett
pinch, a cylindrical column of plasma carrying a uniform axial cur-
rent.

Jz

Bθ

a

Figure 6.2: The Bennett pinch: axial
current creates azimuthal field that
pinches the plasma.
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Consider a plasma cylinder of radius a carrying total current I.
The current density is uniform: Jz = I/(πa2).

From Ampère’s law, the azimuthal magnetic field is:

Bθ(r) =


µ0 Jzr

2
=

µ0 Ir
2πa2 r < a

µ0 I
2πr

r > a

The radial force balance is:

dp
dr

= −JzBθ = −µ0 J2
z r

2
.

Integrating from r to a (where p = 0 at the edge):

p(r) =
µ0 J2

z
4

(a2 − r2) =
µ0 I2

4π2a4 (a2 − r2).

The central pressure is:

p0 = p(0) =
µ0 I2

4π2a2 . (6.7)

This is the Bennett relation: it tells us the current required to
confine a given pressure in a cylinder of radius a.

Let us put in numbers. For I = 1 MA and a = 1 cm:

p0 =
4π × 10−7 × (106)2

4π2 × (10−2)2 =
105

π × 10−4 ≈ 3× 108 Pa ≈ 3000 atm.

Enormous pressure! This is why early fusion researchers were
excited by pinches—they seemed to offer high confinement with
relatively modest currents.

The catch: the Bennett pinch is violently unstable. Perturbations
grow exponentially, destroying the equilibrium in microseconds.
We will study these instabilities—the kink and sausage modes—in
Chapter 8. For now, the lesson is that equilibrium is necessary but
not sufficient; stability is equally important.

You might ask: why bother with the Bennett pinch if it is unstable?
Because it teaches us something important. The equilibrium exists—
nature allows it mathematically. The problem is not force balance but
fragility. The magnetic cage holds the plasma, but the slightest rattle
breaks the bars. Understanding why requires understanding stability,
which is the real frontier of MHD.

6.7 Historical Note: The Fusion Reckoning

In the 1950s, fusion seemed easy. Heat hydrogen hot enough and
it will fuse—this was known from stellar physics. The first fusion



equilibria and the confinement problem 61

devices were built with optimism and secrecy. In the United States,
Project Sherwood pursued pinches and mirrors. In Britain, the ZETA
machine promised imminent success. In the Soviet Union, Andrei
Sakharov and Igor Tamm developed the tokamak concept.

Edward Teller—“father of the hydrogen bomb”—predicted com-
mercial fusion power within twenty years. He was not alone in his
optimism.

Then reality intervened. Every confinement scheme was unstable.
Plasmas kinked, sausaged, and squirmed out of their magnetic cages.
The 1958 Geneva “Atoms for Peace” conference was a revelation:
when the secret programs declassified their results, they all had the
same problems. Nobody had fusion working.

The virial theorem was already known mathematically, but its im-
plications for fusion were not fully appreciated. Researchers thought
clever field configurations could evade it. They could not. The the-
orem is a thermodynamic statement about integrals; no local clever-
ness can circumvent a global constraint.

The path forward required external coils, sophisticated field ge-
ometries, and decades of work on stability. The “twenty years” be-
came fifty, then seventy. As of this writing, ITER is under construc-
tion in France, aiming for net energy gain by the 2030s. The dream
persists, but so does the difficulty.

You might ask: why is fusion so hard when the Sun does it ef-
fortlessly? The answer is gravity. The Sun is confined by its own
weight—a force that scales as M2/R2 and is utterly dominant at stel-
lar masses. Magnetic forces are a perturbation on the Sun, not the
confinement mechanism. We cannot build a star on Earth; we must
find another way.

6.8 The Beta Limit

Recall the plasma beta from Chapter 4:

β =
p

B2/(2µ0)
=

2µ0 p
B2 .

Higher β means more plasma pressure for a given field strength—
more “bang for the buck” from your expensive magnets. But there is
a limit.

Consider a tokamak with B = 5 T and central pressure p0 = 105 Pa
(about 1 atm). The beta is:

β =
2× 4π × 10−7 × 105

25
≈ 0.01 = 1%.

Only 1% of the magnetic pressure is balancing the plasma! The
field is vastly “overbuilt” relative to the plasma it confines.
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Why so low? Because instabilities limit beta. Going above a few
percent triggers modes that destroy confinement. This beta limit is
one of the key constraints on fusion reactor design. A reactor with
β = 5% is considered aggressive; β = 10% would be revolutionary.

You might ask: can we just use stronger magnets? To some ex-
tent, yes. Fusion power scales roughly as β2B4, so doubling the field
increases power 16-fold. But magnets are expensive, and there are en-
gineering limits. The beta limit forces reactor designers into a delicate
optimization.

6.9 Looking Ahead

We have established the fundamental constraint: magnetic confine-
ment requires external coils. But what field geometry should we use?

The most successful approach is the tokamak: a torus with heli-
cal field lines that wind around both the long way (toroidal) and the
short way (poloidal). This geometry has remarkable stability proper-
ties, which is why it has dominated fusion research for sixty years.

But the tokamak is not obvious. Why a torus? Why helical fields?
What makes this configuration special? Understanding the tokamak
requires understanding rotational transform, magnetic shear, and the
delicate balance of forces in toroidal geometry. That is the subject of
the next chapter.
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The Tokamak: Fusion’s Magnetic Cage

7.1 A Machine That Actually Works

In the late 1960s, Soviet physicists announced something remarkable:
their “tokamak” device was confining plasma ten times better than
anything else in the world. Western scientists were skeptical—Soviet
plasma diagnostics had a mixed reputation, and extraordinary claims
require extraordinary evidence.

In 1969, a British team flew to Moscow with their own Thomson
scattering diagnostic, a laser-based technique for measuring electron
temperature that the Soviets could not fake. They confirmed the
results. The T-3 tokamak was achieving electron temperatures of
10 million kelvin with confinement times far exceeding previous
devices.

Within five years, tokamaks were being built in every major fusion
laboratory. The geometry was elegant: a doughnut-shaped chamber
with magnetic field lines spiraling around the torus like stripes on
a barber pole. The plasma current itself helped create the confining
field. It seemed almost magical—a topology that actually worked.

Fifty years later, the tokamak remains the leading fusion con-
cept. ITER, the experiment under construction in France at a cost
exceeding $25 billion, is a tokamak. But understanding why tokamaks
work—and the instabilities that limit them—took decades of effort.
This chapter is about the geometry that makes confinement possible.

7.2 Why Straight Fields Fail in a Torus

We learned in the last chapter that a θ-pinch confines plasma radially
but loses it out the ends. The obvious fix: bend the cylinder into
a torus. Now the field lines close on themselves—no ends to leak
through!

But this creates a new problem.

Axis

⊗
⊗
⊗ ⊗e−

i+

R

strong B weak B

Figure 7.1: Cross-section: the toroidal
field Bφ is stronger on the inboard side
(closer to the central axis) and weaker
on the outboard side. The gradient
causes electrons and ions to drift in
opposite vertical directions.

In a torus, the magnetic field varies with position. The field is
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stronger on the inside (smaller major radius R) than on the outside:

Bφ ∝
1
R

.

This gradient causes particles to drift. The drift velocity is:

v∇B =
1
q

B×∇B
B2

mv2
⊥

2B
∼ kBT

qBR
.

For a 10 keV plasma, B = 5 T, R = 2 m:

v∇B ∼
104 × 1.6× 10−19

1.6× 10−19 × 5× 2
≈ 1000 m/s.

Electrons and ions drift in opposite directions (they have opposite
charge). This separates the charges, creating a vertical electric field
E. The electric field then drives an E× B drift that pushes the entire
plasma outward, toward the outer wall.

The plasma slides off in milliseconds. Confinement fails.
You might ask: is there no way to cancel these drifts? There is—

and it is the key insight behind the tokamak.

7.3 Rotational Transform: The Saving Twist

The solution is to twist the field lines.
If field lines do not just circle toroidally but also wind in the

poloidal direction (around the cross-section of the torus), something
remarkable happens. A particle drifting upward on the outside of
the torus is carried by the twisted field line to the inside, where the
gradient reverses and it drifts downward. Over a complete circuit,
the drift averages to zero.

This twist is called rotational transform. In a tokamak, it is created
by driving a toroidal current through the plasma. The current gen-
erates a poloidal magnetic field Bθ that adds to the toroidal field
Bφ from the external coils. The result: helical field lines that spiral
around the torus.

⊗
Bφ

Bθ

Helical field = Bφ + Bθ

Figure 7.2: Field lines wind helically
around the torus, combining toroidal
(φ) and poloidal (θ) components.

Let us quantify the twist. Define the safety factor q:

q =
toroidal turns
poloidal turns

=
rBφ

RBθ
, (7.1)

where r is the minor radius (distance from the plasma center) and R
is the major radius.

The name “safety factor” reflects history: larger q means less twist,
and less twist turns out to be safer against certain instabilities. A
typical tokamak has q ≈ 1 at the magnetic axis and q ≈ 3–5 at the
plasma edge.
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What q Tells You

If q = 2, a field line makes two toroidal circuits for every poloidal
circuit. After going around the torus twice, it returns to its starting
point in the poloidal plane.

If q is irrational (say, q =
√

2), the field line never exactly closes.
It densely covers a toroidal surface, called a flux surface, without ever
repeating.

If q = 1, the field line closes after exactly one toroidal circuit. This
turns out to be dangerous—perturbations with the same periodicity
as the field line can resonate and grow. The q = 1 surface is where
internal kink modes can develop.

You might ask: why not make q very large everywhere, to be max-
imally safe? Because large q means weak twist, weak poloidal field,
and weak plasma current. The current provides both the twist and
(via ohmic heating) some of the plasma heating. There is a tradeoff:
too little twist loses the cancellation of drifts; too much twist risks
current-driven instabilities.

7.4 The Grad-Shafranov Equation

Let us now make this picture mathematically precise. For a rigor-
ous treatment of tokamak equilibrium, we need to solve the MHD
force balance equation in toroidal geometry. The result is the Grad-
Shafranov equation, named after Harold Grad and Vitaly Shafranov,
who derived it independently in the late 1950s.

In axisymmetric equilibrium (no dependence on the toroidal angle
φ), the magnetic field can be written as:

B =
1
R
∇ψ× φ̂ +

F(ψ)
R

φ̂, (7.2)

where ψ is the poloidal flux function (constant on flux surfaces),
F(ψ) = RBφ, and φ̂ is the toroidal unit vector.

The force balance equation ∇p = J× B becomes, after considerable
algebra:1 1 The derivation requires expressing J

in terms of ψ and F, then projecting the
force balance onto the poloidal plane.
See Freidberg’s Ideal MHD for the full
calculation.

∆∗ψ = −µ0R2 dp
dψ
− F

dF
dψ

, (7.3)

where the Grad-Shafranov operator is:

∆∗ = R2∇ ·
(
∇
R2

)
= R

∂

∂R

(
1
R

∂

∂R

)
+

∂2

∂Z2 .

This is an elliptic partial differential equation for ψ(R, Z) given the
profiles p(ψ) and F(ψ). Solving it, with appropriate boundary condi-
tions from the coil geometry, gives the equilibrium flux surfaces.
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Physical Meaning

Each term in (7.3) has a physical interpretation:
Left side (∆∗ψ): Measures how the flux surfaces deviate from

simple circular cross-sections. Non-zero ∆∗ψ means the surfaces are
shaped—shifted, elongated, or triangular.

First term on right (−µ0R2 dp/dψ): The pressure gradient. Higher
central pressure pushes flux surfaces outward, creating the Shafranov
shift: the magnetic axis is displaced outward from the geometric
center.

Second term (−F dF/dψ): The toroidal field gradient. If F varies
with ψ (i.e., if Bφ changes across flux surfaces), this contributes to the
equilibrium shape.

geometric center

magnetic axis

Shafranov shift ∆

Figure 7.3: Shafranov shift: the mag-
netic axis is displaced outward from
the geometric center due to pressure
gradients. Flux surfaces nest around the
shifted magnetic axis.

7.5 Flux Surfaces: The Onion-Skin Picture

Let us examine what the solutions to the Grad-Shafranov equation
reveal. The plasma is organized into nested flux surfaces—toroidal
shells, like the layers of an onion. This onion-skin structure is the
foundation of tokamak confinement.

On each flux surface:

• Pressure is constant: B · ∇p = 0 implies p = p(ψ).

• Field lines lie entirely within the surface, winding helically with-
out crossing to adjacent surfaces.

• The safety factor q is constant (for a given surface).

The magnetic axis—the innermost flux surface, which has degen-
erated to a curve—carries the highest pressure and hottest plasma.
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Moving outward, pressure decreases, temperature drops, and the
safety factor q increases.

This nested structure is the key to confinement. Plasma cannot
easily cross flux surfaces because doing so requires crossing field
lines, which is forbidden in ideal MHD. Transport across flux sur-
faces requires either collisions (classical transport), turbulent eddies
(anomalous transport), or large-scale instabilities. The onion skin pro-
vides a thermal barrier: heat generated in the hot core must diffuse
layer by layer to the cool edge.

You might ask: if flux surfaces are so confining, why is fusion
hard? Because the nested structure is fragile. Instabilities can break
flux surfaces, creating “magnetic islands” where field lines connect
across what were previously isolated surfaces—like tunnels punched
through the onion, letting heat escape directly. Even without insta-
bilities, turbulence drives transport that exceeds classical predictions
by factors of 10–100. The onion has leaky layers, and sometimes the
layers tear.

7.6 A Worked Example: Computing q for a Tokamak

Let us compute the safety factor for a small tokamak with the follow-
ing parameters:

• Major radius: R0 = 1.7 m

• Minor radius: a = 0.4 m

• Toroidal field at the center: Bφ0 = 2.5 T

• Plasma current: Ip = 1 MA

First, we estimate the poloidal field at the plasma edge. Treating
the plasma current as a line current (a rough approximation):

Bθ(a) ≈
µ0 Ip

2πa
=

4π × 10−7 × 106

2π × 0.4
= 0.5 T.

The safety factor at the edge, using (7.1):

q(a) =
aBφ

R0Bθ
=

0.4× 2.5
1.7× 0.5

=
1.0
0.85

≈ 1.2.

This is too low! Tokamaks typically require qedge > 2 to avoid
certain instabilities (the external kink mode). With q = 1.2 at the
edge, the plasma would be violently unstable.

To fix this, we could:

• Increase Bφ (requires larger, more expensive magnets)

• Decrease Ip (reduces heating and possibly confinement)
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• Increase the aspect ratio R0/a (larger machine)

Real tokamaks balance these tradeoffs carefully. ITER, for example,
is designed with R0 = 6.2 m, a = 2.0 m, Bφ = 5.3 T, Ip = 15 MA,
giving qedge ≈ 3.

7.7 Historical Note: From T-3 to ITER

The tokamak was invented by Igor Tamm and Andrei Sakharov at
the Kurchatov Institute in Moscow in the early 1950s. The name is a
Russian acronym: toroidal’naya kamera s aksial’nym magnitnym polem—
toroidal chamber with axial magnetic field.2 2 Some sources give a slightly different

expansion, but all agree on the basic
meaning.

The early tokamaks showed promise but nothing spectacular.
Other configurations—stellarators, pinches, mirrors—were also being
pursued. Then came T-3.

The T-3 tokamak achieved electron temperatures of 1 keV (about
10 million kelvin) with energy confinement times of tens of milliseconds—
an order of magnitude better than any other device. The 1969 British
verification mission settled the matter: tokamaks worked.

The subsequent history is a progression of ever-larger machines:

• T-3 (1968): Te ∼ 1 keV, demonstrated the concept

• PLT (Princeton, 1978): First to reach Te ∼ 5 keV

• TFTR (Princeton, 1994): First D-T fusion reactions at significant
power

• JET (Europe, 1997): Achieved Q = 0.67 (fusion power / input
power)

• ITER (under construction): Target Q = 10

Each machine was larger, hotter, and better confined. But progress
has been slower than the optimists hoped. The “engineering” problems—
materials that can handle the heat, exhaust systems for the helium
ash, avoiding disruptions that can damage the machine—have proven
as difficult as the physics.

You might ask: why not just build a bigger machine now? Cost.
JET cost about $1 billion in 1980s money. ITER will cost over $20

billion. A demonstration power plant would cost more still. Fusion is
on a trajectory, but it is expensive, and the payoff is decades away.

7.8 The Stellarator Alternative

Let us consider the alternative. The tokamak is not the only path to
fusion. A stellarator creates the rotational transform using external
coils alone, without any plasma current.
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The advantage: no current means no current-driven instabili-
ties, and the device can operate in true steady state. The disadvan-
tage: the coils must be spectacularly complex, twisted into three-
dimensional shapes that are difficult to manufacture.

Non-planar coil

Figure 7.4: Stellarator coils must be
non-planar and precisely shaped to
create the required rotational transform.

The Wendelstein 7-X stellarator in Germany, which began opera-
tions in 2015, has 70 superconducting coils, each a different shape,
optimized by computer to create flux surfaces with good confinement
properties. The engineering is a tour de force.

Both concepts are actively pursued. ITER is a tokamak because
tokamaks are better understood and have a longer track record. But
stellarators may ultimately prove superior for a power plant, where
steady-state operation is essential. The jury is still out.

7.9 Looking Ahead

We have established how tokamaks achieve equilibrium: nested flux
surfaces created by a combination of toroidal and poloidal fields,
with the twist (rotational transform) canceling particle drifts. The
plasma is confined—but is it stable?

Equilibrium is necessary but not sufficient. A ball at the top of a
hill is in equilibrium, but the slightest push sends it rolling down.
The same is true for plasma: the equilibrium configuration may be
unstable to small perturbations.

Current flowing through the plasma creates opportunities for
instability. Pressure gradients push against the magnetic cage. Both
can drive modes that destroy confinement. Understanding these
instabilities—and how to avoid them—is the real frontier of fusion
research. That is the subject of the next chapter.





8
Current-Driven Instabilities

8.1 When Current Becomes the Enemy

Run a current through a wire and nothing much happens—the wire
stays straight. But run a current through a plasma, and all hell can
break loose. The current creates a magnetic field, and that field
can destabilize the very current that created it. The plasma writhes,
kinks, and pinches.

These current-driven instabilities are among the most dangerous
in fusion. A tokamak relies on a toroidal plasma current to create
the confining poloidal field. But if that current is too strong, or too
sharply peaked, the plasma becomes unstable. In the worst case, a
“disruption” occurs: the plasma loses confinement in milliseconds,
dumping hundreds of megajoules of energy onto the walls.

Think of the plasma as a coiled spring under tension. The current
stores magnetic energy, and the plasma is always looking for ways
to release it. The kink instability is the plasma’s attempt to relax—to
shorten its current path and reduce its magnetic stress. Understand-
ing these instabilities took decades. The mathematics is subtle, but
the physical pictures are intuitive. Let us build that intuition.

8.2 The Kink Instability: Current Shortening

Consider a straight column of current-carrying plasma—a Z-pinch.
The axial current Jz creates an azimuthal magnetic field Bθ that wraps
around the column. This field produces an inward J × B force that
confines the plasma radially.

Jz

Stable Kinked
Figure 8.1: The kink instability: a helical
displacement of the current column
reduces the current path length and
releases magnetic energy.

Now imagine the column develops a small helical kink—a side-
ways displacement that spirals around the axis. What happens?

The current path, which was straight, is now helical. But magnetic
field lines—and the currents that create them—want to be as short as
possible, because shorter paths mean less stored magnetic energy. If
the kink can grow, the effective current path shortens, reducing the
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magnetic energy.
Let us see this energetically. The magnetic energy stored in the

azimuthal field scales as:

W ∼
∫ B2

θ

2µ0
dV ∼ µ0 I2

4π
× (effective length).

If the kink grows, the effective length of the current path decreases,
W decreases, and energy is released. Released energy means instability—
the perturbation grows.

This is the kink instability in its essence: the plasma trying to
shorten its current path.

How Fast Does It Grow?

The growth rate of the kink is set by the Alfvén time—the time for
magnetic signals to communicate across the plasma. For a cylinder of
radius a:

γ ∼ vA
a
∼ Bθ√

µ0ρ a
.

Let us put in numbers for a fusion-relevant plasma: n ∼ 1020 m−3

(giving ρ ∼ 3× 10−7 kg/m3 for deuterium), Bθ ∼ 0.5 T, a ∼ 0.3 m.
Then:

vA =
0.5√

4π × 10−7 × 3× 10−7
≈ 8× 105 m/s,

and

γ ∼ 8× 105

0.3
≈ 3× 106 s−1.

The growth time is τ ∼ 1/γ ∼ 0.3 µs. This is fast—much faster
than the energy confinement time of seconds. An unstable kink can
destroy confinement in microseconds.

8.3 Stabilization by Axial Field

The kink can be stabilized by adding an axial magnetic field Bz—
precisely what we have in a tokamak.

With both Bθ and Bz present, the field lines are helical. A kink
perturbation would have to bend these helical field lines, which costs
energy due to magnetic tension. If the axial field is strong enough,
the tension cost exceeds the energy gain from current shortening, and
the kink is stabilized.

Bz

Bθ wraps around

Figure 8.2: Adding an axial field Bz
creates helical field lines. Bending them
costs energy, stabilizing the kink.

The criterion for stability is the celebrated Kruskal-Shafranov
condition:

q =
aBz

RBθ
> 1. (8.1)
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Here q is the safety factor we met in Chapter 7. The condition says:
if the field lines make more than one toroidal turn before completing
a poloidal turn, the kink is stable.

You might ask: why exactly q > 1? The answer involves resonance.
When q = 1, a field line closes on itself after exactly one toroidal
circuit. A helical perturbation with the same periodicity can grow
without “unwinding”—every point on the field line sees the same
phase of the perturbation. For q > 1, the field line does not close after
one turn, so perturbations average out.

8.4 The Internal Kink and Sawteeth

In a tokamak, the safety factor varies across the plasma: typically
q ≈ 1 near the magnetic axis and q ≈ 3–5 at the edge. If q < 1
somewhere inside the plasma, an internal kink can develop.

The m = 1 internal kink is particularly dangerous. It represents
a sideways displacement of the plasma core—the hot center sloshes
to one side. At the q = 1 surface, field lines are resonant with this
m = 1, n = 1 perturbation.

In many tokamaks, the internal kink manifests as the “sawtooth
instability”—periodic crashes in which the hot core mixes with cooler
surrounding plasma. The central temperature drops suddenly (the
“crash”), then slowly rebuilds as heating continues, then crashes
again. The cycle repeats with a period of tens to hundreds of mil-
liseconds. t

T0

Crash

Figure 8.3: Sawtooth oscillations: the
central temperature rises slowly, then
crashes rapidly as the internal kink
mixes hot and cold plasma.

Sawteeth are not catastrophic—the plasma survives them—but
they limit performance by flattening the temperature profile and
expelling energetic particles from the core. Controlling or avoiding
sawteeth is an active area of research.

8.5 External Kinks and Disruptions

If the plasma boundary is free to move—if there is no nearby con-
ducting wall—external kinks can develop. These are m = 1 modes
that shift the entire plasma column sideways.

External kinks are unstable when qedge < 1, which is why toka-
maks are designed with qedge > 2 or higher. But even with qedge > 1,
external kinks can be triggered by other events—a loss of plasma
current control, a sudden cooling of the edge, an accumulation of
impurities.

When an external kink grows without bound, the result is a dis-
ruption: complete loss of plasma confinement in milliseconds. The
plasma thermal energy and magnetic energy are dumped onto the
walls.
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Let us estimate the energy involved for ITER:

• Plasma thermal energy: Wth ≈ 350 MJ

• Magnetic energy in the poloidal field: Wmag ≈ 400 MJ

• Total: ∼ 750 MJ

During the thermal quench (the first phase of a disruption), this
energy is released in about 10 ms:

P ∼ Wth
τ
∼ 350 MJ

0.01 s
= 35 GW.

Distributed over the wall area of ∼ 700 m2:

Heat flux ∼ 35 GW
700 m2 = 50 MW/m2.

This is roughly ten times the steady-state limit for tungsten. With-
out mitigation, the wall would melt.

You might ask: how do you mitigate a disruption? The strategy
is to inject massive amounts of impurities—neon or argon gas—
at the first sign of trouble. The impurities radiate the thermal en-
ergy isotropically as light, spreading it over the entire wall instead
of dumping it locally. The target is to reduce peak heat flux below
10 MW/m2.

Disruption mitigation is one of the critical engineering challenges
for ITER. A single unmitigated disruption could end the machine’s
career.

8.6 The Sausage Instability

The kink is not the only current-driven instability. Consider again a
Z-pinch, but now imagine a perturbation that pinches the column at
regular intervals—a “sausage” or m = 0 mode.

pinch

Sausage mode

Figure 8.4: The sausage instability:
where the column is narrower, Bθ is
stronger, and the inward pinch force is
enhanced.

Where the column narrows, the azimuthal field Bθ is stronger
(same current, smaller circumference). Stronger Bθ means stronger
inward pinch force. So the narrow regions get narrower, and the
wide regions get wider. The instability feeds on itself.

The sausage mode is stabilized by an axial field even more easily
than the kink—any Bz provides a restoring force because the field
lines must stretch as the column pinches. In tokamaks, the strong
toroidal field completely suppresses sausage modes.

8.7 Historical Note: The Perhapsatron and Early Pinches

In the 1950s, pinch devices were the great hope of fusion research.
Los Alamos built the “Perhapsatron”—so named because fusion was
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“perhaps” possible. The machine was a toroidal Z-pinch: current
flowed around the torus, creating a poloidal field that pinched the
plasma inward.

Early results were tantalizing. Neutrons were detected—a sign of
fusion reactions! But closer examination revealed that the neutrons
came not from thermonuclear fusion but from instability-driven
acceleration. The plasma was so violently unstable that ions were
accelerated to MeV energies and produced neutrons through beam-
target reactions, not thermal equilibrium.

The instabilities were dramatic. Films from the era show plasma
columns writhing and kinking like untended fire hoses. Researchers
called them “firehose modes”—the plasma whipped around, bounced
off walls, and extinguished in milliseconds.

Understanding came from Martin Kruskal and Vitaly Shafranov,
who independently derived the stability criterion in 1958. Their anal-
ysis explained why simple pinches failed: without a strong axial
field, kinks are inevitable. The Kruskal-Shafranov limit (q > 1)
pointed the way toward tokamaks—add enough axial field to sta-
bilize the kink, and confinement becomes possible.

You might ask: if the physics was understood in 1958, why did
fusion take so long? Because stability is necessary but not sufficient.
Even with q > 1, tokamaks face other instabilities (pressure-driven
modes, resistive modes, edge-localized modes) and anomalous trans-
port that exceeds classical predictions by orders of magnitude. Each
problem solved reveals the next.

8.8 Normal Mode Analysis: The Mathematical Framework

Let us now make the stability analysis precise. We linearize the ideal
MHD equations about an equilibrium and look for exponentially
growing solutions.

Write all quantities as equilibrium plus perturbation:

B = B0 + B1, v = v1, p = p0 + p1, ρ = ρ0.

The linearized ideal MHD equations are:

∂B1

∂t
= ∇× (v1 × B0), (8.2)

ρ0
∂v1

∂t
= −∇p1 +

1
µ0

[(∇× B1)× B0 + (∇× B0)× B1] . (8.3)

For a cylindrical equilibrium with B0 = Bθ(r)θ̂ + Bz(r)ẑ, we
assume perturbations of the form:

v1 ∝ eγt+imθ+ikz.
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This is normal mode analysis: we decompose arbitrary perturbations
into Fourier modes characterized by growth rate γ and wavenumbers
(m, k). If any mode has Re(γ) > 0, the equilibrium is unstable.

Substituting into the linearized equations gives a system of cou-
pled ODEs in the radial variable r. The boundary conditions are:

• Regularity at r = 0

• Matching to external vacuum field at r = a (or to a conducting
wall)

The eigenvalue problem determines which values of γ are allowed.
For a uniform current channel carrying current I in an external axial
field Bz, the stability boundary is precisely q = 1.

8.9 Looking Ahead

We have seen that current drives instabilities—the kink and its rela-
tives. The plasma is a coiled spring, and too much current makes the
spring snap.

But current is not the only driver of instability. Pressure gradients
can also destabilize the plasma, even when the current is perfectly
stable. When magnetic field lines curve, a pressure gradient can
create an effective “gravity” that pushes plasma off the field lines.
These pressure-driven instabilities—interchange modes, ballooning
modes—set the famous “beta limit” on tokamak performance.

Understanding the interplay between current-driven and pressure-
driven instabilities is essential for optimizing fusion devices. That is
the subject of the next chapter.



9
Pressure-Driven Instabilities

9.1 The Heavy Fluid Above the Light

Hold a glass of water upside down. For a moment—perhaps a tenth
of a second—nothing happens. Then the water falls.

This is the Rayleigh-Taylor instability. Heavy fluid above light fluid
is unstable; the interface ripples, fingers of dense material penetrate
the less dense, and gravity does its work. No amount of surface
tension can prevent it. The only question is how fast.

Now imagine the same physics with magnetic field lines. The
“heavy” fluid is hot, high-pressure plasma. The “light” fluid is
vacuum—or more precisely, the low-pressure region supported by
magnetic pressure. If the field curves the wrong way, with its center
of curvature on the plasma side, the plasma can “fall” through the
field just as water falls through air.

p high

p low

Center

geff

Figure 9.1: Bad curvature: the field
curves away from the plasma, creating
an effective gravity that can drive
instability.

This is the interchange instability, and its more sophisticated cousin
the ballooning mode. Unlike the current-driven instabilities of the last
chapter, these modes do not require any plasma current. They are
driven purely by pressure gradients interacting with curved magnetic
fields.

These pressure-driven instabilities set the ultimate limit on how
much pressure a tokamak can confine—the famous “beta limit.”
Understanding them is understanding why fusion cannot be made
arbitrarily better simply by turning up the heating power.

9.2 Good Curvature and Bad Curvature

Let us build intuition for when pressure-driven instabilities occur.
Consider a plasma confined by curved magnetic field lines. The

field is stronger on the concave side (closer to the center of curvature)
and weaker on the convex side. This gradient creates an effective
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gravity:

geff ∼
v2

th
Rc
∼ kBT

mRc
, (9.1)

where Rc is the radius of curvature and vth is the thermal velocity.
If the pressure gradient points in the same direction as this effec-

tive gravity—high-pressure plasma “above” low-pressure vacuum in
the effective gravitational field—the system is unstable. The plasma
wants to fall through the field.

This leads to the crucial distinction:
Bad curvature: The field curves away from the plasma. The center

of curvature is on the plasma side. Pressure gradient and effective
gravity are aligned. Unstable.

Good curvature: The field curves toward the plasma. The center
of curvature is on the vacuum side. Pressure gradient and effective
gravity oppose each other. Stable.

A tokamak has both. On the outboard side (low-field side), the
toroidal field curves away from the plasma—bad curvature. On the
inboard side (high-field side), the field curves toward the plasma—
good curvature.

You might ask: if bad curvature exists in every tokamak, why
doesn’t everything go unstable immediately? The answer is magnetic
shear.

9.3 Stabilization by Magnetic Shear

Magnetic shear—the variation of the field line pitch with radius—is
the primary stabilizer of interchange modes.

In a tokamak, the safety factor q increases with radius: q ≈ 1 at the
center, q ≈ 3–5 at the edge. This means the field line pitch changes as
you move outward. A perturbation that is aligned with field lines at
one radius is misaligned at neighboring radii.

q1 q2 q3

q1 < q2 < q3

Figure 9.2: Magnetic shear: the field
line pitch changes with radius (q
increases outward), localizing perturba-
tions.

This shear has two effects. First, it localizes the instability: a mode
that tries to extend radially finds itself fighting against field lines
that twist differently at each radius. Second, it provides a restoring
force: displacing plasma across field lines stretches those lines, and
magnetic tension resists the stretch.

The competition between destabilizing pressure gradient and
stabilizing shear determines the stability boundary.

9.4 The Energy Principle

Let us now make this quantitative. The most powerful tool for MHD
stability analysis is the energy principle: if every possible perturbation
increases the potential energy of the system, the equilibrium is stable.
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Consider a small displacement ξ from equilibrium. The change in
potential energy is:1 1 The derivation involves considerable

algebra, integrating by parts and
using the equilibrium condition. See
Freidberg’s Ideal MHD for details.δW =

1
2

∫
dV
[
|Q⊥|2

µ0
+

B2

µ0
|∇ · ξ⊥ + 2ξ⊥ · κ|2

+ γp|∇ · ξ|2 − 2(ξ⊥ · ∇p)(ξ⊥ · κ)
]

, (9.2)

where Q = ∇× (ξ × B) is the perturbed magnetic field, κ = (b̂ · ∇)b̂
is the field line curvature, and γ is the adiabatic index.

The first three terms are always positive—they represent magnetic
and compressional energy stored in the perturbation. The last term is
the crucial one:

−2(ξ⊥ · ∇p)(ξ⊥ · κ). (9.3)

This term can be negative when ∇p and κ point in the same
direction—precisely the bad curvature situation. If this negative
contribution outweighs the positive stabilizing terms, δW < 0 for
some perturbation, and the system is unstable.

9.5 Interchange Modes

Let us consider the simplest pressure-driven instability: the inter-
change mode. Imagine two adjacent flux tubes of equal magnetic
flux but different pressure. If we swap them—interchange their
positions—what happens to the energy?

In a region of bad curvature, the tube originally at larger radius
(lower field strength, larger volume) contains more plasma at higher
pressure. When it moves inward (to smaller volume, higher field
strength), it gets compressed. Meanwhile, the inner tube expands as
it moves outward.

If the outer tube started with higher pressure, swapping releases
energy: the plasma effectively “falls” in the effective gravity. This is
the interchange instability.

The stability criterion involves a quantity called the Mercier crite-
rion:

DM > 0 for stability, (9.4)

where DM includes contributions from the pressure gradient, field
line curvature, and magnetic shear. In regions of bad curvature with-
out shear, DM < 0 and the plasma is interchange-unstable.

You might ask: what happens physically when the interchange
mode develops? The flux tubes mix. Plasma from the high-pressure
core penetrates into the low-pressure edge, and vice versa. The pres-
sure profile flattens. In a tokamak, this enhanced transport degrades
confinement.
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9.6 Ballooning Modes

Let us now turn to a more sophisticated instability. Interchange
modes are highly localized perpendicular to the field. Ballooning
modes are more subtle: they localize along the field line in the bad
curvature region.

Consider a flux surface in a tokamak. On the outboard side (bad
curvature), pressure-driven perturbations want to grow. On the in-
board side (good curvature), they are suppressed. A ballooning mode
exploits this by “ballooning” out on the bad curvature side while
remaining small on the good curvature side.

The mathematics involves solving an eigenvalue problem along
the field line. The result: stability requires the pressure gradient to be
below a critical value that depends on the local shear and curvature.

Axis
inboard outboard

— equilibrium
- - perturbed

Figure 9.3: Ballooning mode: the
perturbation (dashed) bulges outward
only on the outboard (bad curvature)
side, while the inboard side stays near
equilibrium.

The ballooning stability limit, combined with the kink stability
limit from Chapter 8, determines the maximum achievable beta in a
tokamak.

9.7 The Beta Limit

We have discussed beta—the ratio of plasma pressure to magnetic
pressure—several times. Now we can understand what limits it.

The empirical Troyon limit summarizes decades of stability analy-
sis:

βmax(%) = βN ×
Ip (MA)

a (m)× BT (T)
, (9.5)

where βN ≈ 2.8 for standard tokamak operation. This scaling
emerges from stability codes that solve the energy principle for re-
alistic tokamak equilibria.

Let us compute the beta limit for ITER: Ip = 15 MA, a = 2.0 m,
BT = 5.3 T.

βmax = 2.8× 15
2.0× 5.3

≈ 2.8× 1.4 ≈ 4%.

At β = 4% and BT = 5.3 T, the corresponding pressure is:

p = β× B2

2µ0
= 0.04× (5.3)2

2× 4π × 10−7 ≈ 4.5× 105 Pa ≈ 4.5 atm.

Four and a half atmospheres. That is the maximum stable pressure
in the core of ITER—roughly the pressure inside a bicycle tire. For
all the sophistication of tokamak physics, the result is a plasma at
modest pressure, held in place by an elaborate magnetic cage.

You might ask: can you beat the Troyon limit? Somewhat. “Ad-
vanced tokamak” scenarios with optimized current profiles can
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achieve βN ≈ 5. Spherical tokamaks—devices with very low as-
pect ratio (fat tori)—exploit favorable geometry to reach β ∼ 40%
in some cases. But these are exceptions, not the rule. The beta limit
remains a fundamental constraint.

9.8 Edge-Localized Modes: The Price of Confinement

In 1982, researchers at the ASDEX tokamak in Germany discovered
H-mode—a high-confinement regime where a transport barrier forms
at the plasma edge. Energy confinement nearly doubled. This was
excellent news for fusion.

But H-mode came with a catch: edge-localized modes, or ELMs.
In H-mode, the steep edge pressure gradient approaches the local

stability limit. Periodically, this gradient exceeds the threshold, trig-
gering a ballooning-like instability. The instability saturates, expelling
energy and particles from the edge. The gradient relaxes, stability is
temporarily restored, the gradient rebuilds under heating, and the
cycle repeats.

Each ELM deposits energy onto the divertor plates in a millisec-
ond. For current tokamaks, this is manageable. For ITER, with its
much larger stored energy, uncontrolled ELMs could deposit mega-
joules per square meter, destroying the divertor in months of opera-
tion.

You might ask: how do you control ELMs? Several strategies are
under development:

• Magnetic perturbations: Small non-axisymmetric fields can
destabilize tiny ELMs continuously, preventing the large periodic
crashes.

• Pellet pacing: Injecting frozen fuel pellets triggers small ELMs at a
controlled frequency.

• Operating regimes: Some regimes (like “QH-mode”) achieve H-
mode confinement without ELMs, though not yet reliably.

ELM control is one of the critical challenges for ITER. The physics
is still being unraveled.

9.9 Historical Note: Discovering the Stability Landscape

The stability of magnetized plasmas was worked out piece by piece
over decades.

The energy principle was formulated by Bernstein, Frieman,
Kruskal, and Kulsrud in 1958—the same year as the Geneva confer-
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ence that revealed the failures of early pinches. Their work provided
the mathematical foundation for all subsequent stability analysis.

The Mercier criterion for interchange stability came from Claude
Mercier in France in the 1960s. The ballooning mode analysis was
developed by Connor, Hastie, and Taylor in the 1970s. The Troyon
limit was established empirically by Francis Troyon in 1984, after
analyzing stability boundaries across many tokamak scenarios.

Each contribution built on the last. The result is a detailed map
of the stability landscape: which regions of parameter space are
stable, which are unstable, and why. This map guides every aspect of
tokamak design.

But the map is not complete. Edge physics, in particular, remains
poorly understood. The transition from L-mode to H-mode, the
dynamics of ELMs, the role of turbulence at the plasma edge—these
are active research areas. The stability of burning plasmas, where
alpha particles from fusion reactions contribute significant pressure,
has never been tested experimentally. ITER will be the first machine
to explore this regime.

9.10 Looking Ahead

We have now covered the two great classes of MHD instabilities:
current-driven (Chapter 8) and pressure-driven (this chapter). To-
gether, they constrain the operating space of tokamaks: the current
must not exceed the Kruskal-Shafranov limit; the pressure must not
exceed the beta limit.

But our focus has been entirely on fusion—the challenge of con-
fining hot plasma for energy production. MHD has much wider
applications. In the next chapter, we leave the laboratory and enter
the cosmos.

The magnetorotational instability (MRI) is perhaps the most im-
portant instability in astrophysics. It operates wherever a conducting
fluid rotates differentially in the presence of a magnetic field—which
is to say, in almost every accretion disk around a black hole, neutron
star, or young star. Understanding angular momentum transport in
these disks requires understanding the MRI. That is where we turn
next.



10
The Magnetorotational Instability

10.1 The Disk That Shouldn’t Work

For decades, astrophysicists had an embarrassing problem: accretion
disks shouldn’t work.

Gas orbiting a black hole or young star has enormous angular
momentum. To fall inward and feed the central object, the gas must
somehow get rid of that angular momentum—transfer it elsewhere,
radiate it away, something. But the molecular viscosity of astrophys-
ical gas is pathetically small. A straightforward calculation shows
that gas at 1 AU from the Sun, relying on molecular viscosity alone,
would take longer than the age of the universe to spiral inward.

Yet disks accrete. We see it happening. Quasars blaze with the lu-
minosity of a trillion suns, powered by gas falling onto supermassive
black holes. Young stars double their mass by swallowing their birth
disks. X-ray binaries flicker as gas streams onto neutron stars. Some-
thing transports angular momentum outward at a rate a billion times
faster than molecular viscosity can explain.

For years, astrophysicists simply parameterized their ignorance.
Shakura and Sunyaev’s famous “α-prescription” posited a turbulent
viscosity ν ∼ αcs H, where cs is the sound speed, H is the disk thick-
ness, and α is a dimensionless fudge factor between 0.01 and 0.1. The
prescription was useful—it let people calculate disk structure—but it
explained nothing. Where did the turbulence come from? What set
α? Nobody knew.

Then in 1991, Steve Balbus and John Hawley found the answer.
A weak magnetic field in a differentially rotating disk is violently
unstable. The instability drives turbulence, and turbulent stress trans-
ports angular momentum. The “magnetorotational instability”—MRI
for short—turns out to be the engine of accretion throughout the
universe.
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10.2 Springs in Orbit

Let us build intuition with a mechanical analogy.
Consider two masses connected by a spring, both orbiting a central

star. Place the inner mass at radius r1 and the outer mass at radius
r2 > r1. In a Keplerian orbit, angular velocity decreases with radius:
Ω ∝ r−3/2. The inner mass orbits faster than the outer mass.

m1

m2

v1

v2

Figure 10.1: Two masses connected by
a spring. The inner mass orbits faster,
stretching the spring as it pulls ahead.

What happens? Initially the spring is relaxed. But the inner mass
pulls ahead while the outer mass falls behind. The spring stretches.

Now the spring exerts forces. It pulls backward on the inner mass,
subtracting angular momentum. It pulls forward on the outer mass,
adding angular momentum.

A mass that loses angular momentum spirals inward. A mass
that gains angular momentum spirals outward. So the inner mass
moves to a smaller radius, the outer mass to a larger radius. But this
increases their separation further! The spring stretches more, the
forces grow stronger, the separation increases faster.

This is a runaway: a feedback loop where any small displacement
amplifies itself. The system is unstable.

You might ask: what if the spring is very stiff? Then small dis-
placements produce large restoring forces before the masses have
time to move radially. The spring oscillates but doesn’t run away.
Stability requires a stiff spring.

Here is the key insight: magnetic field lines behave like springs.
Magnetic tension, as we developed in Chapter 4, acts to straighten
bent field lines, just as a stretched spring pulls its endpoints together.
If a field line threads through two fluid elements at different radii,
differential rotation will stretch that field line, and magnetic tension
will transfer angular momentum from the inner element to the outer.

If the field is weak—the magnetic “spring” is soft—the instability
wins. If the field is strong—the spring is stiff—oscillations dominate
and stability prevails. The MRI is the instability of weak magnetic
fields in differential rotation.

10.3 The Instability Criterion

Let us now derive when the instability occurs.
Consider a disk of gas orbiting with angular velocity Ω(r) and

threaded by a weak vertical magnetic field Bz. We’ll analyze stability
using a local approximation: zoom in on a small patch of the disk
and treat it as a Cartesian box with the radial direction along x, the
azimuthal direction along y, and the vertical direction along z.

In this local frame, the differential rotation appears as a shear flow:
vy = −qΩx, where q = −d ln Ω/d ln r is the shear parameter. For a



the magnetorotational instability 85

Keplerian disk, Ω ∝ r−3/2, so q = 3/2.
The linearized MHD equations for perturbations proportional to

exp(ikzz− iωt) give a dispersion relation. After some algebra that I
will spare you,1 the result for axisymmetric perturbations (kr = kφ = 1 The full derivation involves linearizing

the momentum equation, induction
equation, and continuity equation,
eliminating the density perturbation,
and solving the resulting fourth-order
polynomial. See Balbus & Hawley
(1991) for details.

0) is:

ω4 −ω2
[
κ2 + 2(kzvA)

2
]
+ (kzvA)

2
[
(kzvA)

2 + κ2 − 4Ω2
]
= 0, (10.1)

where κ2 = 2Ω(2Ω − r dΩ/dr) is the square of the epicyclic fre-
quency and vA = Bz/

√
µ0ρ is the Alfvén speed.

For a Keplerian disk, κ2 = Ω2. The dispersion relation becomes:

ω4 −ω2
[
Ω2 + 2(kzvA)

2
]
+ (kzvA)

2
[
(kzvA)

2 − 3Ω2
]
= 0.

Instability requires ω2 < 0 for some real kz. Using the quadratic
formula:

ω2 =
1
2

[
Ω2 + 2(kzvA)

2 ±
√
(Ω2 + 2(kzvA)2)

2 − 4(kzvA)2 ((kzvA)2 − 3Ω2)

]
.

The negative root can be negative (giving instability) when the last
term inside the square root dominates. Working through the algebra,
instability occurs when:

(kzvA)
2 < 3Ω2. (10.2)

This is remarkable. The criterion says: if the field is weak enough
that the Alfvén crossing time (kzvA)

−1 exceeds the rotation period
Ω−1, the system is unstable. There is no lower bound on the field
strength—arbitrarily weak fields are unstable, just at long wave-
lengths.

10.4 Maximum Growth Rate

Let us find the fastest-growing mode.
Taking the derivative of ω2 with respect to kz and setting it to

zero, the most unstable wavenumber is kzvA =
√

15/16 Ω ≈ 0.97 Ω.
Substituting back:

γmax =
3
4

Ω. (10.3)

The maximum growth rate is three-quarters of the orbital fre-
quency! This is extraordinarily fast. An e-folding takes only 4/(3Ω) ≈
1.3 orbital periods. Within a few orbits, any weak magnetic field will
be amplified enormously.

You might ask: doesn’t this mean the MRI destroys itself? After
all, as the field grows, eventually (kzvA)

2 > 3Ω2 and the instability
shuts off.
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Precisely so. The MRI amplifies the magnetic field until the field
becomes strong enough to stabilize the flow. But then the field de-
cays (through reconnection, which we’ll discuss in the next chapter),
the stability condition is violated again, and the MRI restarts. The
saturated state is a dynamic balance: turbulence maintained by an
instability that keeps shutting itself off and restarting.

Numerical simulations confirm this picture. The saturated MRI
produces magnetic stresses with:

〈BrBφ〉
µ0

∼ α ρc2
s ,

where α ∼ 0.01–0.1 matches the phenomenological values inferred
from observations. The MRI naturally produces the right level of
angular momentum transport.

10.5 Why Weak Fields Are Essential

You might ask: if strong magnetic fields are stabilizing, and weak
fields are unstable, is there a minimum field strength for the MRI?

Yes, but it’s a geometric constraint, not a stability threshold. The
MRI requires the unstable wavelength to fit inside the disk. The most
unstable wavelength is:

λMRI =
2π

kz
∼ 2πvA

Ω
.

For this to fit within the disk thickness H:

2πvA
Ω

< H.

Since H ∼ cs/Ω for a thin disk, this requires vA < cs/(2π), or in
terms of plasma beta:

β =
pgas

pmag
=

2c2
s

v2
A

> 2(2π)2 ≈ 80.

The field must be weak—the magnetic pressure must be less than
about one percent of the gas pressure. This is not a stringent require-
ment; most astrophysical disks have β ∼ 100–104.

But the field cannot be zero. Without any magnetic field, there
are no springs, no tension, and no instability. Purely hydrodynamic
Keplerian disks are stable.2 2 This is the Rayleigh criterion: a rotat-

ing flow is stable if angular momentum
increases outward. Keplerian disks have
L = r2Ω ∝ r1/2, which does increase
outward. Without magnetic fields,
Keplerian disks don’t accrete.

This is why the MRI was such a revelation. It showed that weak
magnetic fields don’t just modify disk dynamics—they enable the
entire accretion process.
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10.6 A Protoplanetary Disk

Let us work through a concrete example: a protoplanetary disk
around a young Sun-like star.

At a distance of 10 AU from a solar-mass star, the orbital parame-
ters are:

Ω =

√
GM�

r3 =

√
6.67× 10−11 × 2× 1030

(1.5× 1012)3

=

√
1.33× 1020

3.4× 1036 =
√

3.9× 10−17

≈ 6.3× 10−9 rad/s.

The orbital period is P = 2π/Ω ≈ 109 s ≈ 32 years, consistent with
what we expect at 10 AU.

For a typical protoplanetary disk at this radius:3 3 These values come from the “mini-
mum mass solar nebula” model and
observations of T Tauri disk systems.• Temperature T ≈ 50 K

• Sound speed cs =
√

kBT/µmp ≈ 500 m/s (for molecular hydro-
gen)

• Disk thickness H ∼ cs/Ω ≈ 8× 1010 m ≈ 0.5 AU

• Surface density Σ ∼ 10 kg/m2

• Midplane density ρ ∼ Σ/H ≈ 10−10 kg/m3

Now suppose the disk has a weak magnetic field with β = 100.
The magnetic pressure is:

B2

2µ0
=

pgas

β
=

ρc2
s

β
=

10−10 × (500)2

100
= 2.5× 10−7 Pa.

Solving for the field strength:

B =
√

2µ0 × 2.5× 10−7 =
√

6.3× 10−13 ≈ 8× 10−7 T = 8 µG.

This is a very weak field—about a hundred thousand times weaker
than Earth’s magnetic field. Yet it’s enough to drive the MRI.

The Alfvén speed is:

vA =
B
√

µ0ρ
=

8× 10−7
√

4π × 10−7 × 10−10
=

8× 10−7
√

1.3× 10−16
≈ 70 m/s.

The most unstable wavelength is:

λMRI =
2πvA

Ω
=

2π × 70
6.3× 10−9 ≈ 7× 1010 m ≈ 0.5 AU.
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This is comparable to the disk thickness—the MRI wavelength fits
comfortably within the disk.

The growth time is:

τMRI =
4

3Ω
=

4
3× 6.3× 10−9 ≈ 2× 108 s ≈ 6 years.

Initial: vertical field

Evolved: sheared field

Figure 10.2: MRI evolution: initially
vertical field lines are sheared by
differential rotation, amplifying the
field.

Within about six years—a small fraction of the 32-year orbital
period—any initial perturbation will have grown by a factor of e.
After a few orbits, the disk is thoroughly turbulent.

10.7 Forgotten and Rediscovered

The MRI has a peculiar history. It was discovered three times.
In 1959, Evgeny Velikhov at the Kurchatov Institute in Moscow

was studying the stability of rotating conducting fluids—a question
motivated by plasma confinement for fusion. He found that rotation
stabilized some instabilities but created new ones when combined
with magnetic fields. His analysis contained what we now call the
MRI, but applied to cylindrical plasmas, not disks.

In 1961, Subrahmanyan Chandrasekhar at the University of Chicago
published his monumental treatise Hydrodynamic and Hydromagnetic
Stability. Chandrasekhar was cataloging every instability known to
fluid mechanics, and he included the case of rotating magnetized
fluids. His equations are equivalent to Velikhov’s. But Chandrasekhar
was interested in the mathematical structure of stability theory, not
in astrophysical applications. The result sat in a book that everyone
owned but few read carefully.

You might ask: how did such an important result stay hidden for
thirty years?

The answer lies in the sociology of science. Velikhov was a plasma
physicist thinking about fusion reactors. Chandrasekhar was a math-
ematical physicist building a taxonomy of instabilities. Neither was
thinking about accretion disks. And the astrophysicists struggling
with the angular momentum problem in disks weren’t reading pa-
pers on magnetized Taylor-Couette flow.

Meanwhile, the accretion disk community invented elaborate
workarounds. The α-prescription let people calculate disk structure
without understanding the physics. Some proposed that disks were
convective. Others invoked spiral waves. A few even suggested that
disks didn’t really accrete—that the gas fell in through some other
mechanism entirely.

Then in 1991, Steve Balbus at the University of Virginia and John
Hawley at the University of Virginia reexamined the problem. They
knew about the old stability analyses. They also knew about accre-
tion disks. They put two and two together.
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Their paper “A Powerful Local Shear Instability in Weakly Magne-
tized Disks” showed that any disk with decreasing angular velocity
and any magnetic field at all is unstable. The growth rate is fast—
comparable to the orbital frequency. The instability naturally pro-
duces turbulent stresses of the right magnitude to explain observed
accretion rates.

The paper was initially rejected. One referee complained that the
result was “well known.” In a sense it was—to anyone who had read
Chandrasekhar carefully. But its implications for accretion had never
been drawn.

After publication, the impact was immediate. Within a few years,
numerical simulations confirmed the picture. By the end of the
decade, the MRI was the standard model for angular momentum
transport in accretion disks. Balbus and Hawley’s paper now has
over 4,000 citations.

The lesson is sobering. For thirty years, the solution to a major
astrophysical problem sat in textbooks, waiting for someone to no-
tice. Progress came not from new observations or more powerful
computers, but from asking the right question.

10.8 Laboratory Verification

You might ask: can we see the MRI in the laboratory?
The challenge is formidable. The MRI requires a conducting fluid

in differential rotation with a weak magnetic field. Most fluids
aren’t good conductors. Those that are—liquid metals like gallium
or sodium—have high magnetic diffusivity, which damps the MRI
before it can grow.

The magnetic Reynolds number Rm = vL/η, where η is the mag-
netic diffusivity, must exceed unity for the MRI to operate. For liquid
gallium, η ≈ 0.2 m2/s. With L ∼ 0.1 m and v ∼ 1 m/s (typical for a
laboratory experiment), Rm ∼ 0.5—too small.

Nevertheless, experimenters persevered. The Princeton MRI Ex-
periment uses liquid gallium in a Taylor-Couette apparatus: two con-
centric cylinders with the fluid in the gap between them. The inner
cylinder rotates faster than the outer (mimicking Keplerian shear),
and axial magnetic fields are applied.

In 2022, the Princeton group definitively detected the MRI in liq-
uid metal, confirming the mechanism that had been theoretically
understood for decades. Earlier experiments at Maryland and HZDR
Dresden had shown suggestive results, but the Princeton detection
was the first unambiguous laboratory confirmation.4 4 The difficulty is that laboratory exper-

iments operate near marginal stability,
where multiple instabilities compete.
Clean detection of the MRI requires
careful control of boundary conditions
and magnetic field geometry.

What we can say is that the basic physics is confirmed. Rotating
conducting fluids with weak magnetic fields do show instabilities
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consistent with the MRI mechanism. The spring analogy works.

10.9 Why Angular Velocity, Not Angular Momentum?

Let us return to a subtle point that deserves emphasis.
The classical Rayleigh criterion for rotating flows says: stability

requires angular momentum L = r2Ω to increase outward, dL/dr >

0. A Keplerian disk has L ∝ r1/2, which does increase outward. By
Rayleigh’s criterion, Keplerian disks are stable.

The MRI criterion says: instability occurs if angular velocity Ω
decreases outward, dΩ/dr < 0. A Keplerian disk has Ω ∝ r−3/2,
which does decrease outward. By the MRI criterion, Keplerian disks
are unstable.

How can both be true? The answer is that they apply to different
situations:

• Rayleigh: hydrodynamic (no magnetic field)

• MRI: magnetohydrodynamic (with magnetic field)

The magnetic field enables a new channel for instability. Without
it, angular momentum exchange requires direct collisions between
fluid elements—a process governed by angular momentum gradients.
With it, magnetic tension can transfer angular momentum across fi-
nite distances—a process governed by the shear rate, which depends
on angular velocity gradients.

The MRI destabilizes flows that hydrodynamics declares stable.
This is why weak magnetic fields are so important in astrophysics:
they change the fundamental stability properties of rotating systems.

10.10 The Saturated State

You might ask: if the MRI grows exponentially, why doesn’t it am-
plify the magnetic field to arbitrarily large values?

The instability is self-limiting. As the field amplifies, eventually
(kzvA)

2 > 3Ω2 and the instability shuts off. But then other processes
take over.

The amplified field is tangled and turbulent. Magnetic reconnec-
tion (Chapter 11) dissipates some of the field energy as heat. Turbu-
lent cascade transfers energy to small scales where it dissipates. The
field strength decreases until the MRI criterion is satisfied again, and
the instability restarts.

The saturated state is a balance: the MRI amplifies the field, dis-
sipation reduces it, and the two processes reach a dynamic equilib-
rium. This equilibrium determines the level of turbulence and hence
the effective viscosity of the disk.
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Numerical simulations show that the saturated state depends
on details: the strength and geometry of the net magnetic flux, the
ionization fraction of the disk (which affects the coupling between
gas and field), and even the numerical resolution of the simulation.
The MRI is easy to understand in its linear phase but subtle in its
nonlinear behavior.

What we can say with confidence: the MRI produces turbulent
stresses that transport angular momentum outward at rates con-
sistent with observed accretion. The basic mechanism works. The
details are still being worked out.

10.11 Dead Zones and Layered Accretion

Not all disks are ideal conductors. In protoplanetary disks, the dense
midplane can be so cold that there are few free electrons. Without
charged particles, there’s no coupling between gas and field, and the
MRI cannot operate.

These “dead zones” create a layered structure. The surface layers
of the disk, ionized by stellar X-rays and cosmic rays, are MRI-active
and turbulent. The dense midplane is quiescent, protected from
ionizing radiation by the gas above it.

Angular momentum transport in such a disk is complicated. The
active surface layers can accrete while the dead zone sits passively.
Material may accumulate at the boundaries between active and dead
regions. Some models suggest that dead zones are where planetesi-
mals form—the quiescent midplane allows dust to settle and clump
without being disrupted by turbulence.

The geography of dead zones depends on temperature, density,
ionization sources, and even the abundance of small dust grains
(which soak up free electrons). It’s a rich problem that connects disk
physics to planet formation.

10.12 The Engine of Cosmic Accretion

Let us step back and appreciate what the MRI accomplishes.
A cosmic conspiracy seems to prevent accretion. Molecular vis-

cosity is negligible. Hydrodynamics is stable. Angular momentum
conservation appears to lock gas in eternal orbits.

But the universe found a loophole. The tiniest magnetic field—so
weak it exerts negligible force directly—enables a powerful instability
that drives turbulence and transports angular momentum. The weak-
ness of the field is essential, not a limitation. A strong field would be
stable.

The MRI powers quasars, the brightest objects in the universe. It
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enables young stars to grow by consuming their birth material. It
determines the structure of accretion disks around black holes in X-
ray binaries. Everywhere that gas orbits a compact object and slowly
spirals inward, the MRI is likely at work.

And the solution sat in textbooks for thirty years, waiting for
someone to ask the right question. Physics is universal, but recog-
nizing which physics applies where requires connecting communities
and asking new questions about old results.

10.13 Looking Ahead

The MRI grows by stretching magnetic field lines, building up mag-
netic energy through the work done against magnetic tension. But
this process cannot continue forever. Eventually the field becomes too
contorted, too stressed. The frozen-in approximation breaks down.
Field lines find shortcuts, rearranging their topology and releasing
stored energy.

This is magnetic reconnection—the subject of our next chapter.
Where the MRI is a story of gradual amplification, reconnection is
a story of sudden release. Together, they form a cycle that regulates
magnetic energy in plasmas throughout the universe.
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Magnetic Reconnection

11.1 When Frozen-In Fails

On March 13, 1989, the entire province of Quebec went dark. Six
million people lost power for nine hours. Transformers melted. The
northern lights were visible as far south as Texas.

The cause was not equipment failure or human error. Two days
earlier, a coronal mass ejection—a billion tons of magnetized plasma—
had erupted from the Sun. When it slammed into Earth’s magnetic
field, something catastrophic happened at the boundary. Where the
solar field pointed southward and Earth’s field pointed northward,
the opposing fields annihilated each other. Magnetic energy that had
traveled ninety million miles from the Sun released in Earth’s mag-
netosphere, driving currents through the ionosphere that induced
voltages in power lines below.

This is magnetic reconnection: the process by which field lines
break and rejoin, changing magnetic topology and releasing stored
energy. It is the great exception to Alfvén’s frozen-in theorem. Most
of the time, in most of space, field lines are frozen into the plasma
and cannot change their connections. But in thin current sheets
where opposing fields meet, resistivity matters, topology changes,
and energy is released.

Reconnection powers solar flares, accelerates the solar wind, trig-
gers auroral substorms, and limits plasma confinement in fusion
devices. It is the violent counterpoint to the frozen-in order that we
have celebrated through nine chapters of this book. Understanding
when and how the frozen-in constraint fails is essential to under-
standing how the magnetic universe actually works.

11.2 Opposing Fields in Contact

Let us begin with the simplest picture.
Imagine two regions of plasma, each carrying a magnetic field,
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being pushed together by some external flow. On the left, the field
points upward. On the right, it points downward. Where they meet,
the field must reverse direction, passing through zero.

Inflow Inflow

Current sheet
Figure 11.1: Opposing magnetic fields
pushed together form a current sheet
where the field reverses.

At the interface, ∇× B 6= 0, which means (by Ampère’s law) there
must be a current. This current is concentrated in a thin layer—the
current sheet. The thickness of the sheet is set by a competition: the
external flow pushes the fields together, trying to make the sheet
thinner; resistive diffusion spreads the current out, trying to make
the sheet thicker. The equilibrium thickness depends on how fast the
fields are being pushed together.

In this current sheet, something remarkable can happen. The
frozen-in theorem requires infinite conductivity; real plasmas have
finite resistivity. In most of space, this resistivity is negligible—the
magnetic Reynolds number is enormous, and field lines are effec-
tively frozen. But in the current sheet, where gradients are steep and
the field passes through zero, resistivity matters.

Think of it this way: field lines are like threads sewn into a fabric.
Normally the threads move with the fabric and cannot be cut. But at
the current sheet, the fabric is thin and the scissors of resistivity can
snip the threads. When threads from opposite sides are cut, they can
be reconnected in new ways.

This is the essence of magnetic reconnection: field lines that were
connected to plasma on the left become connected to plasma on the
right, and vice versa. The topology of the magnetic field changes.
Energy stored in the stressed field configuration is released.

11.3 The Sweet-Parker Model

Let us now make this quantitative.
In 1957, Eugene Parker at the University of Chicago and, inde-

pendently, in 1958, Peter Sweet in England, worked out the simplest
self-consistent model of steady reconnection. Their geometry is el-
egant: a long, thin current sheet of length L (the system size) and
thickness δ� L.

vin

L

vout
δ

Figure 11.2: Sweet-Parker geometry:
plasma flows in slowly (vin), reconnects
in the thin sheet (thickness δ, length L),
and is expelled at vout ∼ vA.

Plasma flows into the sheet from above and below at velocity vin,
carrying magnetic flux with it. Inside the sheet, the field reconnects,
and plasma is expelled horizontally at velocity vout.

Mass conservation relates the velocities:

vin · L = vout · δ.

The mass flowing into the sheet from the sides must equal the mass
flowing out the ends.

The outflow velocity is set by the magnetic tension of the newly re-
connected field lines, which catapult the plasma out like a slingshot.
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This gives vout ∼ vA, the Alfvén speed.
For the inflow velocity, we balance Ohm’s law. In the sheet, the

convective electric field vin × B must be balanced by resistive dissipa-
tion η J, where J ∼ B/(µ0δ) is the current density. This gives:

vinB ∼ η
B

µ0δ
, so vin ∼

η

µ0δ
.

Combining with mass conservation:

vin

vA
=

δ

L
, and vin ∼

η

µ0δ
.

Eliminating δ:
vin

vA
= S−1/2, (11.1)

where S = µ0LvA/η is the Lundquist number.1 1 The Lundquist number is essentially
the magnetic Reynolds number Rm =
LV/λ using the Alfvén speed as the
characteristic velocity: S = LvA/λ,
where λ = η/µ0 is the magnetic
diffusivity. In reconnection problems,
vA is the natural velocity scale because
it determines the outflow speed.

The sheet thickness follows:

δ

L
= S−1/2.

11.4 The Problem: Too Slow

Let us apply Sweet-Parker to the solar corona.
A typical active region has:

• System size L ∼ 107 m (about 10 Mm, or 10,000 km)

• Magnetic field B ∼ 0.01 T (100 G)

• Density n ∼ 1015 m−3

• Temperature T ∼ 106 K

The Alfvén speed is:

vA =
B
√

µ0ρ
=

B
√

µ0nmp
=

0.01√
4π × 10−7 × 1015 × 1.7× 10−27

≈ 7× 106 m/s.

The magnetic diffusivity in a fully ionized plasma is set by Coulomb
collisions:2 2 This is the Spitzer resistivity, which

depends on temperature as η ∝ T−3/2.
At coronal temperatures, resistivity is
very low.

λ =
η

µ0
∼ 1 m2/s.

The Lundquist number is:

S =
LvA

λ
=

107 × 7× 106

1
= 7× 1013.

The Sweet-Parker reconnection rate is:

vin

vA
= S−1/2 = (7× 1013)−1/2 ≈ 1.2× 10−7.
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The inflow velocity is vin ≈ 1.2× 10−7 × 7× 106 ≈ 0.8 m/s—still
just a walking pace.

The reconnection time is:

τSP =
L

vin
=

107

0.8
≈ 1.2× 107 s ≈ 5 months.

But solar flares release their energy in minutes! The largest flares
reach peak power in under ten minutes and decay over an hour.
Sweet-Parker predicts reconnection times tens of thousands of times
longer than observed.

You might ask: perhaps the reconnection region is much smaller
than the active region? This helps somewhat—reducing L increases
the rate. But even shrinking L by a factor of 1000 only speeds up
reconnection by a factor of

√
1000 ≈ 30. The discrepancy is too large

to fix by adjusting geometry.
Something fundamental is wrong with Sweet-Parker. Or rather,

something fundamental is missing.

11.5 Faster Reconnection

The Sweet-Parker rate vin/vA ∼ S−1/2 is set by the aspect ratio of the
current sheet: δ/L = S−1/2. A long, thin sheet processes magnetic
flux slowly because the outflow bottleneck is narrow.

You might ask: can the sheet be shorter? Harry Petschek at the
Avco-Everett Research Laboratory proposed in 1964 that it could.
Instead of a single extended current sheet, Petschek imagined a com-
pact diffusion region surrounded by standing slow-mode shocks.

vin

vout

Shock

Figure 11.3: Petschek geometry: a small
diffusion region (gray) with standing
shock waves (red) that do most of the
energy conversion.

In Petschek’s model, the diffusion region where resistivity matters
is tiny—of order δ2 rather than δ× L. The shocks extending from this
region do most of the work, converting magnetic energy to kinetic
energy as plasma crosses them. The reconnection rate becomes:

vin

vA
∼ π

8 ln S
≈ 0.01–0.1. (11.2)

This matches observations! Flares, substorms, and other reconnec-
tion events typically show rates of 0.01–0.1 times the Alfvén speed.

But there was a problem. When researchers ran computer sim-
ulations of resistive MHD, starting from smooth initial conditions,
Petschek’s geometry didn’t emerge. The current sheet stubbornly
evolved toward the Sweet-Parker configuration. You had to impose
Petschek’s geometry by hand; it wasn’t self-consistent.

For thirty years, this was a puzzle. Why did nature achieve fast
reconnection while simulations predicted slow reconnection?
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11.6 Beyond Single-Fluid MHD

The resolution came from going beyond standard MHD.
Let us return to Ohm’s law. The simplest form, E + v × B = ηJ,

treats the plasma as a single conducting fluid. But plasma consists
of two species: ions and electrons. The full generalized Ohm’s law
includes additional terms:

E + v× B = ηJ +
1
ne

(J× B−∇pe) +
me

ne2
∂J
∂t

. (11.3)

The term J× B/(ne) is the Hall term. It becomes important when
the current sheet thickness δ approaches the ion skin depth:

di =
c

ωpi
=

√
mi

µ0ne2 ,

where ωpi =
√

ne2/(ε0mi) is the ion plasma frequency.
For coronal parameters (n ∼ 1015 m−3):

di =

√
1.7× 10−27

4π × 10−7 × 1015 × (1.6× 10−19)2 ≈ 7 m.

You might ask: how can physics at the 7-meter scale affect dynam-
ics at the 10,000-km scale?

The answer lies in the reconnection geometry. As reconnection
proceeds, the current sheet thins. In Sweet-Parker, δ = LS−1/2; for
our coronal example, δ ≈ 107 × (7 × 1013)−1/2 ≈ 1 m. The sheet
naturally thins to the ion skin depth scale!

At this scale, ions and electrons no longer move together. Elec-
trons, being much lighter, can flow through the diffusion region
carrying the current. Ions, heavier and slower to respond, are left
behind. The plasma becomes “two-fluid” rather than single-fluid
MHD.

This decoupling changes everything. The effective outflow speed
for electrons is much higher than for ions. The aspect ratio constraint
that doomed Sweet-Parker is broken. The reconnection rate jumps to
∼ 0.1 vA, matching observations.3 3 Hall MHD and kinetic simulations

consistently show reconnection rates
of 0.1–0.2 vA, nearly independent of
the Lundquist number once S is large
enough for the current sheet to thin to
the ion scale.

11.7 The Plasmoid Instability

There is another route to fast reconnection that doesn’t require leav-
ing MHD entirely.

In 2007, Loureiro, Schekochihin, and Cowley showed that at very
high Lundquist number, the Sweet-Parker current sheet becomes
unstable. It tears into a chain of magnetic islands—plasmoids—
separated by secondary current sheets.
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The instability is a variant of the tearing mode we encountered in
Chapter 8, but applied to a reconnecting current sheet rather than a
static one. When S > Scrit ≈ 104, the sheet fragments before it can
reach the Sweet-Parker aspect ratio.

× ×

Plasmoid chain
Figure 11.4: At high Lundquist number,
the current sheet fragments into a chain
of plasmoids separated by X-points.

Each secondary current sheet can itself fragment, creating a hier-
archy of scales. The net effect is to increase the effective reconnection
rate: instead of one slow Sweet-Parker sheet, there are many smaller
reconnection sites operating in parallel.

The plasmoid-mediated reconnection rate scales differently from
Sweet-Parker:

vin

vA
∼ S−α, with α ≈ 0.3–0.4.

This is faster than Sweet-Parker (α = 0.5) though still dependent
on S. For very large S, the plasmoid instability may be the dominant
mechanism enabling fast reconnection.

11.8 A Solar Flare

Let us now apply our understanding to a concrete event: a large solar
flare.

Consider an active region with the following parameters:4 4 These values are typical for X-class
flares, the most powerful category in
the standard classification.• Linear size L ∼ 3× 107 m (30 Mm)

• Magnetic field strength B ∼ 0.05 T (500 G)

• Coronal density n ∼ 1016 m−3

The magnetic energy stored in this region is:

Emag =
B2

2µ0
× L3 =

(0.05)2

2× 4π × 10−7 × (3× 107)3.

Let us compute step by step:

B2

2µ0
=

2.5× 10−3

8π × 10−7 =
2.5× 10−3

2.5× 10−6 = 1000 J/m3.

The volume is L3 = (3× 107)3 = 2.7× 1022 m3.
So:

Emag = 1000× 2.7× 1022 = 2.7× 1025 J.

For reference, this is about 6× 109 megatons of TNT equivalent—
six billion hydrogen bombs.

Not all this energy is released in a flare; typically 10–50% is con-
verted. Taking 30%:

Eflare ≈ 8× 1024 J.
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If the flare lasts τ ≈ 1000 s (about 15 minutes), the average power
is:

P =
Eflare

τ
=

8× 1024

1000
= 8× 1021 W.

The Sun’s total luminosity is 4× 1026 W, so this flare outputs about
2 × 10−5 of the Sun’s power—but concentrated in a region that is
only ∼ 10−6 of the solar surface. Locally, the power density exceeds
the quiet Sun by a factor of 20.

You might ask: where does this energy go?
The answer: everywhere. Reconnection heats plasma to tens of

millions of degrees, producing thermal X-rays. It accelerates elec-
trons to relativistic speeds, producing hard X-rays and gamma rays
when they slam into denser material. It drives mass motions (jets,
eruptions) and launches shock waves into the heliosphere. The March
1989 storm was triggered by just such an eruption—a coronal mass
ejection carrying 1012 kg of plasma at 1000 km/s.

11.9 Reconnection in the Laboratory

You might ask: can we study reconnection in the laboratory?
Indeed we can. The Magnetic Reconnection Experiment (MRX) at

Princeton has been studying reconnection physics since 1995. The
device creates opposing magnetic fields in a toroidal geometry and
drives them together, forming a current sheet that reconnects.

MRX has confirmed many theoretical predictions: the formation of
current sheets, the acceleration of plasma to Alfvén speeds, the role
of Hall physics in speeding up reconnection. The measured recon-
nection rate of ∼ 0.1 vA matches both simulations and astrophysical
observations.

More recently, NASA’s Magnetospheric Multiscale (MMS) mission,
launched in 2015, has directly observed reconnection in Earth’s mag-
netosphere. The four MMS spacecraft fly in tight formation (some-
times separated by only 10 km), allowing them to resolve the electron
diffusion region—the tiny central zone where electrons decouple
from ions.

MMS observations have confirmed the Hall physics picture.
They’ve seen the characteristic quadrupolar magnetic field pattern
predicted by two-fluid theory. They’ve measured electron jets con-
sistent with theory. The 50-year-old puzzle of fast reconnection is
now largely solved, at least for the collisionless plasmas of near-Earth
space.
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11.10 When Does Reconnection Happen?

We have discussed how reconnection happens fast, but not what
triggers it.

The fundamental requirement is a current sheet—a region where
opposing magnetic fields meet. Such sheets form naturally when
magnetized plasmas are pushed together by external flows, or when
field lines are sheared and twisted.

But a current sheet can exist for a long time without reconnecting.
The sheet must thin to the scale where fast reconnection is enabled
(the ion skin depth for collisionless plasmas, or the scale where plas-
moid instability sets in for resistive plasmas). This thinning is driven
by the continued compression of the opposing fields.

Think of reconnection as a pressure relief valve. Magnetic stress
builds up as fields are pushed together or twisted. The system resists,
maintaining force balance through the current sheet. But the sheet
keeps thinning, and eventually it reaches the critical scale. Then
reconnection turns on suddenly, releasing the stored stress in a burst.

This is why reconnection events are often impulsive. The buildup
is gradual—days for a solar active region, hours for a magnetospheric
substorm. The release is rapid—minutes for a flare, seconds for a
substorm onset. The metaphor of a loaded spring, held at bay until a
trigger releases it, captures the physics.

11.11 The Broken Threads

Let us step back and appreciate what reconnection means for our
understanding of magnetized plasmas.

Through most of this book, we have treated magnetic field lines
as inviolable. They are frozen into the plasma, carried along by its
motions, unable to break or change their connections. This frozen-in
property gives magnetic fields their dynamical importance—they link
distant regions, transmit forces, and constrain plasma motions.

Reconnection is where this picture fails. In thin current sheets, un-
der the right conditions, the threads can be cut and resewn. Topology
changes. Energy is released.

But reconnection does not invalidate the frozen-in picture; it com-
pletes it. The frozen-in approximation is accurate almost everywhere—
in the vast volumes of space where current densities are low and re-
sistivity is negligible. Reconnection happens only in special places:
the thin sheets where opposing fields meet. These sites are rare but
important, like the seams in a quilt. Most of the fabric is continuous;
only at the seams can the pattern change.

The combination of frozen-in dynamics and localized reconnection
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produces the behavior we observe: long periods of gradual evolution
punctuated by sudden restructuring events. Magnetic flux accumu-
lates, stresses build, and then a flare or substorm releases the tension.
The cycle repeats.

This interplay—order and catastrophe, frozen and reconnecting—
is how the magnetic universe actually operates.

11.12 Looking Ahead

We have now surveyed the major instabilities and dynamic processes
of MHD: waves that carry information and energy, equilibria that bal-
ance forces, kinks and interchanges that disrupt those equilibria, the
magnetorotational instability that drives accretion, and reconnection
that releases magnetic energy.

But our treatment has been idealized. Real astrophysical systems
are turbulent—filled with fluctuations on all scales, energy cascading
from large to small, structures forming and dissolving in a chaotic
dance. MHD turbulence is richer than its hydrodynamic cousin be-
cause of the magnetic field’s anisotropy: fluctuations are different
parallel and perpendicular to the field.

Understanding this turbulence—its statistics, its energy cascade, its
role in transport and heating—is the subject of our next chapter.





Part III

Turbulence and
Astrophysical Applications





12
MHD Turbulence

12.1 Cream in Coffee

Pour cream into coffee and watch it swirl. The patterns are beautiful—
whorls and filaments, stretching and folding, chaos in a cup. Each
pour is different. The details are unpredictable, yet something is
universal: the cream always mixes, always creates the same kind of
intricate structure, always reaches the same end state.

This is turbulence. It is the most common state of fluids in the
universe, from the atmosphere we breathe to the gas between the
stars. Understanding it requires giving up on predicting individual
motions and instead describing statistics—how energy is distributed
across scales, how fluctuations correlate in space and time, how the
chaos organizes itself.

Now imagine the coffee is a plasma threaded by magnetic field
lines. The cream doesn’t just swirl—it swirls differently along the
field than across it. Try to stir perpendicular to the field, and mag-
netic tension resists; stir along the field, and the fluid moves freely.
The field imposes a direction, and the turbulence becomes anisotropic.

MHD turbulence is what happens when magnetic fields meet
chaos. It governs the solar wind streaming past Earth, the interstellar
medium filling the space between stars, the transport of angular
momentum in accretion disks, and the confinement of plasma in
fusion reactors. Understanding it requires extending Kolmogorov’s
classic picture of hydrodynamic turbulence to something richer and
more structured.

12.2 Kolmogorov’s Legacy

Let us begin with the foundation: Kolmogorov’s 1941 theory of hy-
drodynamic turbulence.

The central insight is deceptively simple. Energy is injected into
the fluid at large scales—by stirring the coffee, by convection in the
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atmosphere, by jets in an accretion disk. This energy cannot stay at
large scales; nonlinear interactions transfer it to smaller scales. An
eddy of size L breaks into eddies of size L/2, which break into eddies
of size L/4, and so on. The cascade continues until the eddies are so
small that viscosity dissipates their energy as heat.

Energy in

Heat out

Figure 12.1: The turbulent cascade:
energy flows from large eddies to small,
where it dissipates as heat.

In the “inertial range”—the range of scales between injection and
dissipation—the only relevant quantity is the energy cascade rate ε,
measured in watts per kilogram. Dimensional analysis then deter-
mines everything.

An eddy of size ` has characteristic velocity v`. Its kinetic energy
per mass is v2

` , and its turnover time is τ` ∼ `/v`. The rate at which
energy cascades through this scale is:

ε ∼
v2
`

τ`
∼

v3
`

`
.

Since ε is constant throughout the inertial range (what comes in
must go out), we can solve for the velocity:

v` ∼ (ε`)1/3. (12.1)

Smaller eddies have smaller velocities. This is the Kolmogorov
scaling.

The energy spectrum follows. The energy per unit wavenumber
E(k) represents how much kinetic energy resides in eddies of size
` ∼ 1/k. Since energy density scales as v2

` ∼ (ε`)2/3 ∼ ε2/3k−2/3, and
E(k) is energy per unit k, we need one more factor of k−1:

E(k) ∼ ε2/3k−5/3. (12.2)

This k−5/3 power law is one of the most robust results in physics.
It has been verified in laboratory experiments, atmospheric mea-
surements, and numerical simulations spanning decades of scale.
The cream mixing into your coffee obeys it. So does the interstellar
medium.

12.3 Adding a Magnetic Field

Let us now add a uniform magnetic field B0 and see what changes.
The field introduces a preferred direction. Perturbations can prop-

agate along B0 as Alfvén waves, traveling at speed vA = B0/
√

µ0ρ.
An eddy that tries to stretch field lines feels magnetic tension pulling
back. The turbulence is no longer isotropic.

Consider a thought experiment. You’re stirring the plasma per-
pendicular to the field. Magnetic tension resists, converting kinetic
energy into magnetic perturbations. You’re stirring parallel to the
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field. Nothing special happens—the fluid moves freely, carrying the
field lines along.

This asymmetry is the heart of MHD turbulence. Energy cascades
differently in different directions.

You might ask: how do different scales communicate in MHD
turbulence?

In hydrodynamic turbulence, eddies directly interact: a large eddy
advects smaller eddies, shearing them and transferring energy. In
MHD turbulence, there’s an additional mechanism: Alfvén waves.

Imagine two Alfvén wave packets propagating in opposite di-
rections along B0. When they collide, they interact nonlinearly, dis-
torting each other and transferring energy to smaller scales. But the
interaction only lasts for the collision time τA ∼ `‖/vA, where `‖ is
the scale of the wave packet along the field.

If the wave packets are narrow (small `‖), they pass through each
other quickly, barely interacting. If they are wide (large `‖), they
interact for a long time. The efficiency of energy transfer depends on
this geometry.

12.4 Critical Balance

The key insight, due to Peter Goldreich and S. Sridhar in 1995, is
what they called “critical balance.”

The idea is simple: the turbulent cascade is most efficient when
two timescales are equal.

One timescale is the eddy turnover time perpendicular to the field:

τeddy ∼
`⊥
v`

,

where `⊥ is the eddy size perpendicular to B0 and v` is the turbulent
velocity at that scale.

The other timescale is the Alfvén wave crossing time parallel to the
field:

τA ∼
`‖
vA

,

where `‖ is the eddy extent along B0.

B0

`‖

`⊥

Figure 12.2: Critical balance: eddies
are elongated along the magnetic field,
with `‖ � `⊥ at small scales.

Critical balance states that these timescales are comparable through-
out the cascade:

τeddy ∼ τA, i.e.,
`⊥
v`
∼

`‖
vA

. (12.3)

Why should this be true? If τeddy � τA, the eddy turns over before
Alfvén waves can propagate across it. The interaction is essentially
hydrodynamic, and the eddies quickly cascade to smaller scales. If
τeddy � τA, Alfvén waves cross the eddy many times before it turns
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over; the nonlinear interaction is weak, and the cascade is slow. The
most efficient cascade occurs when the two timescales are compara-
ble.

Let us work out the consequences.
From Kolmogorov scaling in the perpendicular direction, v` ∼

(ε`⊥)
1/3. Substituting into critical balance:

`⊥
(ε`⊥)1/3 ∼

`‖
vA

.

Solving for `‖:

`‖ ∼
vA

ε1/3 `
2/3
⊥ . (12.4)

The parallel scale grows more slowly than the perpendicular scale
as we go to smaller eddies. Eddies become increasingly elongated
along the field at small scales.

At the outer scale L, suppose `‖ ∼ `⊥ ∼ L (the turbulence is
injected isotropically). At smaller scales:

`‖
`⊥
∼
(

L
`⊥

)1/3
.

An eddy ten times smaller than the injection scale is elongated by
a factor of 101/3 ≈ 2. An eddy a thousand times smaller is elongated
by a factor of 10. At small scales, the turbulence is essentially two-
dimensional: structures vary rapidly perpendicular to the field but
slowly parallel to it.

12.5 Energy Spectra

The energy spectra follow from critical balance.
In the perpendicular direction, the cascade proceeds essentially as

in Kolmogorov turbulence:

E(k⊥) ∼ ε2/3k−5/3
⊥ . (12.5)

The familiar −5/3 slope persists.
In the parallel direction, the spectrum is steeper. Energy is trans-

ferred to smaller perpendicular scales more readily than to smaller
parallel scales. The parallel spectrum is:

E(k‖) ∼ vAε1/2k−2
‖ . (12.6)

The k−2
‖ slope means energy drops off more rapidly with decreas-

ing parallel scale. Most of the fluctuation energy resides in structures
that are elongated along the field.

You might ask: does this theory actually work?
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The solar wind provides a natural laboratory. Spacecraft at 1 AU
measure fluctuations in magnetic field and velocity over many
decades of scale. The observations show:

• A k−5/3 spectrum in the perpendicular direction, as predicted.

• Anisotropy consistent with critical balance: smaller structures are
more elongated along the field.

• Fluctuations dominated by Alfvénic modes (velocity and magnetic
field fluctuations correlated as expected for Alfvén waves).

The Goldreich-Sridhar theory, developed for an idealized case,
captures the essential physics of turbulence in the solar wind.

12.6 The Historical Path

Let us pause to appreciate how this understanding emerged.
The first theories of MHD turbulence, by Philip Iroshnikov in 1964

and Robert Kraichnan in 1965, assumed isotropy. They reasoned that
Alfvén waves propagating in opposite directions collide and interact,
transferring energy to smaller scales. But each collision transfers only
a small amount of energy—the waves partially pass through each
other. The cascade is slower than in hydrodynamic turbulence, and
the spectrum should be E(k) ∼ k−3/2, shallower than Kolmogorov’s
−5/3.

For thirty years, this was the standard picture. But observations
stubbornly refused to cooperate. Solar wind measurements consis-
tently showed k−5/3 spectra, not k−3/2. Something was wrong.

Goldreich and Sridhar’s insight was that the isotropic assumption
fails. When turbulence develops in a magnetized plasma, it naturally
becomes anisotropic. Eddies elongate along the field. The cascade in
the perpendicular direction is fast and Kolmogorov-like; the parallel
direction is different.

You might ask: why didn’t Iroshnikov and Kraichnan see this?
They were thinking about weak turbulence—the limit where

Alfvén waves interact gently and perturbatively. In that regime,
isotropy is a reasonable starting assumption. But in strong turbulence—
the regime relevant to most astrophysical situations—the interactions
are vigorous enough to enforce critical balance, and anisotropy devel-
ops spontaneously.

The debate between the Iroshnikov-Kraichnan picture and the
Goldreich-Sridhar picture continued for years after 1995. Some the-
orists argued that anisotropy would be washed out by nonlinear
mixing. High-resolution numerical simulations eventually settled
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the matter: the Goldreich-Sridhar scaling holds, at least in the strong
turbulence regime.

12.7 Heating the Solar Corona

Let us apply MHD turbulence to a long-standing puzzle: why is the
solar corona so hot?

The Sun’s visible surface, the photosphere, has a temperature
of about 5800 K. Moving outward, the temperature drops through
the chromosphere. Then something unexpected happens: the tem-
perature rises sharply to over a million degrees in the corona. This
violates our intuition that things should be cooler farther from a heat
source.

The corona must be heated by some non-thermal mechanism. One
leading candidate is Alfvénic turbulence.

5800 K

> 106 K

Photosphere

Corona

Figure 12.3: The coronal heating prob-
lem: temperature increases with height
above the photosphere.

Consider a coronal loop—an arc of magnetized plasma connecting
two sunspots. Typical parameters are:

• Density: n ∼ 1014 m−3

• Temperature: T ∼ 2× 106 K

• Magnetic field: B ∼ 10−3 T (10 G)

• Loop length: L ∼ 108 m (100 Mm)

The Alfvén speed is:

vA =
B

√
µ0nmp

=
10−3

√
4π × 10−7 × 1014 × 1.7× 10−27

.

Let me compute step by step:

µ0nmp = 4π× 10−7× 1014× 1.7× 10−27 = 4π× 1.7× 10−20 ≈ 2.1× 10−19.

√
µ0nmp ≈ 4.6× 10−10, vA ≈

10−3

4.6× 10−10 ≈ 2× 106 m/s = 2000 km/s.

Photospheric motions at the footpoints of the loop shake the mag-
netic field, launching Alfvén waves into the corona. The observed
velocity fluctuations are about δv ∼ 30 km/s at the driving scale.

The energy flux carried by Alfvén waves is the Poynting flux:1 1 For Alfvén waves, the velocity pertur-
bation δv and magnetic perturbation
δB are related by δv = δB/

√
µ0ρ. The

Poynting flux S = δE× δB/µ0 reduces
to ρ δv2 vA.

F ∼ ρ δv2 vA.

With ρ = nmp ≈ 1014 × 1.7× 10−27 ≈ 1.7× 10−13 kg/m3:

F ∼ 1.7× 10−13× (3× 104)2× 2× 106 = 1.7× 10−13× 9× 108× 2× 106 ≈ 300 W/m2.

This matches the energy required to heat the quiet corona!2 The 2 Active regions require up to
104 W/m2, which can be supplied
by larger wave amplitudes or additional
heating mechanisms.
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basic estimate works: Alfvén waves launched by photospheric mo-
tions carry enough energy to maintain the million-degree corona.

The point is that the basic physics works. Alfvénic turbulence,
driven by photospheric motions and cascading to small scales where
it dissipates, can heat the corona. The exact mechanism of dissipation
at small scales remains debated—ion cyclotron damping, kinetic
Alfvén waves, current sheet formation—but the energy is available.

12.8 Turbulence in the Interstellar Medium

You might ask: where else does MHD turbulence matter?
Everywhere. The interstellar medium—the gas and dust between

the stars—is turbulent. Radio observations of pulsars reveal scintilla-
tion caused by density fluctuations in the intervening medium, and
the statistics of this scintillation constrain the turbulent spectrum.
The result: Kolmogorov-like, consistent with Goldreich-Sridhar.

Accretion disks are turbulent, driven by the MRI (Chapter 10). The
MRI generates magnetic fluctuations that cascade to smaller scales,
eventually dissipating and heating the disk.

Galaxy clusters contain hot, magnetized gas called the intracluster
medium. This gas is stirred by mergers and by jets from central black
holes, driving turbulence that mixes the gas and amplifies magnetic
fields.

In each case, the basic framework—energy injection at large scales,
cascade to small scales, dissipation at the viscous or resistive cutoff—
applies. The details vary, but the physics is universal.

12.9 What We Don’t Know

Let us be honest about limitations.
The Goldreich-Sridhar theory is for incompressible, Alfvénic tur-

bulence with a strong mean magnetic field. Real astrophysical situa-
tions are messier:

• Compressibility: Fast and slow magnetosonic modes exist along-
side Alfvén waves. How do they cascade? How do they couple?

• Imbalance: In the solar wind, Alfvén waves propagate predomi-
nantly outward from the Sun. This “imbalanced” turbulence may
have different scaling.

• Intermittency: Energy is not distributed smoothly across scales
but concentrated in coherent structures like current sheets. These
structures can dominate the dissipation.
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• Kinetic effects: At small scales, the MHD approximation breaks
down. Ion and electron kinetics determine the dissipation mecha-
nism.

You might ask: doesn’t all this uncertainty undermine the theory?
Not entirely. The Goldreich-Sridhar scaling captures the dominant

behavior in many situations. It’s a skeleton on which more detailed
models can be built. The k−5/3 perpendicular spectrum is observed;
the anisotropy is observed; critical balance is at least approximately
satisfied. The theory works well enough to be useful.

But the details matter for specific applications. How much energy
heats ions versus electrons? Where do cosmic rays scatter? What
sets the efficiency of angular momentum transport in disks? These
questions require going beyond the simplest theory, and the answers
are still being worked out.

12.10 The Shape of Chaos

Let us close with a philosophical observation.
Turbulence is chaos, but it is organized chaos. The equations of

motion are deterministic, yet the solutions are unpredictable in detail.
We cannot say where each eddy will be, but we can say how the
energy is distributed across scales. Order emerges from disorder.

The magnetic field adds another layer of organization. It imposes
a direction, and the turbulence remembers this direction even at
small scales. The cream in our magnetized coffee doesn’t just mix
randomly—it mixes preferentially perpendicular to the field. The
chaos has a shape.

This interplay between chaos and order, between universal scaling
and system-specific details, is what makes turbulence both fasci-
nating and frustrating. It is the most common state of matter in the
universe, governing phenomena from coffee cups to galaxy clusters,
yet it remains one of the least understood areas of classical physics.

12.11 Looking Ahead

Turbulence cascades energy from large scales to small, where it dissi-
pates. But turbulence can also do the reverse: amplify weak magnetic
fields into strong ones. The dynamo mechanism uses turbulent mo-
tions, combined with rotation and helicity, to generate the large-scale
magnetic fields we observe in planets, stars, and galaxies.

How does the Sun maintain its 11-year magnetic cycle? Why does
Earth have a magnetic field at all? These questions require under-
standing how ordered fields emerge from chaotic flows. That is the
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subject of our next chapter: dynamo theory.





13
Dynamo Theory

13.1 The Self-Made Field

Earth’s magnetic field guides your compass, protects the atmosphere
from the solar wind, and paints the aurora across polar skies. It has
been here for at least 3.5 billion years—we know because ancient
rocks preserve its signature in their magnetization. Without it, life
on Earth might never have evolved; charged particles from the Sun
would have stripped away the atmosphere long ago.

But magnetic fields don’t last forever. Leave a magnetized piece
of iron alone, and currents in it gradually die away through electrical
resistance. The field decays. The same is true of Earth’s field: without
regeneration, ohmic dissipation would erase it in about 20,000 years.

Twenty thousand years is nothing on geological timescales. Yet the
field persists for billions of years. Where does it come from?

The answer is wonderfully self-referential: the field makes itself.
Deep in Earth’s core, liquid iron churns in convective motions, rising
and falling as heat escapes to the mantle above. This flowing conduc-
tor moves through the existing magnetic field, generating electrical
currents by induction. The currents, in turn, create magnetic field. If
the geometry is right, the regenerated field exceeds what was lost to
dissipation. The field sustains itself, like a flame that burns its own
fuel while creating more.

This is the dynamo mechanism. It operates in Earth’s core, in
the Sun’s convection zone, in the liquid hydrogen of Jupiter, and
probably in most stars and planets with substantial conducting fluid
regions. Understanding how it works—and why it sometimes fails—
is the subject of dynamo theory.

13.2 Why Simple Doesn’t Work

Let us begin with a puzzle that stumped physicists for decades.
In 1919, Joseph Larmor asked whether the Sun’s magnetic field
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could be self-generated. He imagined a simple scenario: an axisym-
metric flow in a rotating sphere, maintaining an axisymmetric field
like a dipole. It seemed natural. The Sun is roughly axisymmetric. Its
field is roughly dipolar. Why not?

In 1934, Thomas Cowling proved that this picture is impossible.
Cowling’s theorem states: No axisymmetric magnetic field can be

maintained by axisymmetric fluid motions.

Axis

Null ring (red): B = 0

Figure 13.1: Cowling’s theorem: the
null points form a ring around the
equator (shown as red ellipse). Axisym-
metric flows cannot regenerate field
where B = 0.

The proof exploits a geometric fact. An axisymmetric field has
points where the field strength vanishes—typically at the equator
for a dipole. At these null points, the field lines close, and there’s no
way for axisymmetric motions to regenerate what diffusion destroys.
The induction term ∇× (v× B) cannot create field from nothing at a
point where B = 0.

Think of it this way. The induction equation stretches and trans-
ports existing field. It can amplify what’s there, move it around, twist
it into new shapes. But at a true null point, there’s nothing to stretch
or transport. Diffusion steadily erases the field near the null, and
induction cannot replenish it.

You might ask: if axisymmetric dynamos are impossible, how do
the Sun and Earth have magnetic fields?

The answer is that real flows are not axisymmetric. Convection
cells, rising plumes, and turbulent eddies have three-dimensional
structure. When combined with rotation—which imposes a preferred
handedness through the Coriolis force—these flows can evade Cowl-
ing’s theorem and sustain a large-scale magnetic field.

The devil, as always, is in the details.

13.3 The Kinematic Dynamo

Let us approach the problem systematically.
We start by asking a simpler question: given a prescribed velocity

field v(x, t), will the magnetic field grow or decay? This is the kine-
matic dynamo problem. We ignore the back-reaction of the field on
the flow (which would require solving the full momentum equation)
and focus purely on the induction equation:

∂B
∂t

= ∇× (v× B) + λ∇2B, (13.1)

where λ = η/µ0 is the magnetic diffusivity.
This is a linear equation in B. Solutions are superpositions of

modes that grow or decay exponentially: B ∝ eγt. If any mode has
γ > 0, the flow is a kinematic dynamo—it amplifies magnetic field.

The competition is between induction (the first term) and diffusion
(the second term). Dimensional analysis gives the magnetic Reynolds
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number:
Rm =

vL
λ

,

where v is a characteristic velocity and L is a characteristic length
scale. If Rm � 1, diffusion wins and the field decays. If Rm � 1,
induction dominates and dynamo action is possible.

The critical magnetic Reynolds number Rmcrit depends on the flow
geometry. For most flows, Rmcrit ∼ 10–100. Below this threshold,
no dynamo occurs regardless of the flow pattern. Above it, the right
kind of flow will amplify the field.

13.4 Mean-Field Electrodynamics

Real astrophysical flows are turbulent. Tracking every eddy is impos-
sible. We need a statistical approach.

Let us decompose the magnetic field and velocity into mean and
fluctuating parts:

B = 〈B〉+ b,

v = 〈v〉+ u,

where angle brackets denote an average (over time, space, or an
ensemble of realizations).

Substituting into the induction equation and averaging, we get:

∂〈B〉
∂t

= ∇× (〈v〉 × 〈B〉+ E) + λ∇2〈B〉, (13.2)

where E = 〈u× b〉 is the mean electromotive force (EMF) from the
fluctuating fields.

This term E is the heart of mean-field dynamo theory. The fluc-
tuating velocity and fluctuating field, though individually chaotic,
combine to produce a systematic mean EMF.

How do we evaluate E? In the simplest approximation, we expand
in terms of the mean field and its derivatives:

Ei = αij〈B〉j + βijk
∂〈B〉j
∂xk

+ · · · (13.3)

For isotropic turbulence (no preferred direction), symmetry con-
strains the coefficients. The leading terms are:

E = α〈B〉 − β∇× 〈B〉, (13.4)

where α and β are scalar coefficients.
The β term represents turbulent diffusion: random motions en-

hance the spreading of magnetic field, just as they enhance the
mixing of cream in coffee. The effective diffusivity becomes λ + β,
typically much larger than the molecular value λ.



118 lectures on mhd

The α term is more remarkable. It represents an EMF parallel to the
mean field—something that doesn’t happen in laminar flows. This is
the famous “alpha effect.”

13.5 The Alpha Effect

You might ask: how can turbulence generate an EMF parallel to the
magnetic field?

The key is helicity. Helicity measures the “handedness” of a
flow—the correlation between velocity and vorticity:

H = 〈u · (∇× u)〉 = 〈u ·ω〉.

A flow has positive helicity if it tends to twist like a right-handed
corkscrew (velocity and vorticity aligned); negative helicity if it twists
like a left-handed corkscrew (velocity and vorticity anti-aligned).

In a rotating system, helicity arises naturally. Consider a rising
thermal plume in a convecting layer. As it rises, the Coriolis force
deflects its motion, twisting it into a helical shape. In the Northern
Hemisphere (where rotation is counterclockwise viewed from above),
rising fluid twists counterclockwise—positive helicity. In the South-
ern Hemisphere, the twist is opposite.

Now consider what happens when this helical flow interacts with
a horizontal magnetic field. The rising, twisting motion stretches and
wraps the field lines. A horizontal field line gets lifted and twisted,
generating a vertical component. Averaged over many such events,
the turbulence produces a mean EMF that has a component parallel
to the original mean field.

The quantitative result, derived by Steenbeck, Krause, and Rädler
in the 1960s, is:

α ≈ −τ

3
〈u ·ω〉, (13.5)

where τ is the correlation time of the turbulence. The negative sign
reflects how the twist converts one component of field into another.

The alpha effect is the engine of large-scale dynamos. It converts
toroidal field (wrapped around the rotation axis) into poloidal field
(threading through the poles), and vice versa. This mutual conver-
sion allows the field to sustain itself against diffusion.

13.6 The Solar Dynamo

Let us apply these ideas to the best-observed example: the Sun.
The Sun’s magnetic field varies on an approximately 11-year cycle.

Sunspots appear, grow numerous, then fade. The latitude where
spots appear migrates from mid-latitudes toward the equator over
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the cycle. And crucially, the field’s polarity reverses every 11 years:
north becomes south, south becomes north. The full magnetic cycle is
thus 22 years.

The standard model is the αω dynamo:
The ω effect: The Sun rotates differentially—the equator ro-

tates faster than the poles. This differential rotation stretches any
poloidal field into toroidal field, winding it around the rotation axis
like thread on a spool.

The α effect: Convective turbulence in the solar interior is helical
due to the Coriolis force. This helicity converts toroidal field back
into poloidal field.

The cycle operates as follows:

1. Start with a poloidal field (say, pointing out of the Northern
Hemisphere).

2. Differential rotation stretches it into toroidal field.

3. The α effect converts the toroidal field into new poloidal field—
but with opposite polarity!

4. Differential rotation stretches this new poloidal field into toroidal
field of opposite sign.

5. The α effect again reverses the polarity.

6. After two half-cycles (22 years), the field returns to its original
configuration.

P+ T

P−T′

ω

α

ω

α

22-year cycle

Figure 13.2: The αω dynamo cycle: dif-
ferential rotation (ω) converts poloidal
to toroidal field; the alpha effect (α)
converts toroidal back to poloidal with
reversed polarity.

You might ask: where exactly does this happen in the Sun?
The location is still debated, but the leading candidate is the

tachocline—a thin shear layer at the base of the convection zone,
about 200,000 km below the visible surface. Here, the differentially
rotating convection zone meets the rigidly rotating radiative interior.
The shear is strong, the ω effect is efficient, and magnetic flux can be
stored without being immediately disrupted by convection.

The details remain contentious. How exactly flux rises from the
tachocline to the surface, why the cycle is 11 years rather than some
other period, and what causes occasional “grand minima” (like the
Maunder Minimum of 1645–1715, when sunspots nearly vanished)
are active research questions.

13.7 Earth’s Dynamo

Let us now turn to our own planet.
Earth’s magnetic field is generated in the outer core—a shell of liq-

uid iron about 2,200 km thick, lying between the solid inner core and
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the rocky mantle. The liquid iron is an excellent electrical conductor,
and it convects vigorously, driven by the heat escaping from the inner
core and the latent heat released as the inner core slowly solidifies.

We can estimate whether conditions favor a dynamo.
The outer core has:

• Radius R ≈ 3.5× 106 m

• Typical convective velocity v ≈ 5 × 10−4 m/s (inferred from
changes in the field over decades—the “secular variation”)

• Magnetic diffusivity λ ≈ 1 m2/s (for liquid iron)

The magnetic Reynolds number is:

Rm =
vR
λ

=
5× 10−4 × 3.5× 106

1
= 1750.

This is well above the critical value of Rmcrit ∼ 10–50 required for
dynamo action. Earth’s core easily exceeds the threshold.

The energy required to maintain the dynamo comes from convec-
tion. Ohmic dissipation—the heating from electrical resistance—must
be balanced by the power supplied by fluid motions. Estimates sug-
gest the geodynamo requires about 1011–1012 W (100 GW to 1 TW).
This is a small fraction of Earth’s total heat loss (∼ 4× 1013 W), so
there’s plenty of power available.

You might ask: why doesn’t Mars have a magnetic field?
Mars once had a dynamo. The oldest Martian crust, in the south-

ern highlands, is strongly magnetized. But the dynamo shut off
about 4 billion years ago. The likely reason: Mars is smaller than
Earth, so its core cooled more quickly. Once the core cooled below
the threshold for vigorous convection, the dynamo died.

Venus presents a different puzzle. It’s nearly Earth’s size, yet has
no detected magnetic field. Perhaps Venus lacks a solid inner core
(which in Earth releases latent heat that drives convection). Perhaps
its mantle convects sluggishly, failing to extract enough heat from the
core. The absence of a Venusian dynamo remains poorly understood.

13.8 Laboratory Dynamos

You might ask: can we create a dynamo in the laboratory?
The challenge is formidable. Laboratory flows have Rm of order

unity or less—far below the threshold for dynamo action. To exceed
Rmcrit ∼ 10–50, you need either very large scales, very fast flows, or
very low magnetic diffusivity.

In 1999, experimenters in Riga, Latvia, succeeded. They pumped
liquid sodium through a helical pipe system at high velocity, creating
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a flow with the right geometry to sustain a magnetic field. When
the flow exceeded a critical speed, the field spontaneously grew
from ambient noise and saturated at a finite amplitude. The dynamo
worked.

The Karlsruhe experiment in Germany achieved similar suc-
cess with a different geometry in 2000. More recent experiments
in Cadarache, France (the VKS experiment) have demonstrated tur-
bulent dynamos with polarity reversals reminiscent of Earth’s.

These experiments are tours de force of engineering—liquid
sodium is reactive, hot, and dangerous; the flows must be sustained
for long periods; the diagnostics must measure fields inside opaque
liquid metal. But they confirm that the physics of dynamos, worked
out theoretically over decades, actually operates in nature.

13.9 Saturation and Back-Reaction

We have discussed kinematic dynamos, where the velocity field is
prescribed. But real dynamos must eventually saturate: the field
cannot grow forever.

Saturation occurs when the growing magnetic field back-reacts
on the flow that generates it. As the field strengthens, the Lorentz
force J× B opposes the motions that twist and stretch the field lines.
Eventually, generation and dissipation balance.

Several mechanisms contribute to saturation:

• Alpha quenching: Strong magnetic fields suppress the helical
turbulence that creates the alpha effect. The effective α decreases
as B increases.

• Direct suppression: The Lorentz force directly opposes the shear-
ing motions (the ω effect) that stretch field lines.

• Flux loss: In stars, buoyant magnetic flux rises through the con-
vection zone and escapes at the surface, removing magnetic energy
from the system.

The saturated field strength is determined by equipartition: roughly,
the magnetic energy density B2/(2µ0) becomes comparable to the ki-
netic energy density ρv2/2 of the driving flow.

For the Sun, this gives:

Bsat ∼
√

µ0ρv2.

With convective velocities v ∼ 30 m/s and density ρ ∼ 200 kg/m3

(deep in the convection zone):

Bsat ∼
√

4π × 10−7 × 200× 900 =
√

2.3× 10−1 ≈ 0.5 T = 5000 G.
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This is consistent with inferred field strengths in the solar inte-
rior.1 The dynamo saturates at the level where magnetic and kinetic 1 Surface sunspot fields are typically

1000–3000 G, but the interior toroidal
field at the base of the convection
zone may be much stronger—perhaps
104–105 G.

energies are comparable.

13.10 The Seed Field

You might ask: where does the first magnetic field come from?
A dynamo amplifies existing field. It cannot create field from

nothing. Some initial seed is required.
The answer comes from a mechanism called the Biermann bat-

tery. In a plasma where temperature and density gradients are not
parallel, a current arises spontaneously. The electron pressure force
−∇pe/ne has a curl if ∇Te and ∇ne point in different directions:

∂B
∂t

∝ ∇Te ×∇ne.

This is not a dynamo—it’s a one-time injection of field from ther-
modynamic gradients. But it provides the seed. In a forming star, the
collapse is never perfectly spherical; temperature and density gradi-
ents have different orientations. A weak field appears spontaneously,
perhaps 10−20 T or less.

Then the dynamo takes over. Even starting from infinitesimal
amplitude, exponential growth eventually produces the fields we
observe. The origin of the seed doesn’t matter much; the dynamo
does the heavy lifting.

13.11 Order from Chaos

Let us close with a reflection on what dynamo theory tells us about
the universe.

Turbulent convection seems chaotic—plumes rise and fall unpre-
dictably, vortices form and dissolve, flows reverse without warning.
Yet from this chaos, ordered magnetic fields emerge. The Sun’s 22-
year cycle, Earth’s steady dipole (punctuated by reversals), the spiral
magnetic patterns in galaxies—all arise from turbulent conducting
fluids.

The key is not that turbulence creates order directly, but that it has
the right statistical properties. On average, convection in a rotating
system is helical. On average, the helicity converts one component
of field into another. The chaos is essential—it provides the com-
plexity needed to evade Cowling’s theorem—but it operates through
averages, not individual events.

This is a recurring theme in physics. Thermodynamics emerges
from the chaos of molecular collisions. Fluid dynamics emerges from
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the chaos of particle motions. And now we see that cosmic mag-
netism emerges from the chaos of turbulent flow. The universe builds
order from disorder, structure from randomness, by the patient accu-
mulation of statistical bias.

13.12 Looking Ahead

We have seen how magnetic fields are generated in convecting plan-
ets and stars. The same physics governs the interiors of all magne-
tized bodies, from brown dwarfs to white dwarfs to neutron stars.

In our final chapter, we turn to magnetic fields in the most ex-
treme environments: accretion disks around black holes, the jets that
blast out from active galactic nuclei, and the cosmic engines that
power the most luminous objects in the universe. These systems
operate at the frontier of MHD, where relativistic effects, radiation
pressure, and extreme gravitational fields all come into play. Yet the
basic principles—frozen-in flux, magnetic tension, pressure balance,
dynamo action—remain our guides.





14
MHD in Stellar Interiors

14.1 The Rhythm of the Sun

Every eleven years, the Sun goes mad.
Sunspots multiply, spreading like dark bruises across the solar

face. Flares erupt, releasing in minutes the energy that the Sun nor-
mally radiates in hours. Coronal mass ejections blast billion-ton
clouds of magnetized plasma into space, sometimes aimed directly at
Earth.

Then the frenzy subsides. Spots become rare, flares infrequent.
The Sun enters a quiet phase, its surface almost unblemished. And
after a few years of calm, the cycle begins again.

This rhythm has repeated for as long as we’ve watched—certainly
since Galileo first turned his telescope sunward in 1610, and presum-
ably for billions of years before. What drives it?

The answer lies deep inside the Sun, in regions we cannot directly
observe. Convection churns the outer third of the star, carrying heat
from the nuclear furnace below. Rotation winds these turbulent mo-
tions into systematic patterns. And from this choreography of flow
and spin, magnetic fields are born.

Think of the Sun’s magnetic field as a rope. Differential rotation—
the equator spinning faster than the poles—winds the rope around
the Sun, stretching and strengthening it. Turbulent convection twists
the rope, knotting it into complex configurations. Eventually the
tension becomes too great: the rope breaks through the surface as
sunspots, releasing its stored energy as flares. Then the winding
begins again.

We have met the dynamo mechanism in Chapter 13. Now we
apply it to its best-observed example: the Sun. The solar dynamo is
a testing ground for dynamo theory—a place where we can compare
predictions against detailed observations spanning centuries. Yet
despite this wealth of data, the solar dynamo remains incompletely
understood. We know the pieces; assembling them into a complete
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picture has proven frustratingly difficult.

14.2 The Butterfly and the Cycle

Let us begin with what we observe.
The sunspot cycle was discovered by Heinrich Schwabe, a German

pharmacist and amateur astronomer, who noticed the pattern in 1843

after seventeen years of daily observations. Modern data have refined
his discovery:

+30°

Equator

−30°

Time

11 years

Figure 14.1: The butterfly diagram:
sunspot latitude versus time. Spots
appear at mid-latitudes and migrate
toward the equator over each 11-year
cycle.

The period averages about eleven years, though individual cycles
range from nine to fourteen years. At cycle minimum, the Sun is
nearly spotless; at maximum, hundreds of spots may dot its surface.

The latitude of spot emergence follows a striking pattern. At the
start of a cycle, spots appear around ±30° latitude. As the cycle pro-
gresses, new spots emerge closer and closer to the equator, reaching
±5° at cycle’s end. When plotted as latitude versus time, the pattern
resembles butterfly wings—hence the “butterfly diagram.”

The magnetic field adds another layer of regularity. In each hemi-
sphere, the leading spot of a sunspot pair (leading in the direction
of rotation) has consistent polarity throughout the cycle. But this
polarity reverses from one cycle to the next: if northern-hemisphere
leading spots are positive in one cycle, they’re negative in the next.

This is Hale’s polarity law, and it reveals something profound: the
eleven-year sunspot cycle is really half of a twenty-two-year magnetic
cycle. The Sun’s large-scale field completely reverses polarity every
eleven years, returning to its original state after twenty-two.

You might ask: what physical mechanism could produce such
ordered behavior from the turbulent chaos of solar convection?

The answer is the αω dynamo, operating in the transition layer
between the convection zone and the radiative interior.

14.3 The Tachocline

Let us descend into the Sun.
The outer thirty percent of the Sun, by radius, is the convection

zone. Here, energy is transported by rising hot gas and sinking cool
gas—the same process that bubbles soup in a pot. The convection
zone rotates differentially: the equator completes a rotation in about
25 days, while the poles take about 35 days.

Below the convection zone lies the radiative interior. Here, energy
is transported by photons diffusing through the dense plasma. And
crucially, the radiative interior rotates nearly uniformly, like a solid
body.

Core

Convective

Tachocline

Radiative

Figure 14.2: Solar structure: the
tachocline is a thin shear layer between
the differentially rotating convection
zone and the uniformly rotating radia-
tive interior.

Between these two regions lies the tachocline—a thin layer, per-
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haps 20,000 km thick (only 3% of the solar radius), where the rotation
rate changes abruptly. This is where helioseismology, the study of
solar oscillations, has revealed the Sun’s internal structure with re-
markable precision.

The tachocline is thought to be the seat of the solar dynamo. Here,
the differential rotation is strongest—the ω effect that stretches
poloidal field into toroidal field operates at maximum efficiency.
And here, magnetic flux can be stored without being immediately
disrupted by convective motions.

The dynamo cycle works as follows. Differential rotation in the
tachocline stretches any poloidal (north-south) magnetic field into
toroidal (east-west) field—winding the magnetic rope around the Sun
like thread on a spool. The toroidal field is amplified until it becomes
buoyantly unstable—the magnetic pressure makes it lighter than
its surroundings. Flux tubes rise through the convection zone and
emerge at the surface as sunspot pairs.

Meanwhile, the α effect—helical turbulence driven by the Coriolis
force—converts some of the toroidal field back into poloidal field, but
with reversed polarity. The cycle repeats, with the field oscillating
between one polarity state and its opposite.

14.4 Rising Flux

Let us follow a magnetic flux tube as it rises from the tachocline to
the surface.

At the base of the convection zone, the toroidal field may reach
strengths of 104–105 G (1–10 T). Such fields are buoyant: magnetic
pressure B2/(2µ0) partially replaces gas pressure p, reducing the
density required for pressure balance. The tube is lighter than its
surroundings by:

∆ρ

ρ
∼ B2

2µ0 p
.

For B = 10 T and p ∼ 1013 Pa (typical tachocline pressure):

∆ρ

ρ
∼ (10)2

2× 4π × 10−7 × 1013 =
100

8π × 106 ≈ 4× 10−6.

This tiny density deficit is enough. In the solar gravitational field
(g ≈ 270 m/s2), the buoyancy acceleration is:

a = g
∆ρ

ρ
≈ 270× 4× 10−6 ≈ 10−3 m/s2.

The rise velocity, balancing buoyancy against aerodynamic drag, is
roughly:

vrise ∼ vA

(
rtube
Hp

)1/2
,
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where vA is the Alfvén speed inside the tube, rtube is the tube radius,
and Hp is the pressure scale height.1 For realistic parameters, vrise ∼ 1 The pressure scale height Hp =

p/(ρg) ≈ 5 × 107 m in the lower
convection zone.

100–1000 m/s.
The convection zone is about 2× 108 m deep. At 100 m/s, the rise

time is:

trise ∼
2× 108

100
= 2× 106 s ≈ 23 days.

This matches observations: active regions emerge over timescales
of weeks, consistent with flux tubes rising from the tachocline.

You might ask: why don’t rising flux tubes get torn apart by con-
vection?

The key is twist. A flux tube with purely toroidal field (field run-
ning along the tube’s length) is vulnerable: convective eddies can
kink and fragment it. But if the tube carries a component of field
along its axis—if it’s twisted like a rope—magnetic tension holds it
together.

The twist comes from the Coriolis force. As the tube rises through
the rotating Sun, it develops helical motions that generate axial field.
This twist is essential for survival; simulations show that untwisted
tubes disperse before reaching the surface.

14.5 The Period Problem

You might ask: why eleven years?
This is perhaps the most embarrassing question in solar physics.

We can build models that produce eleven-year cycles, but we can’t
predict the period from first principles.

Dimensional analysis offers a start. The dynamo involves turbulent
diffusion across the convection zone. A diffusion time is:

τdiff ∼
L2

ηturb
,

where L ∼ 2× 108 m is the depth of the convection zone and ηturb ∼
108–109 m2/s is the turbulent magnetic diffusivity.

This gives:

τdiff ∼
(2× 108)2

108.5 =
4× 1016

3× 108 ≈ 108 s ≈ 3 years.

This is the right order of magnitude, but the details—the factor of
three or four needed to reach eleven years—depend sensitively on
parameters we don’t know well: the strength and spatial distribution
of α, the precise rotation profile, the role of meridional circulation.

Moreover, the period varies from cycle to cycle. Cycle 23 lasted
12.6 years; cycle 24 lasted 11.0 years. Something modulates the dy-
namo on timescales we don’t understand.
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14.6 Grand Minima

The Sun doesn’t always cycle smoothly. From about 1645 to 1715,
sunspots nearly vanished. This “Maunder Minimum” coincided with
the coldest part of the Little Ice Age in Europe—though whether the
connection is causal remains debated.

Longer records, reconstructed from tree rings and ice cores, reveal
other grand minima scattered through the past ten thousand years.
The Sun apparently switches between states: sometimes cycling vig-
orously, sometimes barely cycling at all.

You might ask: what causes grand minima?
We don’t know. Possibilities include:

• Chaotic dynamics: The nonlinear dynamo equations may have
multiple attractors. The Sun might wander between them unpre-
dictably.

• Meridional circulation changes: The slow poleward flow at the
surface, and its return flow at depth, affects the dynamo period.
Variations in this circulation could push the dynamo into quies-
cence.

• External forcing: Though unlikely, gravitational perturbations
from planets have been suggested.

Whatever the cause, grand minima remind us that the Sun’s ap-
parent regularity is not guaranteed. The Maunder Minimum could
happen again—and we would have little warning.

14.7 Angular Momentum Transport

Let us turn to a different problem: how does the Sun’s interior rotate
as it does?

The radiative interior rotates nearly uniformly, like a solid body.
The convection zone rotates differentially. These rotation profiles are
stable over solar evolution timescales. Something must enforce them.

The puzzle is sharpest at the tachocline. Angular momentum
wants to flow from the fast-rotating equator to the slow-rotating
poles, and from the differential convection zone into the uniform
interior. Why doesn’t it?

The answer returns us to our magnetic rope. Even a weak field
threading the tachocline acts like a tether between the convection
zone and the radiative interior. If one region tries to spin faster, it
twists the magnetic tether, and the resulting tension pulls back.

r

Ω
Equator

Pole

Tachocline

Figure 14.3: Solar rotation profile:
uniform in the radiative interior, dif-
ferential in the convection zone, with a
rapid transition at the tachocline.

The answer is magnetic fields. Even a weak poloidal field thread-
ing the tachocline couples the two regions. If the convection zone
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tries to spin up, it twists the field lines, generating toroidal field.
This toroidal field exerts a Maxwell stress on the radiative interior,
transferring angular momentum and resisting the spin-up.

Let us estimate the required field strength. The angular veloc-
ity contrast across the tachocline is ∆Ω ∼ 10−6 rad/s. The shear
timescale is the time for differential rotation to wind up the field
significantly:

τshear ∼
1

∆Ω
≈ 106 s ≈ 12 days.

For magnetic coupling to be effective, the Alfvén crossing time
across the tachocline must be comparable:

τA =
δ

vA
∼ τshear,

where δ ∼ 2× 107 m is the tachocline thickness. This gives:

vA ∼
2× 107

106 = 20 m/s.

With density ρ ∼ 200 kg/m3 at the tachocline:

B = vA
√

µ0ρ = 20×
√

4π × 10−7 × 200 ≈ 20× 1.6× 10−2 ≈ 0.3 T = 3000 G.

A field of a few thousand gauss threading the tachocline could
enforce the observed rotation profile. This is weaker than the toroidal
field in active regions (which may reach 105 G at the tachocline), but
it’s a significant structural element of the solar interior.

14.8 Beyond the Sun

You might ask: what about other stars?
Stars span an enormous range of magnetic properties. Solar-type

stars show activity cycles similar to the Sun’s, with periods ranging
from about 7 to 25 years. More rapidly rotating stars tend to be more
magnetically active, with stronger fields and shorter cycles.

Fully convective stars—those with masses below about 0.35 solar
masses—lack the tachocline entirely. Yet many show strong magnetic
fields and vigorous activity. Their dynamos must operate differently,
perhaps through small-scale turbulent processes throughout the
convective volume rather than the organized αω mechanism.

At the other extreme, a few percent of hot A and B stars have sur-
face fields of thousands of gauss—far stronger than the Sun’s. These
are the Ap and Bp stars (“p” for peculiar). Their fields are proba-
bly not dynamo-generated but fossil remnants from star formation,
frozen into the radiative envelope where no convection disrupts
them.
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Asteroseismology—the study of stellar oscillations—has opened
a new window on internal rotation. In subgiant and red giant stars,
the core rotates only about ten times faster than the envelope. This is
far slower than expected from simple angular momentum conserva-
tion; as the core contracts, it should spin up dramatically. Magnetic
torques are the leading explanation: fields threading between core
and envelope transfer angular momentum, keeping the core from
spinning too fast.

14.9 The Limits of Understanding

Let us be honest about what we don’t know.
We cannot predict the amplitude or timing of solar cycles. Fore-

casts for cycle 24 predicted it would be strong; it was the weakest in
a century. Forecasts for cycle 25 predicted weakness; it turned out
stronger than expected. The Sun continues to surprise us.

We don’t know where in the Sun the α effect operates. Is it dis-
tributed through the convection zone? Concentrated near the sur-
face? Both? Different models give different answers, and observations
cannot yet distinguish them.

We don’t understand grand minima. We don’t know why the
Maunder Minimum happened, whether it will happen again, or what
the consequences might be.

This is humbling. The Sun is our nearest star, observed in exquisite
detail for centuries. Yet its internal dynamics remain partly mysteri-
ous. The dynamo equations are well-established; the difficulty is in
the parameters and boundary conditions, in the complexity of three-
dimensional turbulent convection coupled to magnetic fields and
rotation.

14.10 Listening to Stars

Let us close with a reflection on method.
We cannot send probes into the solar interior. We cannot drill

cores from distant stars. Everything we know about stellar mag-
netism comes from indirect inference: from the surface manifes-
tations of deep processes, from the oscillations that probe internal
structure, from the rotation and activity that reveal underlying dy-
namics.

This is indirect science at its best. Helioseismology revealed the
tachocline—a structure nobody had predicted, essential for under-
standing the dynamo. Asteroseismology is revealing internal rotation
rates that challenge our models of angular momentum transport.
Each new observational technique opens new windows.
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The Sun is a laboratory, but one we observe from afar. We form
hypotheses, make predictions, and test them against the data. Some-
times we’re right; often we’re wrong. The cycle continues—in the Sun
and in our understanding of it.

14.11 Looking Ahead

Stars generate magnetic fields in their interiors, and those fields
emerge to dominate their surfaces, winds, and environments. But the
most spectacular MHD phenomena occur around compact objects:
neutron stars and black holes.

In our final chapter, we turn to accretion disks, relativistic jets, and
the cosmic engines that power active galactic nuclei. These systems
push MHD to its limits, where extreme gravity, relativistic flows,
and enormous energies create phenomena unlike anything in quieter
corners of the universe.



15
Accretion Disks, Jets, and Cosmic Engines

Look at a photograph of M87, the giant elliptical galaxy at the heart
of the Virgo cluster, and you will see something extraordinary: a
brilliant jet of plasma shooting 5000 light-years outward. This lumi-
nous beam is propelled by a black hole six billion times the mass of
the Sun, fed by a disk of gas spiraling inexorably inward. Here is
MHD at its most extreme. The gas swirls at speeds approaching that
of light, heated to millions of degrees, threaded by magnetic fields
strong enough to shape the flow of matter on scales larger than solar
systems. The jet itself is launched from near the event horizon—the
point of no return—accelerated by magnetic forces, squeezed by mag-
netic pressure, and somehow maintained as a coherent beam across
distances that dwarf entire galaxies.

We have built up the MHD toolkit through these lectures: frozen-
in flux, magnetic pressure and tension, waves, instabilities, turbu-
lence, dynamos. Now we bring everything together to understand
the most powerful engines in the universe. Accretion onto compact
objects converts gravitational potential energy into radiation with
efficiencies approaching 40%—far exceeding nuclear fusion’s meager
0.7%. Jets channel a significant fraction of that power into narrow
beams that reshape their cosmic environments, inflating bubbles in
galaxy clusters, triggering or suppressing star formation, and an-
nouncing their presence across billions of light-years.

Think of these systems as cosmic water wheels—but instead of
water falling onto paddles, it is magnetized plasma spiraling down
a gravitational drain. The drain funnels energy; the magnetic field
extracts it; the jet is the power output. This is the capstone of MHD:
physics at its most energetic and most beautiful.

15.1 The Angular Momentum Problem

Let us begin with a puzzle that confronts any gas trying to fall onto a
compact object. Gas carries angular momentum. If that angular mo-
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mentum is conserved during infall, the gas cannot simply plummet
to the center. Instead, it spirals in only until centrifugal force balances
gravity, then orbits forever.

Consider gas at distance r from a central mass M, moving with
orbital velocity v. Its specific angular momentum is

` = r× v.

Conservation of angular momentum means the gas can fall no closer
than the circularization radius, where centrifugal acceleration bal-
ances gravitational pull:

rcirc =
`2

GM
.

Let us put in numbers. Suppose gas at 100 AU from a solar-mass
star orbits at approximately 3 km/s. The specific angular momentum
is

` = r× v ≈ 100× 1.5× 1011 m× 3000 m/s = 4.5× 1016 m2/s.

The circularization radius becomes

rcirc =
(4.5× 1016)2

6.67× 10−11 × 2× 1030 ≈
2× 1033

1.3× 1020 ≈ 1.5× 1013 m ≈ 100 AU.

Wait—the gas cannot fall inward at all! It already sits at its cir-
cularization radius. If we started the gas at larger distance with the
same specific angular momentum, it would spiral in and park at
100 AU, forming a disk. To actually accrete onto the central object,
something must transport angular momentum outward, allowing the
inner gas to spiral further in while the outer gas spirals out.

You might ask: could ordinary molecular viscosity do the job?
After all, viscosity transports momentum in fluids. The viscous
timescale for a disk of size r and kinematic viscosity ν is

τvisc ∼
r2

ν
.

For ionized hydrogen at 104 K, kinematic viscosity is approximately
ν ∼ 10−4 m2/s. For our 100 AU disk:

τvisc ∼
(1.5× 1013)2

10−4 ≈ 2× 1030 s ≈ 1023 years.

This is vastly longer than the age of the universe. Molecular viscosity
cannot possibly explain observed accretion rates. Protoplanetary
disks evolve on million-year timescales, not 1023-year timescales.
Something else must be happening. MassGas in ` out

Figure 15.1: Angular momentum must
flow outward for gas to accrete inward.
The disk acts as a conveyor belt.

The answer, as you might suspect, is magnetic. The magnetoro-
tational instability we studied in Chapter 10 generates turbulence in
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any differentially rotating disk threaded by a weak magnetic field.
This turbulence acts like an effective viscosity, transporting angular
momentum outward on dynamical timescales. Additionally, mag-
netic fields anchored in the disk can launch winds that carry angular
momentum away entirely. Both mechanisms are fundamentally MHD
phenomena. The angular momentum problem is really a magnetic
problem.

15.2 The Alpha-Disk Model

In 1973, Nikolai Shakura and Rashid Sunyaev faced a dilemma. They
wanted to model accretion disks, but they did not know the precise
mechanism transporting angular momentum. Their solution was
elegant: parameterize the ignorance. They assumed that turbulent
stresses in the disk could be written as

Trφ = αP,

where P is the total pressure (gas plus radiation) and α is a dimen-
sionless parameter somewhere between 0.01 and 0.1. The symbol α

has become so ubiquitous that these are universally called “alpha-
disks.”

You might ask: isn’t this just sweeping the physics under the rug?
In a sense, yes. Shakura and Sunyaev freely admitted they did not
know what caused the turbulence. But the parameterization allowed
them to build a complete model of disk structure that could be com-
pared with observations. The bet was that whatever mechanism op-
erated, it would produce stresses proportional to pressure. This turns
out to be roughly correct for MRI-driven turbulence, vindicating their
intuition decades before the MRI was understood.

The alpha prescription leads to a complete disk model. Let us
sketch the structure. In steady state, mass flows inward at rate Ṁ,
and angular momentum flows outward. The viscous stress extracts
angular momentum from inner annuli and deposits it in outer ones.
Energy dissipated by this process heats the disk, which radiates from
its surfaces.

The key relations for a geometrically thin, optically thick disk (one
where the disk thickness H is much smaller than the radius r, and
photons are trapped) are:

Ṁ = 3πνΣ, (15.1)

ν = αcsH, (15.2)

σT4
eff =

3GMṀ
8πr3 , (15.3)
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where Σ is the surface density, cs is the sound speed, H is the disk
scale height, Teff is the effective temperature, and σ is the Stefan-
Boltzmann constant. The last equation states that the local dissipation
rate (proportional to GMṀ/r3) is radiated from the disk surface.

Let us estimate the temperature in an accretion disk around a
stellar-mass black hole. Taking M = 10 M� and Ṁ = 10−8 M�/yr ≈
6× 1014 kg/s, at radius r = 100 km = 105 m:

T4
eff =

3× 6.67× 10−11 × 2× 1031 × 6× 1014

8π × 1015 × 5.67× 10−8 .

The numerator is approximately 2.4× 1036, the denominator about
1.4× 109, giving T4

eff ≈ 1.7× 1027 and thus Teff ≈ 6× 106 K. This is an
X-ray temperature! And indeed, accreting stellar-mass black holes are
among the brightest X-ray sources in the sky.

The alpha-disk model, despite its phenomenological foundation,
has proven remarkably successful. When Balbus and Hawley iden-
tified the MRI in 1991, simulations confirmed that MRI-driven tur-
bulence produces effective α values in the range 0.01 to 0.1, exactly
what Shakura and Sunyaev had assumed. The cosmic water wheel
works because magnetic turbulence churns the flow, carrying angular
momentum outward like a system of interlocking gears.

15.3 When Magnetic Flux Accumulates

Something interesting happens when magnetic flux builds up near
the central object. In a standard alpha-disk, the magnetic field is dy-
namically weak—it drives turbulence but does not significantly affect
the overall flow pattern. But suppose more and more magnetic flux
is advected inward, accumulating near the black hole. Eventually, the
magnetic pressure becomes comparable to the ram pressure of the
infalling gas:

B2

2µ0
∼ ρv2 ∼ ρ

GM
r

.

In this “magnetically arrested disk” state, the field is strong
enough to halt accretion temporarily. Gas piles up outside the mag-
netosphere until the pressure is sufficient to push through, leading to
episodic accretion. The disk “breathes,” with periods of quiescence
punctuated by bursts of infall.

You might ask: why would flux accumulate in the first place?
The answer involves the interplay between advection and diffusion.
In a highly conducting disk, magnetic flux is frozen into the flow
and advected inward with the accreting gas. If the inward advection
exceeds outward diffusion (which can happen when Ṁ is high), flux



accretion disks, jets, and cosmic engines 137

piles up at the center. Simulations show this naturally occurs in many
circumstances.

Magnetically arrested disks have dramatic consequences for jet
power. The strong magnetic field threading the black hole pro-
vides a direct conduit for extracting rotational energy. The jets
from magnetically arrested disks are among the most powerful ob-
served—precisely what we see in objects like M87. The cosmic water
wheel, when the magnetic field grows strong enough, develops a
powerful exhaust.

15.4 Powering Jets: The Blandford-Znajek Mechanism

How does a spinning black hole power a jet? The mechanism, pro-
posed by Roger Blandford and Roman Znajek in 1977, remains one
of the most remarkable applications of MHD—remarkable because it
operates in a regime where spacetime itself is curved and rotating.

Jet

Disk

B

Figure 15.2: The Blandford-Znajek
mechanism: field lines threading a
spinning black hole extract rotational
energy, powering jets along the poles.

The basic idea is this: imagine magnetic field lines threading the
event horizon of a spinning black hole. The black hole’s rotation
drags spacetime around with it—a phenomenon called frame drag-
ging—which in turn drags the field lines. This rotation twists the
field, generating a toroidal component. The twisted field carries an-
gular momentum outward along the rotation axis, extracting energy
from the black hole’s spin.

Let us estimate the power. The gravitational radius of a black hole
is rg = GM/c2. For a black hole of mass M threaded by magnetic
field B and spinning with dimensionless parameter a/M (where
a/M = 1 is maximal spin), the Blandford-Znajek power scales as

PBZ ∼
B2r2

gc
µ0

( a
M

)2
.

For M87’s black hole, M ≈ 6× 109 M�, so

rg =
6.67× 10−11 × 6× 109 × 2× 1030

(3× 108)2 ≈ 8× 1029

9× 1016 ≈ 9× 1012 m.

This is about 60 AU—the black hole’s gravitational radius exceeds
the size of our solar system out to Neptune’s orbit.

Taking B ∼ 100 G = 10−2 T (estimated from emission models and
Event Horizon Telescope observations) and a/M ∼ 0.9:

PBZ ∼
(10−2)2 × (9× 1012)2 × 3× 108

4π × 10−7 × 0.81.

Working through:

PBZ ∼
10−4 × 8× 1025 × 3× 108 × 0.81

1.3× 10−6 ≈ 2× 1030

1.3× 10−6 ≈ 1.5× 1036 W.



138 lectures on mhd

Let us compare this to the Milky Way’s total luminosity of about
3× 1036 W. M87’s jet carries power comparable to an entire galaxy!
And this comes purely from extracting the rotational energy of the
black hole via magnetic fields. The cosmic water wheel’s exhaust is a
galactic-scale searchlight.

You might ask: won’t the black hole spin down eventually? Yes—but
the timescale is long. A maximally spinning black hole of mass M
contains rotational energy Erot ∼ 0.29Mc2. For M87’s 6 × 109M�
black hole, this is about 3× 1056 J. At PBZ ∼ 1036 W, the spin-down
time is τ ∼ 3× 1020 s ∼ 1013 years—a thousand times the age of the
universe. M87 can afford to run its jet indefinitely.

15.5 Jet Collimation

Jets emerge from near the black hole, but they must travel enormous
distances while remaining tightly collimated. M87’s jet maintains
an opening angle of only a few degrees over 5000 light-years. What
keeps it so narrow?

The answer lies in magnetic hoop stress—the tension in toroidal
magnetic field lines that we encountered back in Chapter 4. As the jet
expands, any toroidal field component wrapping around it provides
an inward-directed tension:

Hoop stress =
B2

φ

µ0r
.

This stress acts like the tension in a wrapped rubber band, squeez-
ing the jet toward the axis. If the jet tries to expand, it stretches the
toroidal field, increasing the tension and pushing back.

The collimation is not perfect, of course. Close to the black hole,
the jet is launched with some opening angle determined by the mag-
netic field geometry. As it propagates outward, the hoop stress
pinches it progressively tighter. Eventually, at large distances, ex-
ternal pressure from the surrounding medium may take over the
confinement role. The intergalactic medium, hot and diffuse though
it is, provides a pressure floor that helps keep the jet narrow.

There is something almost paradoxical here. The jet is powered
by energy extracted from near the event horizon, a region of ex-
treme gravity. Yet the physics that keeps it collimated—magnetic
tension—is the same phenomenon that confines plasma in a tokamak,
operates in solar coronal loops, and shapes the Earth’s magneto-
sphere. MHD is scale-invariant, or nearly so. The same equations
that describe a laboratory plasma describe a galactic jet.

You might ask: what happens when the jet finally decollimizes?
Eventually, at scales of hundreds of thousands of light-years, many



accretion disks, jets, and cosmic engines 139

jets do lose their collimation. They form giant lobes—enormous
bubbles of radio-emitting plasma inflated by the jet’s kinetic energy.
These lobes can span millions of light-years, dwarfing their host
galaxies. They represent the ultimate dissipation of the jet’s power,
the final stage of the cosmic water wheel’s output.

15.6 A Tale of Two Black Holes

Let us examine two very different accreting black holes to see how
the same MHD physics produces vastly different observational signa-
tures.

M87: The Roaring Giant

M87’s black hole, at 6 × 109 M�, sits at the center of a giant el-
liptical galaxy. It is surrounded by hot gas from the intracluster
medium—the Virgo cluster provides ample fuel. The accretion rate
is relatively high, the magnetic flux has accumulated to the magnet-
ically arrested state, and the result is a powerful jet that we see in
radio, optical, and X-ray light.

The Event Horizon Telescope image of M87, released in 2019,
showed a bright ring surrounding a dark shadow—the first direct
image of a black hole’s immediate environment. The ring is not the
event horizon itself but the photon ring, where light orbits the black
hole before escaping toward us. The asymmetry in the ring (brighter
on one side) reveals the black hole’s spin and the Doppler beaming of
the approaching jet material.

The Event Horizon Telescope achieved angular resolution of about
20 microarcseconds—roughly the angular size of a donut on the
Moon, as seen from Earth. This remarkable feat of very-long-baseline
interferometry allowed astronomers to probe scales of just a few
gravitational radii, where MHD reigns supreme.

Sagittarius A*: The Quiet Neighbor

Our own Milky Way harbors a supermassive black hole too: Sagit-
tarius A*, lurking at the Galactic Center just 26,000 light-years away.
With a mass of 4× 106 M�—a thousand times smaller than M87’s
behemoth—it is in many ways a more modest object.

Yet Sgr A* presents a puzzle. Its luminosity is only about 1029 W,
roughly 300 times the Sun’s output. For a four-million-solar-mass
black hole, this is pathetically dim. Let us calculate what we might
expect.

The Eddington luminosity—the maximum luminosity for spherical
accretion before radiation pressure blows away the infalling mate-
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rial—scales as

LEdd =
4πGMmpc

σT
≈ 1.3× 1031 W× M

M�
.

For Sgr A*:

LEdd ≈ 1.3× 1031 × 4× 106 ≈ 5× 1037 W.

The observed luminosity is L ≈ 1029 W, giving L/LEdd ∼ 2× 10−9.
Sgr A* is a billion times fainter than it could be!

You might ask: is it simply starved for fuel? Partly. The Galactic
Center does not provide the copious gas supply that M87 enjoys.
But there is more to the story. At such low accretion rates, the disk
becomes “radiatively inefficient.” The gas is optically thin—photons
escape before they can share energy efficiently between electrons and
ions. The ions, which carry most of the gravitational energy, remain
hot but do not radiate. Most of the energy is advected across the
event horizon rather than radiated away.

This is the regime of radiatively inefficient accretion flows (RIAFs),
sometimes called advection-dominated accretion flows (ADAFs). The
disk is geometrically thick (puffed up by ion pressure), optically thin
(transparent to its own radiation), and thermally inefficient. MHD
still operates—the MRI still drives turbulence, magnetic fields still
thread the flow—but the observational signature is very different
from a thin, bright disk.

Sgr A* does show flares: sudden brightenings by factors of 10–100

that last minutes to hours. These may arise from magnetic reconnec-
tion events near the black hole, transient overdensities in the flow, or
jets briefly pointing toward us. The flares provide valuable diagnostic
information about the MHD processes occurring at the event horizon
scale.

The Event Horizon Telescope also imaged Sgr A* in 2022, revealing
a similar ring-and-shadow structure to M87 but with more variabil-
ity—the smaller black hole evolves on shorter timescales (minutes
rather than days), making the image harder to construct. Both images
stand as triumphs of observational astronomy and confirmations of
our theoretical models.

15.7 Disk Winds and Mass Loss

Not all the gas that approaches a black hole actually falls in. Mag-
netic fields anchored in the disk can launch powerful winds that
carry mass, angular momentum, and energy away from the system.

The basic mechanism is centrifugal acceleration along inclined
field lines. Imagine a field line emerging from the disk at an angle to
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the vertical. Gas tied to this field line rotates with the disk at the foot-
point but finds itself at a different radius along the field line—where
the centrifugal force, if the field is inclined outward, exceeds gravity.
The gas is flung outward along the field line like a bead on a rotating
wire.

B
Wind

θ

Figure 15.3: Disk winds are launched
along inclined field lines. Gas is cen-
trifugally accelerated away from the
disk.

For the wind to be launched, the field line must be inclined at
more than 30° from the vertical—the critical angle where centrifugal
force along the field equals the gravitational component along the
field. This is the Blandford-Payne mechanism, proposed in 1982, and
it provides an alternative (or complement) to the Blandford-Znajek
mechanism for powering outflows.

You might ask: which mechanism dominates, Blandford-Znajek
or Blandford-Payne? It depends on the system. Blandford-Znajek
requires a spinning black hole and strong magnetic flux threading
the horizon—it extracts energy from the hole itself. Blandford-Payne
can operate from any rotating disk with inclined magnetic fields—it
extracts energy from the disk’s rotation. In many systems, both likely
contribute.

Disk winds have profound implications for the evolution of accret-
ing systems. They can carry away a significant fraction of the inflow-
ing mass, reducing the actual accretion rate onto the central object.
They can remove angular momentum, potentially supplementing or
even replacing the MRI as the agent of angular momentum transport
in some regions. And they can inject energy and momentum into
the surrounding environment, influencing star formation and galaxy
evolution.

15.8 Jets Reshaping Galaxies

The jets we have discussed do not simply vanish into the void. They
interact with their environment, and those interactions can reshape
entire galaxies.

Consider a jet propagating through the hot gas that fills a galaxy
cluster. The jet inflates a bubble—a cavity of relativistic plasma that
displaces the thermal gas. These bubbles are visible in X-ray images
as dark regions where the hot intracluster medium has been pushed
aside. The Perseus cluster, one of the nearest and best-studied, shows
multiple generations of bubbles, testimony to repeated outbursts
from the central black hole over hundreds of millions of years.

The energy in these bubbles is enormous. A single bubble might
contain 1052 J—comparable to a supernova. But unlike supernovae,
which explode once, jet activity can repeat, injecting energy quasi-
continuously. This “radio-mode feedback” is thought to solve a long-
standing puzzle: why don’t the centers of galaxy clusters cool down?
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Hot gas radiates X-rays. In the dense centers of clusters, the cool-
ing time can be as short as a hundred million years. Without heating,
the gas should cool, sink toward the center, and form stars at prodi-
gious rates. Yet we see relatively little star formation in cluster cores.
The jet-inflated bubbles provide the missing heating, their energy
gradually dissipating into the surrounding gas through sound waves,
turbulence, and mixing. The black hole, through its jets, acts as a
cosmic thermostat.

This feedback loop operates across an astonishing range of scales.
The black hole itself is contained within its gravitational radius—perhaps
1013 m for a massive cluster central black hole. The jets extend
to megaparsec scales—1022 m. That is nine orders of magnitude,
from the event horizon to the cluster outskirts. MHD processes at
the smallest scales determine the thermodynamic fate of gas at the
largest.

15.9 Historical Interlude: From Quasars to Event Horizons

The story of our understanding of cosmic engines spans six decades
of discovery.

In 1963, Maarten Schmidt measured the spectrum of a peculiar
radio source called 3C 273. The emission lines were wildly red-
shifted—the object was receding at 16% of the speed of light, imply-
ing a distance of 2 billion light-years. Yet it appeared almost star-like,
hence the name “quasi-stellar object” or quasar. At that distance,
its apparent brightness implied a luminosity of 1040 W—a hundred
times the entire Milky Way, from a region smaller than the solar sys-
tem. What could possibly produce such power?

Donald Lynden-Bell, in 1969, proposed the answer: accretion onto
supermassive black holes. The gravitational potential energy released
as matter spirals toward a black hole exceeds even nuclear fusion
in efficiency. A black hole accreting at its Eddington limit converts
roughly 10% of the infalling mass to radiation—fifteen times more
efficient than hydrogen fusion. This “gravitational engine” could
explain quasar luminosities.

But how did the gas shed its angular momentum and actually
fall in? Shakura and Sunyaev’s 1973 alpha-disk model provided a
framework, parameterizing the unknown turbulent viscosity. The
model worked—it matched observations—but what generated the
turbulence?

The answer came in 1991, when Steven Balbus and John Hawley
resurrected a forgotten instability first noted by Velikhov in 1959

and Chandrasekhar in 1960. The magnetorotational instability, as we
explored in Chapter 10, drives turbulence in any weakly magnetized,
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differentially rotating disk. The angular momentum problem was
solved—not by molecular physics, but by MHD.

Meanwhile, the jet story developed in parallel. Blandford and
Znajek (1977) showed how spinning black holes could electromagnet-
ically power jets. Blandford and Payne (1982) demonstrated how disk
winds could be centrifugally launched. Numerical simulations in the
2000s—particularly by Jonathan McKinney, Alexander Tchekhovskoy,
and collaborators—mapped out when each mechanism dominates
and how magnetically arrested disks produce the most powerful jets.

The Event Horizon Telescope collaboration, culminating in the
2019 M87 image and 2022 Sgr A* image, brought these theoretical
ideas face to face with observation. The images are consistent with
our MHD models of accretion and jet launching. We can finally see
the cosmic water wheel operating.

15.10 The Limits of MHD

Throughout these lectures, we have treated MHD as an excellent
approximation. And it is—but every approximation has limits.

Near black hole event horizons, the gravitational field is strong
enough that general relativity becomes essential. Standard MHD
assumes flat spacetime; near a black hole, spacetime curves dra-
matically. The Blandford-Znajek mechanism itself emerges from the
interplay of electromagnetism and general relativity in ways that
classical MHD cannot fully capture. Modern simulations of black
hole accretion use general relativistic MHD (GRMHD), extending the
MHD equations to curved spacetime.

You might ask: does the plasma approximation even hold near a
black hole? In many cases, yes. The plasma near Sgr A* or M87 is
hot and dense enough that collective behavior dominates, and MHD
(or its relativistic generalization) remains valid. But in some extreme
environments—the pulsar magnetosphere, for instance—the plasma
is so dilute that MHD breaks down and particle-by-particle “kinetic”
descriptions become necessary.

At very small scales, MHD always breaks down eventually. The
MRI generates structure down to the dissipation scale, where mag-
netic diffusivity and viscosity take over. In reconnection regions,
electron and ion physics determine the actual reconnection rate. In
shock fronts, particle acceleration requires kinetic treatment. MHD
sets the large-scale stage, but microphysics determines the small-scale
details.

These limitations remind us that MHD is a tool, not a truth. It
describes conducting fluids magnificently over an enormous range of
scales—from laboratory plasmas to galaxy clusters. But the universe



144 lectures on mhd

is not obligated to remain within MHD’s domain of validity. As we
push to ever more extreme environments, we must be prepared to go
beyond.

15.11 What Remains Unknown

After fourteen chapters of MHD, you might think we have the uni-
verse figured out. We do not. Let me mention a few open questions
that keep researchers busy.

Jet composition: What are jets actually made of? We know they
contain magnetic fields and relativistic particles, but the mix of elec-
trons, positrons, and protons remains uncertain. The answer matters
because it determines how jets interact with their environment and
how efficiently they radiate.

Magnetic flux origin: Where does the magnetic flux in accretion
disks come from? Is it advected inward from large scales, generated
by a disk dynamo, or some combination? The magnetic flux budget
determines whether a disk reaches the magnetically arrested state
and how powerful its jets can be.

Variability: Why do accreting black holes flicker? The variability
timescales range from milliseconds to years, spanning many orders of
magnitude. MHD turbulence, reconnection events, and disk instabili-
ties all likely contribute, but connecting specific variability signatures
to specific physical mechanisms remains challenging.

Jet feedback in detail: We know jets heat galaxy clusters, but ex-
actly how? Sound waves? Mixing? Cosmic ray acceleration? Different
heating mechanisms deposit energy at different locations and affect
the gas differently. Getting the details right matters for understand-
ing galaxy evolution.

The MAD threshold: What determines whether a disk reaches
the magnetically arrested state? Can we predict from first principles
which systems will have powerful jets and which will not?

These questions are not idle curiosities. They connect black hole
physics to galaxy formation, cosmic ray acceleration, and the large-
scale structure of the universe. The cosmic water wheel does not
operate in isolation—it is coupled to its environment across all scales.

15.12 The Long View

We have traveled far in these lectures. We began with the simple ob-
servation that magnetic fields and conducting fluids interact—that
currents create fields, fields push currents, and the two become
locked together in the frozen-in-flux embrace. From this founda-
tion we built: waves that carry magnetic energy, equilibria that con-
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fine plasma, instabilities that rearrange it, turbulence that cascades
it, dynamos that generate it, and now jets that focus it into cosmic
searchlights.

MHD is an approximation, but it is a magnificent one. The same
equations that describe a tokamak describe a stellar interior describe
a black hole accretion disk. The magnetic Reynolds number might
vary by factors of 1020 between these systems, yet the frozen-in-
flux picture holds throughout. Alfvén waves propagate; magnetic
pressure and tension act; the MRI operates; reconnection occurs.
Scale-invariance, or something close to it, makes MHD remarkably
portable.

And yet MHD is also specific. It is not the physics of all fluids but
of conducting fluids. It is not the physics of all fields but of electro-
magnetic fields mediating collective plasma behavior. Its domain of
validity is carved out by conditions: sufficient collisionality, suffi-
cient magnetization, sufficiently slow phenomena compared to light
and plasma oscillations. Within that domain, MHD is tremendously
powerful. Outside it, other physics awaits.

The universe is full of magnetic plasma doing interesting things.
Stars generate their own magnetic fields, then drive winds and explo-
sions shaped by those fields. Accretion disks spin, heat, radiate, and
power jets that reshape galaxies. The interstellar medium is stirred by
supernovae, structured by magnetic pressure, and threaded by cos-
mic rays. Galaxy clusters harbor hot, magnetized gas whose cooling
is regulated by black hole feedback.

What we have covered is a foundation. The real frontier involves
numerical simulations that push the limits of computation, observa-
tions from radio to X-ray that probe MHD on scales from planets to
clusters, and analytical theory that extracts insight from the mathe-
matical structure. The field is very much alive.

In 1942, Hannes Alfvén proposed that conducting fluids support a
new kind of wave—a slow, transverse oscillation mediated by mag-
netic tension. The community was skeptical; Fermi reportedly said
the idea was “impossible.” Eight decades later, Alfvén waves have
been observed in the solar wind, the Earth’s magnetosphere, and (in-
directly) in accretion disk turbulence. Alfvén won the Nobel Prize.
The universe, it turns out, pays attention to the physics even when
physicists do not.

There is more to discover. There always is. But you now have the
tools to understand it.
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