
C L A U D E O P U S 4 . 5

I N F O R M AT I O N T H E O R Y

Contents

1 What Is Information? 7
1.1 Information Lives in Surprise 7

1.2 The Guessing Game . 8

1.3 Telegrams and Economy 10

1.4 The Gambler’s Edge . 11

1.5 What Information Is Not 12

1.6 The Unity Emerges . 13

1.7 The Name That Connects Two Worlds 14

1.8 The Road Ahead . 15

2 Shannon Entropy 17
2.1 What Should “Information” Even Mean? 17

2.2 Backed Into a Corner . 19

2.3 Choosing Units . 20

2.4 What Entropy Means . 21

2.5 The Filing Cabinet . 22

2.6 Worked Examples with Actual Numbers 22

2.7 The Algebra of Uncertainty 24

2.8 A Mathematical Theory of Communication 26

2.9 The Subjectivity of Uncertainty 27

2.10 What Happens When You Flip a Coin Many Times . . . 27

2.11 A Glimpse of Things to Come 28

2.12 Four Views of Entropy . 29

2.13 Looking Ahead . 29

3 Mutual Information and Communication Channels 31
3.1 The Problem with Entropy Alone 32

3.2 Mutual Information as Distance from Independence . . 32

3.3 Conditional Entropy: What Remains Unknown 33

3.4 Mutual Information Defined 35

3.5 The Chain Rule in Depth 38

3.6 Conditional Mutual Information: When Conditioning
Helps or Hurts . 39

3.7 Information Diagrams for Three Variables 40

4 claude opus 4.5

3.8 The Wayward Translator 41

3.9 The Binary Symmetric Channel 41

3.10 The Binary Erasure Channel 43

3.11 The Gaussian Channel . 44

3.12 The Data Processing Inequality 45

3.13 A Mathematical Theory of Communication 48

3.14 What Does “Information Transfer” Really Mean? 49

3.15 Looking Forward: The Source Coding Theorem 52

4 The Source Coding Theorem 55
4.1 The Compressibility Question 55

4.2 Why Entropy Appears: A First Bound 57

4.3 Block Coding: Overcoming the Integer Barrier 58

4.4 The Library of Babel . 58

4.5 Typical Sequences: The Heart of the Matter 59

4.6 The Impossibility Proof: Why We Cannot Beat Entropy . 60

4.7 The Achievability Proof: Reaching the Entropy Bound . 62

4.8 A Worked Example: Compressing a Biased Coin 63

4.9 Shannon and the Birth of Information Theory 64

4.10 What If We Allow Errors? Rate-Distortion Theory 65

4.11 What Does the Theorem Mean? 66

4.12 From Theory to Practice 67

5 The Art of Compression 69
5.1 Huffman Coding: The Optimal Symbol-by-Symbol Code 70

5.2 Arithmetic Coding: Escaping the Integer Trap 72

5.3 A Metaphor: Addressing the Library 75

5.4 Lempel-Ziv: Learning the Source 75

5.5 Compression in Practice: What You Use Every Day . . . 78

5.6 Actual Numbers: Compression Ratios on Real Data . . . 81

5.7 What Compression Teaches Us 82

5.8 From Compression to Noise 83

6 Channel Capacity 85
6.1 What Is Channel Capacity? 86

6.2 The Binary Symmetric Channel 88

6.3 The Binary Erasure Channel 90

6.4 The Gaussian Channel . 92

6.5 Water-Filling for Parallel Channels 95

6.6 The Historical Moment . 97

6.7 What Does Capacity Mean? 98

6.8 Looking Ahead: The Coding Theorem 99

7 The Noisy Channel Coding Theorem 101
7.1 The Problem We Face . 102

information theory 5

7.2 The Converse: Why You Cannot Beat Capacity 103

7.3 The Achievability: Shannon’s Audacious Proof 105

7.4 Understanding Joint Typicality 108

7.5 A Complete Worked Example 109

7.6 The Beautiful Symmetry 111

7.7 The Fifty-Year Quest . 111

7.8 What the Theorem Really Means 113

7.9 Extensions and Caveats 114

7.10 Looking Ahead . 115

8 Error-Correcting Codes 117
8.1 Repetition: The Brute-Force Approach 118

8.2 Parity Checks: The Idea of Structured Redundancy . . . 119

8.3 Hamming Codes: The First Elegant Construction 120

8.4 Linear Codes: A General Framework 123

8.5 The Sphere-Packing Bound 125

8.6 Beyond Single Errors . 126

8.7 The Modern Breakthrough 127

8.8 A Complete Worked Example 132

8.9 What Codes Teach Us . 134

8.10 Looking Ahead . 135

9 Information and Thermodynamics 137
9.1 Boltzmann’s Revolution 137

9.2 The Gibbs Entropy . 139

9.3 Maximum Entropy and the Boltzmann Distribution . . . 140

9.4 Shannon Equals Boltzmann 142

9.5 The Second Law as Information Loss 143

9.6 Worked Examples with Numbers 145

9.7 E.T. Jaynes and the Maximum Entropy Perspective . . . 147

9.8 Three Giants: Boltzmann, Gibbs, and Shannon 148

9.9 What Does This Unity Mean? 149

9.10 The Demon Awaits . 150

10 Maxwell’s Demon and the Cost of Computation 153
10.1 A Very Observant Being 153

10.2 Szilard’s Engine and the Bit 155

10.3 Landauer’s Principle: The Cost of Forgetting 157

10.4 Bennett’s Resolution: Exorcising the Demon 159

10.5 Reversible Computation 161

10.6 The Demon in the Laboratory 163

10.7 Implications for the Future of Computing 164

10.8 The Century-Long Debate 166

10.9 Information and Reality 167

10.10From Demons to Inference 168

6 claude opus 4.5

11 Information and Inference 169
11.1 The Detective’s Problem 169

11.2 Mutual Information as Expected Information Gain . . . 171

11.3 The Maximum Entropy Principle 173

11.4 KL Divergence: The Price of Wrong Beliefs 175

11.5 Fisher Information and the Limits of Precision 177

11.6 Information in Hypothesis Testing 179

11.7 Historical Development 180

11.8 From Information to Learning 181

12 Minimum Description Length 185
12.1 The Two-Part Code . 185

12.2 What Goes Into Description Length? 187

12.3 The Bayesian Connection 188

12.4 Normalized Maximum Likelihood 190

12.5 Kolmogorov Complexity: The Ultimate Limit 192

12.6 A Worked Example: Detecting the True Model 193

12.7 MDL and Information Criteria 194

12.8 Compression as Understanding 195

12.9 Looking Forward . 197

13 Information-Theoretic Limits on Learning 199
13.1 The Communication Channel of Experience 199

13.2 The Information Bottleneck 201

13.3 PAC-Bayesian Bounds . 203

13.4 Generalization Through an Information Lens 204

13.5 Sample Complexity . 206

13.6 Deep Learning and the Information Plane 207

13.7 The Double Descent Puzzle 208

13.8 What Cannot Be Learned 210

13.9 Looking Forward . 211

1
What Is Information?

You are on a ship in a storm. The rain is so heavy you can barely
see the bow from the wheelhouse. The captain stands at the helm,
knuckles white, navigating by instruments alone. Then a light flashes
through the murk—another ship, signaling with a lamp. The first mate
translates the Morse: three words. “Rocks. Bear. Starboard.”

The captain spins the wheel. The crew scrambles to adjust the sails.
An hour later, the storm breaks, and you see what you would have hit:
a reef of black stone, invisible in the rain, exactly where you would
have been.

Three words saved the ship. But here is a strange question: how
much information did those three words contain? More than the thou-
sands of words in the ship’s log that day? More than the captain’s
thirty years of experience? Is there any sensible way to measure “how
much” information something contains?

We use the word “information” constantly. We speak of information
overload, of the information age, of misinformation. We say some
messages are more informative than others. But what is information?
Is it physical—like mass or energy? Is it abstract—like a number? Can
it be created or destroyed? Can you have negative information?

In this book, we will see that these questions have precise answers.
Information is as measurable as length or weight. And this measure-
ment connects the workings of steam engines to the design of smart-
phones, the nature of black holes to the limits of artificial intelligence.

But before we can measure, we must understand what we are
measuring.

1.1 Information Lives in Surprise

Let us start with a simple observation. Suppose someone tells you,
“The sun rose this morning.” Have they given you information? In one
sense, yes—they have communicated a fact about the world. But in

8 claude opus 4.5

another sense, no—you already knew the sun would rise. You would
have been astonished if it hadn’t. The message told you nothing you
didn’t already expect.

Now suppose someone tells you, “There will be a total solar eclipse
over your city tomorrow.” This feels different. You didn’t expect
this. You couldn’t have predicted it. The message has changed your
understanding of tomorrow. This seems more informative—but why,
exactly?

The difference has to do with expectation. When something ex-
pected happens, we learn little. When something unexpected happens,
we learn much. Information, it seems, is connected to surprise. The word “surprise” here is technical, not

emotional. A coin landing heads isn’t
emotionally surprising, but it resolves
genuine uncertainty.

Consider a doctor delivering test results. Doctor A tells Patient A:
“You don’t have the rare disease that affects one in a hundred thousand
people.” Doctor B tells Patient B: “Your test for the common condition
that affects half the population came back negative.” Both patients
received medical results. But Patient B learned more—their uncertainty
was reduced more dramatically. Before the test, Patient B genuinely
didn’t know whether they had the condition. Patient A, by contrast,
already knew their odds were negligible.

This suggests a principle: information relates to reduction of uncer-
tainty. The more uncertain you were before, the more information you
gained from learning the answer.

But this principle has a problem. It makes information depend on
the receiver. The eclipse message is highly informative to someone who
didn’t know about it, but worthless to someone who already had it
marked on their calendar. Is information really so subjective?

You might say: “Perhaps what we mean by informative is useful.
The eclipse message is more useful than the sunrise message.” But
usefulness depends on circumstances. The eclipse is useless information
to someone who doesn’t care about astronomy. We want to capture
something more fundamental than practical value.

You might also say: “The eclipse message is more informative be-
cause it’s rarer. Rare things are more surprising.” This is closer to
the truth. But how do we turn “rarer” and “more surprising” into
something we can measure? That is the puzzle.

1.2 The Guessing Game

Let us approach the problem from a different angle. Consider the game
of Twenty Questions. One player thinks of something—a person, a
place, an object—and the other player asks yes-or-no questions to figure
out what it is. The goal is to guess correctly in as few questions as
possible.

Some players are bad at this game. They ask questions like “Is it a

information theory 9

giraffe?” or “Is it the Eiffel Tower?” These are terrible questions because
they’re almost certainly wrong, and when wrong, they eliminate only a
single possibility.

Good players ask different questions. “Is it alive?” “Is it larger
than a breadbox?” “Did it exist before 1900?” These are powerful
questions because, regardless of the answer, they eliminate roughly half
the possibilities. If there are a million things in the world you might
be thinking of, and I ask “Is it alive?”, your answer—whether yes or
no—cuts my search space roughly in half. The strategy of halving is called “binary

search” in computer science. It’s one of
the most important algorithms ever dis-
covered, though people have been doing
it intuitively for thousands of years.

This suggests something important. A good question is one that
splits the remaining possibilities as evenly as possible. And the answer
to such a question carries a certain amount of information: it eliminates
half the uncertainty.

Let us put some numbers to this. Suppose there are exactly one
million equally likely possibilities. How many yes-or-no questions do
you need to identify which one is correct? Each question, if asked well,
cuts the possibilities in half. After one question: 500,000. After two:
250,000. After three: 125,000. And so on.

After how many questions do we reach one possibility? We need to
find how many times we must divide one million by two. The answer
is about twenty, because 220 is approximately one million. So Twenty
Questions is well-named: with twenty good questions, you can identify
any one of a million possibilities.

But notice what we’ve discovered. The number of questions needed
is not proportional to the number of possibilities—it’s proportional to
something like the logarithm of the number of possibilities. A thou-
sand possibilities require about ten questions (210 = 1024). A million
require about twenty. A billion require about thirty. This logarithmic
relationship will turn out to be fundamental.

Now here is a complication. What if the possibilities aren’t equally
likely? Suppose you’re thinking of a person, and there’s a 99 percent
chance it’s the person standing right in front of us. A naive strategy
would still ask “Is it alive?” But a clever player would ask, “Is it the
person in front of us?”

Why is this clever? Not because it eliminates half the possibilities—
it doesn’t. If the answer is yes (which happens 99 percent of the
time), we’re done immediately. If the answer is no (which happens 1

percent of the time), we’ve eliminated only one possibility but learned
something surprising. The question is good because it resolves most of
the uncertainty, even though it doesn’t split the possibilities evenly. The difference between eliminating pos-

sibilities and eliminating uncertainty is
subtle but crucial. We’ll see in Chapter
2 that entropy measures uncertainty, not
number of possibilities.

This tells us that information relates not just to counting possibilities,
but to weighing them by their probabilities. A message that rules out
likely possibilities is more informative than one that rules out unlikely
ones.

10 claude opus 4.5

Let us extend the metaphor. Every message you receive can be
thought of as an answer in a game of Twenty Questions. Someone
telling you “The train is late” is like answering “yes” to the question “Is
the train late?” Someone handing you a photograph is like answering
many questions at once about what things look like. Every piece of
communication resolves uncertainty—narrows down the space of what
might be true.

And the “information content” of a message, whatever that turns out
to mean precisely, should relate to how much uncertainty it resolves. A
message that could have been predicted—whose answer you already
knew—tells you nothing. A message that could have gone either
way tells you something. A message that completely upends your
expectations tells you a great deal.

1.3 Telegrams and Economy

Let us turn from games to engineering. In the nineteenth century, the
telegraph transformed communication. For the first time in history,
messages could travel faster than people. But this miracle came with a
cost: telegraph companies charged by the word.

If you needed to send a telegram, you thought carefully about every
word. Victorian verbosity gave way to telegraphic brevity. “Dear Aunt
Martha, I hope this letter finds you in good health and spirits, and
I write to inform you that I shall be arriving on the afternoon train
this Thursday” became “ARRIVING THURSDAY AFTERNOON.” Four
words instead of thirty-two.

But here is the interesting question: how much information was lost?
The elaborate letter and the terse telegram convey the same essential
fact—when the sender will arrive. The extra words in the letter were
not carrying additional information; they were redundant. They could
be predicted from context, from convention, from the rules of polite
correspondence.

This observation—that most of what we communicate is predictable—
turns out to be profound. Consider English text. If I write “The quick
brown fox jumps over the lazy,” you can guess the next word. If I write
“TH_,” you can guess the missing letter. English is highly redundant:
each letter, each word, carries less information than it could because so
much is predictable from what came before. You can test redundancy yourself. Take

a paragraph and remove some letters.
If you can still read it, those letters
were redundant. “Th_s s_nt_nc_ _s st_ll
r__d_bl_.”

Here is a thought experiment. Take a passage of English text and
show it to someone letter by letter. After each letter, ask them to guess
the next one. A skilled player, familiar with English, will guess correctly
much of the time. When they guess wrong, you reveal the correct letter
and continue. How many letters per word does the guesser need to be
told, on average? Experiments suggest about one or two, even though

information theory 11

English words average about five letters. Most letters are predictable.
This has a striking implication. If most of what we write is redundant,

then the “true information content” of a message might be much smaller
than its length. We could, in principle, develop codes that transmit only
the unpredictable parts. The incompressible core of a message—what’s
left after you’ve squeezed out all the redundancy—might be the actual
information.

Samuel Morse understood something of this intuitively. When he
designed his code, he made clever choices. The letter E, the most
common in English, got the shortest code: a single dot. The letter T,
second most common, got a single dash. Meanwhile, rare letters like
Q and Z got long codes: dash-dash-dot-dash and dash-dash-dot-dot.
Morse didn’t know information theory—it wouldn’t exist for another
century—but his instincts were sound. Morse reportedly visited a printing press

and counted the letters in the type cases
to determine their frequencies. The print-
ers kept more E’s than Z’s because they
needed them more often.

How did he know to do this? He visited a printer and counted letters
in the type cases. The printers kept vast quantities of E’s and T’s, but
only a handful of Z’s and Q’s. Frequency dictated the supply. Morse
realized that common letters should have short codes so that common
messages would be short. He was compressing before compression had
a name.

You might say: “But compression depends on the code—different
codes give different lengths.” This is true. But here is the remarkable
thing: there is a limit to how much any code can compress a message.
You cannot compress English text below a certain point, no matter how
clever your encoding. And that limit—the length of the incompressible
core—tells us something fundamental about the information content of
English.

We are circling around a definition. Information seems to be what’s
left after you remove the predictable parts. It’s the surprise, the uncer-
tainty resolved, the questions answered. But we still can’t say how much
information in precise terms. We need one more perspective.

1.4 The Gambler’s Edge

Imagine you’re at a racetrack. There are ten horses running, and the
bookmakers have posted odds. According to the public betting, Horse
A is the favorite at 2:1, while Horse J is a long shot at 50:1.

Now suppose you have inside information. You know that Horse
J has been secretly training at altitude, that the jockey has a particu-
lar strategy for this track, that the conditions today favor speed over
stamina. You believe Horse J actually has a one-in-ten chance of win-
ning, not one-in-fifty.

What is this knowledge worth? You can calculate it precisely. If you
bet optimally over many races, your inside information translates into

12 claude opus 4.5

expected profit. The bookmaker’s odds reflect what the public knows;
your private knowledge is the gap between public and private, and that
gap is money. This isn’t an endorsement of gambling.

But the mathematics of betting has illumi-
nated many deep questions, from proba-
bility theory to financial economics.

This gives us another lens on information. Information is what gives
you an edge. Perfect information means you can never be surprised;
you always know what will happen. No information means you’re
always guessing; you’re at the mercy of chance. The more information
you have, the better you can predict, the more you can profit.

There is even a precise theory of this, called the Kelly criterion. It
tells you exactly how much to bet when you know more than the
market. And the optimal growth rate of your wealth depends on a
quantity that, as we shall see, is closely related to information.

Consider a simpler scenario. You have access to an oracle who
will truthfully answer one yes-or-no question about tomorrow’s stock
market. What question do you ask? “Will stocks go up tomorrow?”
might be good—but only if it’s currently uncertain. If everyone already
knows stocks will rise, the question is worthless. The value of your
question depends on your current uncertainty.

Or consider a different oracle: one who answers questions about a
coin that’s about to be flipped. If the coin is fair, your question “Will
it land heads?” is maximally valuable—you’re completely uncertain,
and the answer completely resolves that uncertainty. But if the coin is
biased 99-to-1 toward heads, your question is nearly worthless. You
already knew it would probably land heads; the oracle confirms what
you expected. There’s a deep connection here to physics.

In thermodynamics, “free energy” mea-
sures how much work you can extract
from a system. Information turns out
to play a similar role: it measures how
much you can do with your knowledge.

We keep finding the same pattern. Information measures the gap
between what you knew and what you learned. The more uncertain
you were, the more information you gained. The more predictable the
outcome, the less information it contains.

But “gap between what you knew and what you learned” is still
poetry, not mathematics. Can we do better?

1.5 What Information Is Not

Before we go further, let us clear away some common confusions. The
word “information” in everyday English carries many meanings, and
not all of them are what we want to measure.

Information is not meaning. “The cat sat on the mat” and “Le chat
s’est assis sur le tapis” express the same meaning, but they require
different amounts of space to transmit. The English sentence has 22

letters; the French has 30. In our sense, the French sentence contains
more “information”—it’s longer and requires more yes-or-no questions
to specify—even though it means the same thing. We are measuring
representation, not interpretation.

information theory 13

Information is not usefulness. A random string of a thousand digits—
say, 7293847291038475120...—contains a lot of information in our sense.
It’s completely unpredictable; you can’t compress it; every digit is a
surprise. But it might be completely useless. Meanwhile, a single word
at the right moment—“Fire!”—contains very little information (it’s
short, it could almost have been predicted from the smoke) but might
save your life. We are measuring something technical, not something
practical.

Information is not knowledge. You can receive information without
understanding it. If I send you an encrypted message, you’ve received
just as much information as if the message were in plain text—the same
number of bits arrived at your computer. But you might have no idea
what it means. Information theory concerns what is transmitted, not
what is comprehended.

Information is not truth. “The moon is made of cheese” contains
information just like “The moon is made of rock.” Both are sentences
of similar length, both resolve uncertainty about what the speaker
believes, both require similar resources to transmit. A false message
carries information just as a true one does.

You might say: “If information isn’t meaning, or usefulness, or
knowledge, or truth, then what good is measuring it?” The answer:
because transmission, storage, and processing don’t care about meaning.
A telephone cable doesn’t know whether the words passing through it
are profound or trivial. A hard drive doesn’t know whether the files on
it are true or false. The physical constraints on communication depend
only on the amount of information, not its content. This is liberating. It means we can study

communication in general, without get-
ting tangled in the specifics of particular
messages.

And understanding those physical constraints—how many bits can
flow through a wire, how much can be stored on a disk, how reliably
messages can survive noise—turns out to illuminate much more than
engineering. We will see that the same concepts apply to thermody-
namics, to statistics, to the fundamental limits of computation.

There is something philosophically strange here. We are defining
a technical concept called “information” that doesn’t quite match the
everyday word. But this is normal in science. The physicist’s “energy”
doesn’t mean enthusiasm. The physicist’s “work” doesn’t mean em-
ployment. Technical terms earn their meaning from their usefulness in
building a coherent framework.

1.6 The Unity Emerges

Let us gather what we’ve found. We have approached information from
several directions:

Surprise. Information relates to the unexpected. When something
expected happens, we learn little; when something unexpected happens,

14 claude opus 4.5

we learn much.
Questions. Information relates to yes-or-no questions answered. A

message that identifies one possibility out of a million is worth about
twenty questions; one possibility out of two is worth one question.

Compression. Information relates to the incompressible core of a
message. Redundancy can be squeezed out; what remains is the true
content.

Advantage. Information relates to betting edges. The more you know
beyond what others know, the more you can profit.

All of these point toward the same underlying concept: uncertainty
reduced. Information is what closes the gap between ignorance and
knowledge. The more uncertain you were before receiving a message,
the more information it contained.

But “uncertainty reduced” is still vague. We need to make it mathe-
matical. How do we measure uncertainty? If I learn two things, is my
total information the sum of what each taught me? Can uncertainties
be added and subtracted like ordinary numbers?

We need a function—something that takes a probability distribu-
tion as input and outputs a number measuring uncertainty. And this
function should satisfy certain sensible requirements:

First, more outcomes should mean more uncertainty. If a coin could
land heads or tails, there’s less uncertainty than if a die could show any
of six faces.

Second, certain outcomes should contribute nothing. If I already
know something will happen (probability 100%), learning that it hap-
pened tells me nothing.

Third, independent information should add. If I flip a coin and roll
a die, and these are unrelated, my total uncertainty should be the sum
of my uncertainty about the coin plus my uncertainty about the die. These requirements might seem obvious,

but making them precise turns out to
determine the answer almost uniquely.
This is one of the remarkable features of
information theory.

Is there a function satisfying all these requirements? There is. It’s
called entropy, and it will be the foundation of everything that follows.

1.7 The Name That Connects Two Worlds

There is a story—perhaps apocryphal, but illuminating—about how
entropy got its name in information theory.

In the 1940s, Claude Shannon was developing his mathematical
theory of communication at Bell Telephone Laboratories. He had a
quantity that measured uncertainty, and he wasn’t sure what to call it.
He consulted John von Neumann, one of the great mathematicians of
the twentieth century.

Von Neumann’s reply: “You should call it entropy, for two reasons.
First, your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. Second, and more impor-

information theory 15

tantly, nobody really knows what entropy is, so in a debate you will
always have the advantage.” Von Neumann was being somewhat

ironic. Physicists had been arguing about
what entropy “really meant” since Clau-
sius coined the term in 1865.

Whether or not this conversation happened exactly as described, the
name stuck. Shannon’s entropy. But the choice was not arbitrary. There
is a deep connection between Shannon’s concept and the entropy that
physicists had been studying for almost a century.

The story begins in the 1860s with Rudolf Clausius, who was trying
to understand heat engines. He noticed that certain processes are
irreversible—heat flows from hot to cold, never the reverse—and he
introduced a quantity to track this directionality. He called it entropy,
from the Greek word for “transformation.”

A few decades later, Ludwig Boltzmann gave entropy a statistical
interpretation. He showed that the entropy of a gas was related to
counting: specifically, to the number of microscopic arrangements of
molecules consistent with what you could observe macroscopically. A
gas has high entropy when there are many such arrangements, low
entropy when there are few. Entropy measured something like the
“hiddenness” of the microscopic world—how much you don’t know
about the exact state even when you know the bulk properties. Boltzmann’s formula, S = k log W, is en-

graved on his tombstone. Here W is
the number of microscopic arrangements
and k is Boltzmann’s constant.

Is this the same as Shannon’s entropy? On the surface, they seem
completely different. Boltzmann was talking about molecules bouncing
around in a box; Shannon was talking about messages traveling down
a wire. One is physics; the other is communication.

But the mathematical form is almost identical. Both involve loga-
rithms. Both increase when there are more equally likely possibilities.
Both have something to do with “not knowing”—in Boltzmann’s case,
not knowing the microscopic details; in Shannon’s case, not knowing
what message will arrive.

This is not a coincidence. As we will see in later chapters, the connec-
tion is profound and physical. Information theory and thermodynamics
are two perspectives on the same underlying reality. The entropy of
a physical system is information—specifically, the information you’re
missing about the system’s exact state. And this connection has practi-
cal consequences, from the efficiency of heat engines to the fundamental
limits on computing.

For now, it is enough to note that the name “entropy” carries weight.
It suggests that information is not merely an abstract concept, but some-
thing connected to the physical world, to energy, to the fundamental
laws governing the universe.

1.8 The Road Ahead

We have circled around a definition without quite stating it. We have
seen that information relates to surprise, to questions answered, to com-

16 claude opus 4.5

pression limits, to betting advantages. We have seen that these different
perspectives converge on a single concept: uncertainty reduced. And
we have seen that this concept has a name—entropy—that connects it
to physics.

What we have not done is make any of this precise. We have no
formula for entropy. We cannot calculate, in any given situation, “how
much” information is present. We have intuitions but not tools.

That will change in the next chapter. We will derive the entropy
formula—not as something handed down from above, but as the unique
answer to the requirements we’ve articulated. We will see that this
formula is more than a definition: it’s a key that unlocks doors across
science.

With entropy in hand, we will ask: How much can messages be
compressed? Can we communicate reliably over noisy channels? What
is the connection to thermodynamics? What limits does physics place
on computation? What does information theory tell us about learning
from data? The answer to “Can we communicate re-

liably over noisy channels?” is one of
the great surprises of information the-
ory. The answer is yes—if we’re clever
enough.

These questions have answers, precise and surprising. The math-
ematics is not difficult—mostly logarithms and probability—but the
ideas are deep. We will see that information theory connects steam
engines to smartphones, that entropy appears wherever uncertainty is
found, that the limits on communication are also limits on physics.

Let us return to where we began: a ship in a storm, a signal lamp
flashing through the rain, three words that saved the ship. We can now
say something about those words. They were informative precisely
because they were unexpected. If the captain had already known about
the rocks, the message would have been redundant—it would have told
him nothing he didn’t already know. The message carried information
because it reduced uncertainty, because it answered a question the
captain urgently needed answered.

Information is the gap between what you knew and what you
learned. Nothing more, nothing less.

Let us see how to make this precise.

2
Shannon Entropy

We ended the last chapter with our hands full of intuitions and no way
to measure them. We know that learning the result of a fair coin flip
feels more informative than learning the sun rose this morning. We
know that twenty questions about a word in the dictionary is harder
than twenty questions about a number from one to ten. But “feels
more informative” and “is harder” are not numbers. Physics became
physics when Galileo started measuring. Chemistry became chemistry
when Lavoisier started weighing. What number should we assign to
the information in a message?

The question sounds almost philosophical—one of those questions
cocktail-party philosophers might debate while the actual work of en-
gineering gets done by people who don’t worry about such things.
But here is the remarkable fact: the question has an answer. Not an
answer decreed by definition, but an answer forced on us by simple
requirements. If we demand that our measure of information behave
sensibly—that independent events combine additively, that certainty
contains zero information, that our measure be continuous—then math-
ematics backs us into a corner. There is exactly one formula that works. This is unusual in mathematics. Most

definitions are choices. But the entropy
formula is forced by logic, much like the
Pythagorean theorem is forced by the ax-
ioms of geometry.

It was discovered by Claude Shannon in 1948, and it is the foundation
of everything that follows.

2.1 What Should “Information” Even Mean?

Before we can measure information, we must decide what proper-
ties our measure should have. We do not start with a definition; we
start with requirements. Whatever our measure H (X) turns out to
be, it should satisfy certain properties that capture the intuitions we
developed in Chapter 1.

Let us build these requirements one by one.
Requirement 1: Continuity. If we change the probabilities slightly, the

information should change slightly. A measure that jumps discontinu-

18 claude opus 4.5

ously would be useless—small errors in estimating probabilities would
lead to wild swings in our measure of uncertainty. We want smooth
behavior.

Requirement 2: Maximum at uniformity. Return to the Twenty Ques-
tions game. If all outcomes are equally likely, we are maximally
uncertain—no outcome is more “expected” than another. So H (X)

should be largest when all probabilities are equal.
Think of it this way. If you’re guessing which card I drew from a

deck, and all 52 cards are equally likely, you’re maximally uncertain.
But if I tell you it’s probably the ace of spades—say, 99% likely—your
uncertainty plummets. You already “know” the answer, in a sense. The
measure should reflect this.

Requirement 3: Additivity for independent events. This is the crucial
requirement. If I flip a coin and roll a die, and these events are
independent—knowing the coin result tells you nothing about the
die—then the total uncertainty should be the sum of the individual
uncertainties:

H (coin and die) = H (coin) + H (die) .
Why addition and not multiplication? Be-
cause we want information to scale with
the “size” of the system. Two indepen-
dent messages should carry twice the
information, not the square of it.

You might object: why addition? Why not multiplication, or some
other rule for combining uncertainties? The answer is that we want
information to scale sensibly. If I send you two independent messages,
the total information should be twice what one message contains, not
squared. Addition is the natural operation for quantities that should
scale with repetition.

Requirement 4: The grouping property. Here is the subtlest requirement.
Suppose we have three outcomes A, B, C with probabilities p, q, r
(where p + q + r = 1). We can think about our uncertainty in two
equivalent ways.

First way: we’re uncertain among three outcomes directly.
Second way: we first ask “Is it A or not-A?” This is a binary question

with probabilities p and (1− p). If the answer is “not-A,” we then
ask “Is it B or C?” among the remaining outcomes, with conditional
probabilities q/(1− p) and r/(1− p).

The total uncertainty should be the same either way. In the second
approach, we pay the uncertainty of the first question, plus—with
probability (1− p)—the uncertainty of the second question. This gives
us:

H (p, q, r) = H (p, 1− p) + (1− p) · H
(

q
1− p

,
r

1− p

)
.

The grouping property says that it
doesn’t matter how we decompose a de-
cision tree—the total uncertainty comes
out the same.

This is called the grouping axiom or recursivity property. It captures
the idea that uncertainty can be decomposed hierarchically without
changing the total.

These four requirements—continuity, maximality at uniformity, ad-

information theory 19

ditivity for independence, and grouping—seem modest. They merely
formalize intuitions we already have. But watch what happens when
we insist on all four simultaneously.

2.2 Backed Into a Corner

We now derive the unique formula satisfying our requirements. This
is not a proof to be verified but a discovery to be made. Let us work
through it together.

Step 1: The uniform case.
Define A(n) to be the uncertainty of a uniform distribution over n

equally likely outcomes:

A(n) = H
(

1
n

,
1
n

, . . . ,
1
n

)
.

By requirement 2, this should increase with n—more outcomes
means more uncertainty. Now consider a uniform distribution over
nm outcomes. We can think of this as first choosing uniformly among
n groups, then choosing uniformly among m items within the chosen
group. These choices are independent, so by requirement 3:

A(nm) = A(n) + A(m).

This is a functional equation. What continuous functions satisfy
f (nm) = f (n) + f (m)?

Let us check that the logarithm works. Indeed, log(nm) = log(n) +
log(m). Does any other function work? The logarithm is the only continuous func-

tion satisfying f (xy) = f (x) + f (y). This
is a theorem in analysis, not obvious, but
we will take it as given.

Suppose f is continuous and satisfies f (nm) = f (n) + f (m) for all
positive integers. Setting n = m gives f (n2) = 2 f (n). Setting m = n2

gives f (n3) = 3 f (n). In general, f (nk) = k f (n). Taking n = 2, we have
f (2k) = k f (2).

Now, for any integer n, we can write n approximately as 2log2 n.
Continuity forces f (n) = f (2) · log2(n). So f must be a constant times
a logarithm.

Therefore:
A(n) = K log(n)

for some constant K > 0. The constant K just sets the units; we’ll choose
it shortly.

Step 2: Binary distributions.
Now consider a binary distribution (p, 1− p) where p is some prob-

ability. We need to find H (p, 1− p).
The trick is to approximate p by a rational number. Suppose p =

m/n for integers m and n. Consider a uniform distribution over n
outcomes, grouped into two sets: the first m outcomes (probability

20 claude opus 4.5

m/n = p) and the remaining n−m outcomes (probability (n−m)/n =

1− p).
By the grouping property:

A(n) = H (p, 1− p) + p · A(m) + (1− p) · A(n−m).

Wait—let me explain this carefully. The left side is the uncertainty
of a uniform distribution over n outcomes. The right side decomposes
this as: first, the uncertainty of which group (probability p for the first
group, 1− p for the second); then, given the group, the uncertainty
within that group (which is A(m) if we’re in the first group, A(n−m)

if we’re in the second). We’re using grouping “backwards”—
decomposing uniform uncertainty into bi-
nary choice plus conditional uncertainty.

Solving for H (p, 1− p):

H (p, 1− p) = A(n)− p · A(m)− (1− p) · A(n−m)

= K log(n)− m
n

K log(m)− n−m
n

K log(n−m)

= K
[

log(n)− m
n

log(m)− n−m
n

log(n−m)

]
= K

[
−m

n
log

m
n
− n−m

n
log

n−m
n

]
= −K [p log(p) + (1− p) log(1− p)] .

In the fourth line, we used log(n) = m
n log(n) + n−m

n log(n) and
combined terms.

By continuity (requirement 1), this formula extends from rational p
to all p in [0, 1].

Step 3: The general case.
For any distribution (p1, p2, . . . , pn), we can apply the grouping

property repeatedly. Peel off outcomes one at a time:

H (p1, . . . , pn) = H (p1, 1− p1) + (1− p1) · H
(

p2

1− p1
, . . . ,

pn

1− p1

)
.

Continuing this recursion and collecting terms (the algebra is tedious
but straightforward), we arrive at:

H (p1, . . . , pn) = −K
n

∑
i=1

pi log(pi).

And there it is. We demanded sensible behavior, and mathematics
handed us this formula. We didn’t define entropy to be −∑ p log p; we
discovered that it must be.

2.3 Choosing Units

The constant K is arbitrary—it just sets the units. With K = 1 and
logarithm base 2, we measure entropy in bits. With K = 1 and natural

information theory 21

logarithm, we measure in nats. With K = 1/ ln 2 and natural logarithm,
we also get bits.

Shannon chose bits, and so shall we. The definition is:

H (X) = −
n

∑
i=1

pi log2(pi)

The “bit” was named for binary digit,
but Shannon showed it has this deeper
meaning: the uncertainty resolved by one
fair coin flip.

This is Shannon entropy, measured in bits. It deserves a moment of
appreciation. This single formula will drive everything in this book—
compression, communication, thermodynamics, learning. It connects
the flip of a coin to the heat death of the universe. It is a jewel.

2.4 What Entropy Means

Let us unpack this formula from several angles.
Interpretation 1: Average surprise.
Consider the quantity − log2(p) for an event with probability p.

When p is small (unlikely event), − log2(p) is large. When p is close to
1 (near-certain event), − log2(p) is small. This quantity measures the
“surprise” or “self-information” of the event.

For example, if p = 1/2, the surprise is − log2(1/2) = 1 bit. If
p = 1/8, the surprise is − log2(1/8) = 3 bits. If p = 1, the surprise is
− log2(1) = 0 bits—no surprise at all. Self-information − log2(p) is also called

“surprisal.” It measures how surprised
you are when an event of probability p
occurs.

Entropy is the expected surprise:

H (X) = ∑
i

pi · (− log2 pi) = E[− log2 P(X)].

This connects directly to Chapter 1: rare events are more surpris-
ing, and entropy averages this over all possibilities weighted by their
probabilities.

Interpretation 2: Number of yes-or-no questions.
For a uniform distribution over n outcomes, H (X) = log2(n). This

is exactly the number of yes-or-no questions needed in the optimal
strategy for Twenty Questions—each question halves the possibilities.

For non-uniform distributions, entropy gives the average number of
questions needed, if we ask questions cleverly. We’ll make this precise
in Chapter 4.

Interpretation 3: Minimum average code length.
Entropy H (X) is the minimum number of bits per symbol needed to

encode messages from source X, on average. We’ll prove this in Chapter
4, but it’s worth stating now: entropy has an operational meaning. It’s
not just an abstraction—it answers a concrete engineering question.

A convention. What is 0 · log2(0)? The expression log2(0) = −∞,
but 0 · (−∞) is indeterminate. However, limp→0+ p log2(p) = 0, so we

22 claude opus 4.5

define 0 log2(0) = 0. This makes entropy continuous at the boundary
where some probabilities vanish.

2.5 The Filing Cabinet

Let us develop a metaphor that will serve us throughout this chapter.
Imagine a vast filing cabinet with n drawers. You need to find a

particular document, but you don’t know which drawer it’s in. Your un-
certainty depends on your prior knowledge about where the document
might be.

If you have no idea—all drawers equally likely—your uncertainty
is maximal: H (X) = log2(n). With binary search, you’d need to check
about log2(n) drawers. Binary search: check the middle drawer;

if too high, search the lower half; if too
low, search the upper half. Each step
halves the remaining possibilities.

If someone tells you “it’s probably in drawer 1”—say, 90% likely—
your uncertainty drops dramatically. You check drawer 1 first and are
usually right.

If some drawers are more likely than others, your uncertainty lies
between 0 (complete knowledge) and log2(n) (complete ignorance).

We will return to this filing cabinet. Conditioning is like someone
telling you “it’s in the left half”—this reduces your uncertainty. Joint
entropy is like having two filing cabinets, one for each of two variables.
The chain rule says: total uncertainty about which drawer and which
folder equals uncertainty about the drawer plus (given the drawer)
uncertainty about the folder.

2.6 Worked Examples with Actual Numbers

Let us calculate. Theory without calculation is hollow.

The Fair Coin

Let X be the result of a fair coin flip: P(heads) = P(tails) = 1/2.

H (X) = −1
2

log2
1
2
− 1

2
log2

1
2

= −1
2
(−1)− 1

2
(−1)

=
1
2
+

1
2

= 1 bit.

One bit. This is where the name comes from: a fair binary choice
carries exactly one bit of information. The “bit” was named for binary
digit, but Shannon showed it has this deeper meaning—the uncertainty
in a fair coin flip.

information theory 23

The Biased Coin

Now suppose P(heads) = 0.9 and P(tails) = 0.1. Note that log2(0.9) ≈ −0.152 and
log2(0.1) ≈ −3.322. You can verify these
with a calculator: 2−0.152 ≈ 0.9 and
2−3.322 ≈ 0.1.H (X) = −(0.9) log2(0.9)− (0.1) log2(0.1)

= −(0.9)(−0.152)− (0.1)(−3.322)

= 0.137 + 0.332

= 0.469 bits.

Less than half a bit! The coin is predictable, so learning its outcome
tells us less. If you bet on heads every time, you’d be right 90% of the
time. There’s not much surprise left.

The Binary Entropy Function

The entropy of a coin with bias p is:

h(p) = −p log2(p)− (1− p) log2(1− p).

This is called the binary entropy function. It’s worth seeing its shape.

0.5 1

0.5

1

p

h(p)

Figure 2.1: The binary entropy function
h(p) peaks at p = 0.5 with value 1 bit,
and drops to zero at p = 0 and p = 1.

At p = 0 and p = 1, entropy is zero—the coin is deterministic. At
p = 0.5, entropy reaches its maximum of 1 bit—maximum uncertainty.
The curve is symmetric around p = 0.5, which makes sense: a coin that
lands heads 90% of the time has the same entropy as one that lands
heads 10% of the time. Both are equally predictable, just with opposite
biases.

The Fair Die

Let X be the result of rolling a fair six-sided die. Each face has proba-
bility 1/6.

H (X) = −6× 1
6

log2
1
6

= − log2
1
6

= log2(6)

≈ 2.585 bits.

More than two bits, less than three. Sensible: a die has more out-
comes than two coin flips (4 outcomes, log2 4 = 2 bits) but fewer than
three (8 outcomes, log2 8 = 3 bits). The entropy log2(6) ≈ 2.585 means that

in principle, we could encode die rolls
using about 2.585 bits per roll, on aver-
age. We can’t quite achieve this with a
single roll, but with many rolls, we can
get arbitrarily close.

English Text

Here is where things get interesting. Let X be a letter drawn from
English text.

24 claude opus 4.5

First approximation—uniform. If all 27 symbols (26 letters plus space)
were equally likely:

H (X) = log2(27) ≈ 4.76 bits per letter.

Second approximation—actual letter frequencies. But English letters are
far from uniform. The letter E appears about 12.7% of the time, T about
9.1%, while Z appears only 0.07% of the time.

Letter Freq −p log2 p

E 0.127 0.380

T 0.091 0.314

A 0.082 0.294

O 0.075 0.278

I 0.070 0.266

N 0.067 0.260

...
...

...
Z 0.0007 0.007

Table 2.1: Contribution to entropy from
selected letters.

Summing over all 27 symbols:

H1 ≈ 4.11 bits per letter.

Already lower than the uniform case—English has structure.
Third approximation—digram frequencies. But letters in English are

not independent. After Q, U is nearly certain. After T, H is common.
Shannon estimated that accounting for letter pairs:

H2 ≈ 3.56 bits per letter.

Fourth approximation—human experiments. Shannon conducted a
clever experiment. He showed people English text one letter at a
time and asked them to guess the next letter. When they guessed
wrong, he revealed the correct letter and continued. By measuring
how often people guessed correctly, he estimated the true entropy of
English.

His conclusion:

H∞ ≈ 1.0 to 1.5 bits per letter.
Shannon’s experiment essentially mea-
sured human ability to predict English
text. Good predictions mean low entropy;
poor predictions mean high entropy.

English is highly redundant. If letters were independent and uniform,
we’d need 4.76 bits per letter. But the actual information rate is closer
to 1 bit per letter. English is about 75–80% redundant!

This explains why you can read “cn y rd ths sntnc wtht vwls?” The
missing vowels were never really carrying much information—they
were predictable from context.

2.7 The Algebra of Uncertainty

Entropy satisfies several important properties. Let us develop them,
returning to our filing cabinet metaphor where helpful.

Property 1: Non-negativity.
H (X) ≥ 0, with equality if and only if X is deterministic (some

outcome has probability 1).
You cannot have negative uncertainty. Either you know something,

or you don’t—but “negative not-knowing” doesn’t make sense.
Property 2: Maximum at uniformity.

information theory 25

For a random variable over n outcomes:

H (X) ≤ log2(n),

with equality if and only if X is uniformly distributed.
Maximum uncertainty is the uniform distribution. You cannot be

more uncertain than knowing nothing about which outcome is favored. This can be proved with Lagrange multi-
pliers: maximize −∑ pi log pi subject to
∑ pi = 1.

Property 3: Joint entropy.
For two random variables X and Y, the joint entropy is:

H (X, Y) = −∑
x,y

P(x, y) log2 P(x, y).

This measures our total uncertainty about both X and Y together. In
the filing cabinet metaphor, it’s like having two filing cabinets and not
knowing which drawer in either contains your document.

Property 4: Conditional entropy.
The conditional entropy H (X | Y) is the uncertainty remaining about

X after learning Y:

H (X | Y) = ∑
y

P(y)H (X|Y = y) = −∑
x,y

P(x, y) log2 P(x|y).

In the filing cabinet: if someone tells you which section the document
is in (that’s learning Y), your remaining uncertainty about the specific
drawer (that’s X) is the conditional entropy.

Property 5: Chain rule.
This is fundamental:

H (X, Y) = H (X) + H (Y | X) = H (Y) + H (X | Y) .
The chain rule says uncertainty decom-
poses: total uncertainty = initial uncer-
tainty + remaining uncertainty.

The uncertainty about X and Y together equals the uncertainty about
X plus the remaining uncertainty about Y given X. Or equivalently, the
uncertainty about Y plus the remaining uncertainty about X given Y.

In the filing cabinet: total uncertainty about drawer and folder =
uncertainty about drawer + (given drawer) uncertainty about folder.

This generalizes:

H (X1, . . . , Xn) =
n

∑
i=1

H (Xi | X1, . . . , Xi−1) .

Peel off uncertainty one variable at a time.
Property 6: Conditioning reduces entropy.

H (X | Y) ≤ H (X) ,

with equality if and only if X and Y are independent. “Information never hurts”—or more pre-
cisely, extra information can never in-
crease your uncertainty on average.

Learning Y can only reduce (or maintain) your uncertainty about X.
Information never hurts. This is intuitive: more knowledge should not
make you more uncertain.

26 claude opus 4.5

Property 7: Subadditivity.

H (X, Y) ≤ H (X) + H (Y) ,

with equality if and only if X and Y are independent.
Joint entropy is at most the sum of individual entropies. If X and Y

are related, knowing one tells you something about the other, so the
joint uncertainty is less than if they were independent.

2.8 A Mathematical Theory of Communication

Let us pause for history. Claude Shannon was 32 years old in 1948. He
worked at Bell Telephone Laboratories, where the practical problem was
telephone communication. But Shannon was interested in something
more fundamental: what are the ultimate limits of communication? Bell Labs in the 1940s was perhaps the

most remarkable research institution ever
assembled. Shannon’s colleagues in-
cluded John Bardeen, Walter Brattain,
and William Shockley, who would invent
the transistor.

The paper appeared in two parts in the Bell System Technical Journal,
July and October 1948. It was 55 pages long and invented a field. The
title was modest: “A Mathematical Theory of Communication.” The
content was revolutionary.

What Shannon did:

1. Defined information mathematically (entropy)

2. Proved you can compress messages to their entropy (source coding
theorem)

3. Proved you can communicate reliably over noisy channels up to a
certain rate (noisy channel coding theorem)

It is hard to overstate how remarkable this is. Shannon didn’t just
solve a problem—he defined a field, proved its fundamental theorems,
and provided the conceptual vocabulary that everyone still uses.

The reception was immediate and enthusiastic, but the implications
took decades to absorb. Engineers initially didn’t believe the noisy
channel coding theorem. How could you communicate reliably over
a noisy channel without error? Shannon proved it was possible but
didn’t say how. Constructing codes that actually achieved Shannon’s
limits occupied engineers for the next fifty years. We’ll take up that
story in Chapters 7 and 8.

Shannon himself was playful. He built maze-solving robots, juggling
machines, and a calculator that operated in Roman numerals. His
approach to research was guided by curiosity rather than applications.
He once said that he worked on problems because they were interesting,
not because they were useful—and the most interesting problems often
turned out to be the most useful.

The 1948 paper has the quality of inevitable mathematics, as if
Shannon had merely uncovered what was always there. But it emerged

information theory 27

from years of tinkering and wondering, from thinking hard about what
we mean by communication, from asking questions that others hadn’t
thought to ask.

2.9 The Subjectivity of Uncertainty

Let us turn philosophical for a moment. Entropy depends on probabili-
ties. But where do probabilities come from? This question—where do probabilities

come from?—has occupied philosophers
and statisticians for centuries. The
Bayesian view: probabilities represent
degrees of belief. The frequentist view:
probabilities are limiting frequencies.

Consider this puzzle. I flip a coin and cover it. To me, the entropy
is 1 bit—I don’t know whether it landed heads or tails. But you peek
under the cover and see it’s heads. To you, the entropy is 0 bits—you
know the answer.

The same physical coin, at the same moment, has different entropies
depending on who’s measuring. Entropy is not a property of the coin.
It is a property of your state of knowledge about the coin.

You might say: “That’s troubling. Shouldn’t information be objec-
tive?” But this subjectivity is a feature, not a bug. Information theory is
about communication—about one person learning what another person
knows. The receiver’s uncertainty is exactly what matters. A message
is informative precisely when it tells the receiver something they didn’t
already know.

Shannon was explicit about this. His famous opening sentence: “The
fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another
point.” Note the two points—sender and receiver. Information flows
from one to the other. The receiver’s prior uncertainty determines how
informative the message is.

There is another issue. Shannon entropy measures uncertainty but
ignores meaning. The message “The enemy will attack at dawn” and
a random string of the same length have the same entropy. Shannon
deliberately separated the engineering problem (transmitting bits) from
the semantic problem (what bits mean).

“The semantic aspects of communication are irrelevant to the engi-
neering problem.” This was a strategic choice, not a philosophical claim.
By ignoring meaning, Shannon could focus on what telephone lines
actually need to transmit: bits, regardless of what those bits represent.

2.10 What Happens When You Flip a Coin Many Times

We now turn to one of the most important results in information
theory: the asymptotic equipartition property, or AEP. It gives entropy an
operational meaning beyond the abstract.

Consider flipping a biased coin n times, where P(heads) = p. There
are 2n possible sequences of outcomes. But they’re not all equally likely. With a fair coin (p = 0.5), all 2n sequences

are equally likely. But with a biased coin,
sequences with “too many” or “too few”
heads become rare.

28 claude opus 4.5

The typical sequences. Most sequences will have approximately np
heads and n(1− p) tails. Define the typical set as sequences whose
empirical frequency of heads is close to p—within some tolerance ε,
say.

For a typical sequence x = (x1, x2, . . . , xn) with about np heads and
n(1− p) tails:

P(x) = p(number of heads) · (1− p)(number of tails)

≈ pnp · (1− p)n(1−p).

Taking the logarithm:

log2 P(x) ≈ np log2(p) + n(1− p) log2(1− p)

= −n · h(p)

= −n · H (X) ,

where X is a single coin flip.
Therefore:

P(x) ≈ 2−nH(X).
This is the heart of the AEP: typical se-
quences all have approximately the same
probability, namely 2−nH .

The Asymptotic Equipartition Property. For large n:

1. There are approximately 2nH(X) typical sequences.

2. Each typical sequence has probability approximately 2−nH(X).

3. The total probability of typical sequences approaches 1.

4. Atypical sequences (those with the “wrong” proportion of heads)
become vanishingly rare.

Let us put numbers to this. Suppose n = 100 flips of a biased coin
with p = 0.9 (lands heads 90% of the time).

Total possible sequences: 2100 ≈ 1.27× 1030.
Entropy per flip: h(0.9) = 0.469 bits.
Number of typical sequences: 2100×0.469 = 246.9 ≈ 1.4× 1014.
Ratio: about 1 in 1016. One in 1016 is roughly one in ten

quadrillion. Most conceivable sequences
never happen.

Almost all conceivable sequences are impossible sequences! The
biased coin concentrates probability on a tiny fraction of all possible
outcomes—the typical ones, with about 90 heads out of 100.

Here is something wonderful. There are 2n possible sequences, but
only about 2nH of them will actually occur. If H < 1—if the source is
not maximally random—then most sequences never happen. Entropy
measures how fast the set of “actually possible” outcomes grows.

2.11 A Glimpse of Things to Come

The AEP has immediate consequences for compression.

information theory 29

We’ve shown that only about 2nH sequences actually occur. To label
2nH things, we need only nH bits—we assign each typical sequence a
unique binary name. This is the key insight: if only 2nH se-

quences occur, we need only nH bits
to distinguish them, not the n bits we
started with.

If we list only the typical sequences and assign each a short binary
name, we can compress n symbols into approximately nH bits. The
entropy H is not just a measure of uncertainty—it is the answer to a
concrete question: how much can this source be compressed?

Chapter 4 will prove the source coding theorem:

• We cannot compress below H bits per symbol (on average).

• We can get arbitrarily close to H bits per symbol.

But even without the proof, the AEP makes it plausible. Entropy
counts the typical sequences; naming typical sequences is compression.

2.12 Four Views of Entropy

Let us gather what entropy means:
1. Average surprise per symbol. Entropy is the expected self-information:

H (X) = E[− log2 P(X)].
2. Yes-or-no questions per symbol. Entropy is the average number of

binary questions needed to identify the outcome, using an optimal
strategy.

3. Minimum bits per symbol for compression. Entropy is the fewest bits
per symbol needed to encode messages from the source, on average.

4. Rate at which typical sequences grow. The number of typical length-n
sequences is approximately 2nH . These four interpretations are not four

different things. They are four ways of
seeing the same thing. This convergence
is what makes entropy fundamental.

These are not four different things. They are four ways of seeing the
same thing. This is what it means for a concept to be fundamental: it
appears wherever you look.

2.13 Looking Ahead

We started with vague intuitions about surprise and uncertainty. We de-
manded that any measure of information satisfy simple requirements—
continuity, maximality at uniformity, additivity for independence,
and proper grouping. Mathematics forced the formula H (X) =

−∑ pi log2 pi on us.
We computed entropies for coins, dice, and English text. We found

that entropy has an operational meaning: it governs the rate at which
typical sequences grow, and hence how much messages can be com-
pressed. We paused to appreciate Shannon’s 1948 paper and to reflect
on the subjectivity of uncertainty.

But entropy measures uncertainty about a single variable. Commu-
nication involves two variables: the message sent and the message

30 claude opus 4.5

received. If a channel adds noise, the received message isn’t the same
as the sent message.

We need a way to measure not just uncertainty, but shared uncertainty.
How much does knowing Y tell us about X? This quantity—mutual
information—is the subject of the next chapter. It will turn out to be the
master concept, even more fundamental than entropy itself.

If entropy measures what we don’t know, mutual information mea-
sures what we can learn. From uncertainty to communication. From
isolation to connection.

Let us continue.

3
Mutual Information and Communication Channels

Entropy measures uncertainty about one thing. But communication
involves two things: a sender and a receiver. If I shout across a crowded
room, you hear something—but is it what I said? Telephones crackle,
radio signals fade, letters get smudged. The question is not how
uncertain I am about my message (I know what I said), nor how
uncertain you are about what you heard (that depends on the noise).
The question is: how much of your uncertainty gets resolved by knowing
mine?

This is the fundamental question of communication, and answering
it requires a new concept. We need to measure not just uncertainty, but
shared uncertainty—the information that connects two things. Shannon
called this quantity mutual information, and it turns out to be the key to
understanding everything about communication. It governs how much
data can flow through a channel, how much compression is possible,
and when reliable transmission becomes impossible. Mutual information is arguably more fun-

damental than entropy itself. Entropy is
mutual information between a variable
and itself: H (X) = I (X; X).

Before we dive into formulas, let us sit with the problem.
Imagine you are a spy. You have arranged a signal with your handler:

if the coast is clear, you will place a lamp in your window; if danger
approaches, no lamp. Simple enough. But your handler is watching
from across a busy street. Car headlights reflect off windows. Street
lamps flicker. Sometimes your handler sees a light when there is none;
sometimes the light you placed goes unnoticed.

How much information actually transfers? This is not the same as
asking how much information you sent (that is the entropy of your
signal—one bit, since two possibilities). It is not the same as asking
how uncertain your handler is about what they saw (that depends on
how noisy the street is). It is asking: how much does what the handler
observed depend on what you did?

The mathematics does not care if the message is life-or-death intelli-
gence or idle chatter. It only cares whether the output depends on the
input. Let us make this precise.

32 claude opus 4.5

3.1 The Problem with Entropy Alone

Return to the filing cabinet metaphor from Chapter 2. You are looking
for a document in a cabinet with many drawers. Your uncertainty about
which drawer contains the document is H (X).

Now suppose there is a second filing cabinet—the one your colleague
is searching. Your colleague’s uncertainty about their document is
H (Y). Two entropies do not tell us whether the

filing cabinets are related. The docu-
ments might be copies, or entirely inde-
pendent.

Do these two uncertainties tell us anything about the relationship
between your search and theirs? No. You could both be uncertain, yet
searching for completely unrelated documents. Or you could both be
uncertain, but if one of you finds your document, it reveals something
about where the other’s must be.

Consider this concrete example. Alice sends one of four messages
with equal probability. She encodes them as the numbers 1, 2, 3, 4.
Bob, at the other end of a communication channel, receives one of four
signals with equal probability: the numbers 1, 2, 3, 4.

Question: Does this mean 2 bits of information transferred?
You might think so. After all, H (X) = log2 4 = 2 bits and H (Y) =

log2 4 = 2 bits. But consider two scenarios.
Scenario A: The channel is perfect. If Alice sends 1, Bob receives 1. If

Alice sends 2, Bob receives 2. And so on. In this case, knowing what
Bob received tells Alice’s message exactly. Two bits transferred.

Scenario B: The channel is completely broken. Alice sends her mes-
sage, the universe ignores it, and Bob receives a random number inde-
pendent of what Alice sent. In this case, knowing what Bob received
tells us nothing about Alice’s message. Zero bits transferred.

Both scenarios have H (X) = 2 bits and H (Y) = 2 bits. The individ-
ual entropies are identical. What differs is the relationship between X
and Y.

This is the insight: what matters for communication is not how un-
certain each party is in isolation, but how much one party’s uncertainty
is explained by the other’s. We need a measure of shared information.

3.2 Mutual Information as Distance from Independence

Before we develop mutual information through conditional entropy,
let me show you a striking fact that illuminates what we are really
measuring.

Consider two random variables X and Y with joint distribution
P(X, Y). If they were independent, their joint distribution would be
P(X)P(Y)—the product of the marginals. How “far” is the actual
distribution from this independent version? This “distance” is not a metric in the

mathematical sense—it is not symmet-
ric. But it measures something profound:
how much the actual world differs from
a hypothetical independent one.

information theory 33

The answer is the Kullback-Leibler divergence (or relative entropy):

D (P(X, Y)‖P(X)P(Y)) = ∑
x,y

P(x, y) log2
P(x, y)

P(x)P(y)
.

Here is the remarkable fact: this is exactly the mutual information.

I (X; Y) = D (P(X, Y)‖P(X)P(Y)) .

Let us verify this. Starting from the definition of KL divergence:

D (P(X, Y)‖P(X)P(Y)) = ∑
x,y

P(x, y) log2
P(x, y)

P(x)P(y)

= ∑
x,y

P(x, y) log2 P(x, y)−∑
x,y

P(x, y) log2 P(x)−∑
x,y

P(x, y) log2 P(y)

= −H (X, Y) + H (X) + H (Y) .

This is exactly Definition 3 of mutual information.
What does this mean? Mutual information measures how surprised

you would be if you assumed X and Y were independent but they actually
were not. It quantifies the “extra structure” in the joint distribution
beyond what the marginals alone predict. KL divergence has the property that

D (P‖Q) ≥ 0, with equality iff P = Q.
This immediately proves that I (X; Y) ≥
0, with equality iff X and Y are indepen-
dent.

Think of it this way. If I give you the marginal distributions P(X)

and P(Y) alone, your best guess for the joint distribution (without any
other information) is P(X)P(Y). The mutual information tells you how
wrong this guess is. Zero mutual information means independence
is a perfect guess. High mutual information means the variables are
intertwined in ways you could not predict from the marginals.

This perspective will become crucial in later chapters when we
discuss coding and compression. For now, it provides another lens on
what mutual information captures.

3.3 Conditional Entropy: What Remains Unknown

Let us build toward mutual information in stages. The first step is
conditional entropy.

We defined conditional entropy briefly in Chapter 2. Now let us
develop it more carefully. The conditional entropy H (Y | X) answers
the question: on average, how much uncertainty about Y remains after
we learn X? Think of conditional entropy as “leftover

uncertainty”—what you still don’t know
about Y even after learning X.

Formally:

H (Y | X) = ∑
x

P(x) · H (Y|X = x) = −∑
x,y

P(x, y) log2 P(y|x).

The intuition is this. Before learning X, our uncertainty about Y is
H (Y). After learning X, some of that uncertainty may be resolved—or
not, depending on how X and Y are related.

34 claude opus 4.5

Extreme case 1: Y is completely determined by X. Then H (Y | X) = 0.
Once we know X, we know Y exactly; no uncertainty remains.

Extreme case 2: Y is independent of X. Then H (Y | X) = H (Y).
Learning X tells us nothing about Y; all the original uncertainty re-
mains.

General case: 0 ≤ H (Y | X) ≤ H (Y). Learning X reduces our uncer-
tainty about Y by some amount, possibly zero.

Let us work through an example with actual numbers.

A Channel with One Confusing Case

Consider a simple channel where X can be 0 or 1, each with probability
1/2.

If X = 0: the output Y = 0 deterministically.
If X = 1: the output Y is uniformly distributed over {1, 2}. This channel transmits 0 perfectly but

“confuses” the signal when transmitting
1.

What is the conditional entropy H (Y | X)?
When X = 0: Y is deterministic (always 0), so H (Y|X = 0) = 0.
When X = 1: Y is uniform over two values, so H (Y|X = 1) =

log2 2 = 1 bit.
The conditional entropy is the average:

H (Y | X) =
1
2
· 0 + 1

2
· 1 = 0.5 bits.

Half a bit of uncertainty remains about Y even after we learn X.
Now, what is H (Y) by itself? We need the marginal distribution of

Y.
P(Y = 0) = P(X = 0) = 1/2 (only X = 0 produces Y = 0).
P(Y = 1) = P(X = 1) · P(Y = 1|X = 1) = 1

2 ·
1
2 = 1/4.

P(Y = 2) = P(X = 1) · P(Y = 2|X = 1) = 1
2 ·

1
2 = 1/4.

So:

H (Y) = −1
2

log2
1
2
− 1

4
log2

1
4
− 1

4
log2

1
4
=

1
2
+

1
2
+

1
2
= 1.5 bits.

The difference tells us something important:

H (Y)− H (Y | X) = 1.5− 0.5 = 1 bit.

This difference—what we learn about Y by knowing X—is exactly
what we mean by mutual information.

More Worked Examples

Let us build intuition by computing mutual information for several
different joint distributions.

Example 2: Correlated coin tosses. Suppose X is a fair coin (0 or 1

with probability 1/2 each). Given X, we generate Y as follows: with
probability 0.9, Y = X; with probability 0.1, Y = 1− X.

information theory 35

This is just the binary symmetric channel with p = 0.1. We have
H (X) = 1 bit. The conditional entropy is H (Y | X) = h(0.1) ≈ 0.469
bits. So:

I (X; Y) = 1− 0.469 = 0.531 bits.
The BSC with p = 0.1 transmits about
half a bit per channel use. That is the
cost of 10% noise.

Example 3: Three-way correlation. Suppose (X, Y) takes the values
(0, 0), (0, 1), (1, 0), (1, 1) with probabilities 1/3, 1/6, 1/6, 1/3 respec-
tively.

First, the marginals. P(X = 0) = 1/3 + 1/6 = 1/2. Similarly,
P(X = 1) = 1/2, and by symmetry P(Y = 0) = P(Y = 1) = 1/2. So
H (X) = H (Y) = 1 bit.

Now the joint entropy:

H (X, Y) = −1
3

log2
1
3
− 1

6
log2

1
6
− 1

6
log2

1
6
− 1

3
log2

1
3

.

Computing: − 1
3 log2

1
3 = 1

3 log2 3 ≈ 0.528 and− 1
6 log2

1
6 = 1

6 log2 6 ≈
0.431.

So H (X, Y) ≈ 2(0.528) + 2(0.431) = 1.918 bits.
Using Definition 3:

I (X; Y) = H (X) + H (Y)− H (X, Y) = 1 + 1− 1.918 = 0.082 bits.

A small but nonzero correlation. The diagonal entries (0, 0) and
(1, 1) are slightly more probable than expected under independence,
creating a weak tendency for X and Y to agree.

Scenario I (X; Y)

Independent uniform 0.000

Weak correlation (Ex. 3) 0.082

BSC, p = 0.1 (Ex. 2) 0.531

Deterministic Y = X 1.000

One reveals other partially varies

Table 3.1: Mutual information for vari-
ous joint distributions on two binary vari-
ables.

Example 4: Asymmetric dependence. Let X be uniform on {0, 1, 2, 3}
(four values, H (X) = 2 bits). Define Y = X mod 2 (the parity of X).

Then Y is uniform on {0, 1}, so H (Y) = 1 bit. What is the mutual
information?

Given X, we know Y exactly: H (Y | X) = 0. So I (X; Y) = H (Y)−
H (Y | X) = 1− 0 = 1 bit.

But notice: given Y, we do not know X exactly. If Y = 0, then
X ∈ {0, 2}—one bit of uncertainty remains. So H (X | Y) = 1 bit, and
I (X; Y) = H (X)− H (X | Y) = 2− 1 = 1 bit.

Same answer, as guaranteed by symmetry! But the information flows
asymmetrically in a causal sense. X completely determines Y, but Y
only partially determines X.

3.4 Mutual Information Defined

We now have all the pieces. Mutual information measures how much
learning one variable tells us about another.

I (X; Y) = H (Y)− H (Y | X)

36 claude opus 4.5

Read I (X; Y) as “the mutual information
between X and Y.” The semicolon distin-
guishes it from conditional entropy.

In words: mutual information is the reduction in uncertainty about
Y that comes from learning X.

For our example with the confusing channel: I (X; Y) = 1.5− 0.5 = 1
bit. Despite the noise, one bit of information transfers through the
channel.

But here is something remarkable. We could just as well have defined
mutual information the other way around:

I (X; Y) = H (X)− H (X | Y) .

This says: mutual information is the reduction in uncertainty about
X that comes from learning Y.

Symmetry: A Surprising Fact

These two definitions are equal. Let us verify this for our example.
We have H (X) = 1 bit (uniform over {0, 1}).
What is H (X | Y)? This is the uncertainty about X after learning Y.
If Y = 0: then we know X = 0 with certainty. H (X|Y = 0) = 0.
If Y = 1: then we know X = 1 with certainty. H (X|Y = 1) = 0.
If Y = 2: then we know X = 1 with certainty. H (X|Y = 2) = 0. In this example, observing Y completely

determines X. But this will not always
be the case.

So H (X | Y) = 0, and:

H (X)− H (X | Y) = 1− 0 = 1 bit.

The same answer! This is not a coincidence. It is a theorem:
Mutual information is symmetric: I (X; Y) = I (Y; X).
This is philosophically striking. Information flow, as measured

by mutual information, is the same in both directions—even when
causation has a clear direction. Alice sends a message that determines
Bob’s received signal (up to noise). Causation flows from Alice to Bob.
But mutual information is the same whether we ask “how much does
knowing Alice’s message tell us about Bob’s signal?” or “how much
does knowing Bob’s signal tell us about Alice’s message?”

You might say: “That’s strange. Surely communication has a direc-
tion?” Yes, communication has a direction. But correlation does not.
Mutual information measures correlation, not causation. It tells us how
much one variable constrains the other, regardless of which caused
which. This symmetry will matter when we

study statistical inference in later chap-
ters. The information that data provides
about parameters equals the information
that parameters provide about data.

Three Equivalent Definitions

Let us collect the ways to express mutual information.
Definition 1 (learning about Y):

I (X; Y) = H (Y)− H (Y | X) .

information theory 37

Definition 2 (learning about X):

I (X; Y) = H (X)− H (X | Y) .

Definition 3 (symmetric form):

I (X; Y) = H (X) + H (Y)− H (X, Y) .

The third form comes from the chain rule. Recall that H (X, Y) =
H (X) + H (Y | X), so:

H (Y)−H (Y | X) = H (Y)− (H (X, Y)−H (X)) = H (X)+ H (Y)−H (X, Y) .
Definition 3 says: mutual information
is the overlap between individual un-
certainties. If X and Y were indepen-
dent, H (X, Y) = H (X) + H (Y) and
I (X; Y) = 0.

The third form is particularly intuitive. The joint entropy H (X, Y)
measures our total uncertainty about both variables together. If X and
Y were independent, this would equal H (X) + H (Y)—the sum of indi-
vidual uncertainties. But if they are dependent, the joint uncertainty is
less (we don’t have to count the overlap twice). The mutual information
is exactly this “saved” uncertainty—the overlap.

The Venn Diagram Picture H(X|Y) H(Y|X)I(X; Y)

H(X) H(Y)

H(X, Y)

Figure 3.1: Entropy Venn diagram. The
left circle is H (X), the right is H (Y).
Their overlap is I (X; Y). The dashed
outer boundary encloses H (X, Y).

It helps to visualize these relationships as a Venn diagram. Draw two
overlapping circles, one for H (X) and one for H (Y). The overlap
is I (X; Y). The total area of both circles (counting overlap once) is
H (X, Y).

Reading off regions:

• Left circle minus overlap: H (X | Y) (uncertainty about X that re-
mains after learning Y)

• Right circle minus overlap: H (Y | X) (uncertainty about Y that
remains after learning X)

• Overlap: I (X; Y) (shared information)

• Entire region: H (X, Y) (total uncertainty about both)

This picture is useful, but treat it with some caution. Unlike actual set
areas, which cannot be negative, there are quantum situations where the
conditional entropy H (X | Y) can be negative—meaning the “region”
has negative area. For classical probability, the picture is safe.

Properties of Mutual Information

Let us establish the key properties.
Property 1: Non-negativity. I (X; Y) ≥ 0, with equality if and only if

X and Y are independent.

38 claude opus 4.5

You cannot learn a negative amount from an observation. If vari-
ables are independent, learning one tells you nothing about the other:
I (X; Y) = 0. Conversely, if I (X; Y) = 0, the variables must be indepen-
dent. The proof of non-negativity uses Gibbs’

inequality, which says ∑ p log p ≥
∑ p log q when p and q are probability
distributions. We will use this result re-
peatedly.

Property 2: Symmetry. I (X; Y) = I (Y; X).
Already discussed. Information flows equally in both directions,

even when cause and effect do not.
Property 3: Upper bounds. I (X; Y) ≤ min{H (X) , H (Y)}.
You cannot learn more about X than there is to know about X.

Mutual information cannot exceed the entropy of either variable.
Property 4: Relationship to entropy. I (X; X) = H (X).
The mutual information between a variable and itself is just its

entropy. This makes sense: learning X tells you everything about X.
Property 5: Chain rule. I (X; Y, Z) = I (X; Y) + I (X; Z | Y).
Mutual information can be decomposed. The information that (Y, Z)

together provide about X equals the information Y provides, plus the
additional information Z provides given Y.

Here I (X; Z | Y) is the conditional mutual information: how much Z
tells us about X when we already know Y.

3.5 The Chain Rule in Depth

The chain rule for mutual information deserves closer attention. It is
the tool that lets us decompose complex dependencies into simpler
pieces. The chain rule is to mutual information

what factorization is to probabilities.
Both let us break complicated things into
manageable parts.

Formally, the conditional mutual information between X and Z given
Y is:

I (X; Z | Y) = H (X|Y)− H (X | Y, Z) .

In words: how much does learning Z reduce our uncertainty about
X, when we already know Y?

Let us prove the chain rule. Start with:

I (X; Y, Z) = H (X)− H (X | Y, Z) .

We can write H (X | Y, Z) = H (X|Y)− [H (X|Y)− H (X | Y, Z)] =
H (X|Y)− I (X; Z | Y).

So:

I (X; Y, Z) = H (X)− H (X|Y) + I (X; Z | Y) = I (X; Y) + I (X; Z | Y) .

A Worked Example of the Chain Rule

Suppose we have three binary variables. X is uniform on {0, 1}. Given
X, we generate Y through a BSC with p = 0.1 (so Y = X with probabil-
ity 0.9). Independently of Y given X, we generate Z through another
BSC with p = 0.2.

information theory 39

Question: How much do (Y, Z) together tell us about X?
We already know I (X; Y) = 1− h(0.1) ≈ 0.531 bits.
What about I (X; Z | Y)? This asks: after learning Y, how much

additional information does Z provide about X? Since Y and Z are conditionally indepen-
dent given X, knowing Y does not change
the relationship between Z and X. But Y
changes what we already know about X!

This requires care. Given Y, we already have partial information
about X. The residual uncertainty H (X|Y) = h(0.1) ≈ 0.469 bits (from
the BSC calculation).

Now, given both Y and Z, how much uncertainty about X remains?
This depends on whether Y and Z agree or disagree.

Rather than compute this directly (which involves careful bookkeep-
ing), let us use a shortcut. By the chain rule applied the other way:

I (X; Y, Z) = I (X; Z) + I (X; Y | Z) .

We know I (X; Z) = 1− h(0.2) ≈ 0.278 bits.
By symmetry of the setup and using the chain rule both ways:

I (X; Y, Z) = 0.531 + I (X; Z | Y) = 0.278 + I (X; Y | Z) .

For this particular setup (conditionally independent channels), one
can show I (X; Y, Z) ≈ 0.723 bits. This gives I (X; Z | Y) ≈ 0.192 bits.

Notice: I (X; Z | Y) < I (X; Z). Learning Y first “steals” some of
the information that Z would have provided. The two observations
partially overlap in what they reveal about X.

3.6 Conditional Mutual Information: When Conditioning Helps
or Hurts

A subtle point: conditioning can either increase or decrease mutual
information. Let us explore when each occurs.

When Conditioning Decreases Mutual Information

Consider the example above. We had I (X; Z) = 0.278 bits, but I (X; Z | Y) =
0.192 bits. Conditioning on Y decreased the mutual information be-
tween X and Z.

This happens because Y and Z carry overlapping information about
X. Once we know Y, some of what Z tells us is redundant.

When Conditioning Increases Mutual Information
Conditioning can “unlock” hidden rela-
tionships. X and Y might seem unrelated
until you know Z.

More surprisingly, conditioning can also increase mutual information.
Here is a classic example.

Let X and Y be independent fair coins. Let Z = X⊕Y (the XOR, or
sum mod 2).

What is I (X; Y)? Zero—they are independent by construction.

40 claude opus 4.5

What is I (X; Y | Z)? Given Z, knowing X completely determines Y
(since Y = X⊕ Z). So I (X; Y | Z) = H (Y|Z)− H (Y | X, Z) = 1− 0 =

1 bit.
Conditioning on Z created a perfect correlation between X and Y!

Before conditioning, they were independent. After conditioning on
their XOR, each determines the other exactly.

This phenomenon is called explaining away in the causal inference
literature. X and Y are marginally independent, but become dependent
when we condition on their common effect Z.

The General Pattern

In general:

• Conditioning on a common cause tends to decrease mutual information
(the cause explains the correlation).

• Conditioning on a common effect tends to increase mutual information
(learning the effect links the causes).

• Conditioning on a mediator (X → Z → Y) tends to decrease mutual
information (the mediator screens off the relationship).

These rules follow from the structure of
Bayesian networks. The d-separation cri-
terion makes them precise.

These are tendencies, not absolute rules—the details depend on the
specific distributions involved.

3.7 Information Diagrams for Three Variables

The Venn diagram picture extends naturally to three variables, but with
an important twist. X Y

Z

Figure 3.2: Information diagram for
three variables. The central region
where all three overlap represents the co-
information, which can be negative.

For three variables X, Y, Z, draw three overlapping circles. The
regions represent various entropy quantities:

• Each circle: H (X), H (Y), H (Z)

• Pairwise overlaps (minus center): conditional mutual informations

• The central region: a quantity called co-information or interaction
information

Here is the twist: the central region can be negative.
For the XOR example (Z = X ⊕ Y with independent X, Y), the co-

information is −1 bit. The Venn diagram “area” is negative. This is not
a failure of the picture—it reflects a real phenomenon. The XOR creates
a kind of anti-redundancy: X, Y, and Z together are less informative
than you would expect from their pairwise relationships. Negative co-information signals synergy:

the whole is less than the sum of its
parts. This occurs when variables share
information only in three-way combina-
tions.

For more than three variables, the picture becomes even more com-
plex. There are 2n− 1 regions for n variables, and many can be negative.

information theory 41

The Venn diagram remains a useful mental picture for two variables,
but should be used with caution for three or more.

3.8 The Wayward Translator

Now we are ready for communication channels. Let us develop a
metaphor that will serve us through this chapter and beyond.

Imagine you have hired a translator. You speak English; your audi-
ence speaks French. You tell the translator your message; the translator
speaks to the audience. The question is: how much of your meaning
gets through? The wayward translator: not malicious,

just occasionally confused. This is the
essence of a noisy channel.

This translator has an annoying habit. They translate correctly
most of the time, but occasionally substitute a random word. Not
maliciously—they don’t try to change your meaning—they just some-
times get confused. “The ship sails at dawn” might become “The ship
sails at dusk,” or “The sheep sails at dawn,” or (rarely) something
completely garbled.

What we call a communication channel is a mathematical model of
such a translator. It specifies exactly how likely each possible output is
for each possible input.

Formally, a channel is a conditional probability distribution P(Y|X):

• Input alphabet X : what the sender can say

• Output alphabet Y : what the receiver can hear

• Transition probabilities P(y|x): how likely is output y given input x

We assume the channel is memoryless: each use is independent of
previous uses. Our translator doesn’t hold grudges; each word is a
fresh opportunity for confusion.

Let us examine three fundamental channels, each illustrating a dif-
ferent type of noise.

3.9 The Binary Symmetric Channel

The simplest noisy channel: you send a bit, and with some probability,
the channel flips it.

0

1

0

1

1− p

1− p

ppInput Output

Figure 3.3: The binary symmetric channel
(BSC) with crossover probability p. Each
bit is flipped with probability p, transmit-
ted correctly with probability 1− p.

The binary symmetric channel (BSC) with crossover probability p:

• Input: {0, 1}

• Output: {0, 1}

• P(Y = X) = 1− p (correct transmission)

• P(Y 6= X) = p (bit flip)

42 claude opus 4.5

The channel is “symmetric” because both bits are equally likely to
flip. Our wayward translator makes the same kind of error regardless
of which word you said.

Mutual Information for the BSC

Let us compute the mutual information. Suppose the input X has
probability q for 1 and probability 1− q for 0.

Step 1: Compute H (Y | X).
Given X, the output Y is either X (with probability 1− p) or 1− X

(with probability p). This is a binary distribution with parameter p,
regardless of what X was. So:

H (Y | X) = h(p) = −p log2 p− (1− p) log2(1− p).

This quantity is called the equivocation—the uncertainty about the
output given the input. It measures the “confusion” added by the
channel. The equivocation depends only on the

channel’s noise level p, not on the input
distribution. This is a special property of
the BSC.

Step 2: Compute H (Y).
What is the distribution of Y? We have:

P(Y = 1) = P(X = 1)P(Y = 1|X = 1)+ P(X = 0)P(Y = 1|X = 0) = q(1− p)+ (1− q)p.

Let r = q(1− p) + (1− q)p = q− 2pq + p = p + q(1− 2p).
Then H (Y) = h(r).
Step 3: Mutual information.

I (X; Y) = H (Y)− H (Y | X) = h(p + q(1− 2p))− h(p).

For the special case of uniform input (q = 1/2):

r = p +
1
2
(1− 2p) = p +

1
2
− p =

1
2

.

So H (Y) = h(1/2) = 1 bit, and:

I (X; Y) = 1− h(p).

Putting in Numbers

p I (X; Y)

0 1.000

0.01 0.919

0.05 0.714

0.10 0.531

0.20 0.278

0.30 0.119

0.40 0.029

0.50 0.000

Table 3.2: Mutual information for BSC
with uniform input, for various crossover
probabilities.

Let us see what these formulas say for specific values of p.
Perfect channel (p = 0): I (X; Y) = 1− h(0) = 1− 0 = 1 bit.
The full bit of input information gets through. No confusion at all.
Slightly noisy channel (p = 0.1): h(0.1) = −0.1 log2 0.1− 0.9 log2 0.9 ≈

0.469.
I (X; Y) ≈ 1− 0.469 = 0.531 bits.
About half the information is lost to noise.
Very noisy channel (p = 0.3): h(0.3) ≈ 0.881.

information theory 43

I (X; Y) ≈ 1− 0.881 = 0.119 bits.
Most information is lost. The output barely depends on the input.
Completely random channel (p = 0.5): h(0.5) = 1.
I (X; Y) = 1− 1 = 0 bits.
The output is completely independent of the input! The channel

might as well not exist.
Perfect inverter (p = 1): h(1) = 0.
I (X; Y) = 1− 0 = 1 bit.
Wait—full information? Yes! A channel that always flips the bit is

just as good as one that never flips. You know exactly what came in
by inverting what came out. It’s only when the channel is genuinely
random that information is lost. The worst BSC is p = 0.5, not p = 1. A

reliable inverter is useful; a coin flip is
not.

This is a philosophically important point. A channel that lies consis-
tently is no worse than one that tells the truth—as long as you know
which you have. Randomness, not wrongness, destroys information.

3.10 The Binary Erasure Channel

Our wayward translator has a more honest cousin: one who, instead of
making mistakes, simply says “I didn’t catch that.”

0

1

0

?

1

1− ε

1− ε

ε

ε

Input Output

Figure 3.4: The binary erasure channel
(BEC) with erasure probability ε. Bits
are either transmitted correctly or erased
(replaced with ?).

The binary erasure channel (BEC) with erasure probability ε:

• Input: {0, 1}

• Output: {0, 1, ?}

• P(Y = X) = 1− ε (correct transmission)

• P(Y =?) = ε (erasure)

The “?” means “I don’t know what was sent.” Unlike the BSC, the
erasure channel never lies—it either tells the truth or admits ignorance.

Mutual Information for the BEC

This channel has a beautiful property: when you receive 0 or 1, you’re
certain it’s correct. The channel never makes errors, only erasures.

Let us compute mutual information for uniform input.
Step 1: Compute H (X | Y).
This is easier than H (Y | X) for the BEC. Given what we received:

• If Y = 0: we know X = 0 with certainty. H (X|Y = 0) = 0.

• If Y = 1: we know X = 1 with certainty. H (X|Y = 1) = 0.

• If Y =?: we have no information. With uniform input, H (X|Y =?) =
1 bit.

44 claude opus 4.5

The BEC is “honest about its ignorance.”
When it knows, it’s certain; when it
doesn’t know, it says so.

The probabilities: P(Y = 0) = P(Y = 1) = (1− ε)/2 and P(Y =

?) = ε.
So:

H (X | Y) = 1− ε

2
· 0 + 1− ε

2
· 0 + ε · 1 = ε.

Step 2: Mutual information.

I (X; Y) = H (X)− H (X | Y) = 1− ε.

Beautifully simple. The mutual information is exactly the probability
that the bit gets through.

For ε = 0: I (X; Y) = 1 bit (perfect channel).
For ε = 0.3: I (X; Y) = 0.7 bits.
For ε = 1: I (X; Y) = 0 bits (everything erased).

BSC vs. BEC

Compare the two channels at the same “error rate.”
At p = ε = 0.1:

• BSC: I (X; Y) = 1− h(0.1) ≈ 0.531 bits

• BEC: I (X; Y) = 1− 0.1 = 0.9 bits
Knowing when errors occur (the BEC)
is much better than having errors occur
unpredictably (the BSC).

The erasure channel transmits more information! This makes intu-
itive sense. With the BSC, you receive every bit but can’t be sure which
are wrong. With the BEC, you receive fewer bits but know exactly
which ones you have. Certainty about what you know is valuable.

This has practical implications. When you download a file and some
packets are lost, the protocol can ask for retransmission. But if packets
arrive corrupted without any indication they’re wrong, you might not
even know you have errors.

3.11 The Gaussian Channel

Real-world communication—radio, cell phones, wifi—doesn’t use dis-
crete bits directly. It uses continuous signals corrupted by continuous
noise.

The additive white Gaussian noise (AWGN) channel:

Y = X + Z, where Z ∼ N (0, N) is independent of X.

You send a signal X; it arrives corrupted by Gaussian noise Z with
variance N. “White” noise means equal power at all

frequencies. “Gaussian” means normally
distributed. This is the standard model
for thermal noise in electronic systems.

Our wayward translator adds random static to everything you say.
The louder you speak, the more reliably you’re heard—but there’s a
catch.

information theory 45

The power constraint: You can’t shout arbitrarily loud. There’s a limit
on the average signal power: E[X2] ≤ P.

The key quantity is the signal-to-noise ratio: SNR = P/N.

Capacity of the Gaussian Channel

Here is a remarkable result, which we state now and prove in Chapter
6.

For the Gaussian channel with power constraint P and noise variance
N, the maximum mutual information (achieved when X is Gaussian
with variance P) is:

C =
1
2

log2

(
1 +

P
N

)
bits per channel use.

This is the capacity of the Gaussian channel. It tells us the maximum
rate at which information can flow through.

10 20 30

1

2

SNR (P/N)

Capacity (bits)

Figure 3.5: Capacity of the Gaussian
channel vs. signal-to-noise ratio. The ca-
pacity grows logarithmically with SNR.

Let us put in numbers.
SNR = 1 (signal and noise have equal power): C = 1

2 log2(2) = 0.5
bits.

SNR = 10: C = 1
2 log2(11) ≈ 1.73 bits.

SNR = 100: C = 1
2 log2(101) ≈ 3.33 bits.

SNR = 1000: C = 1
2 log2(1001) ≈ 4.98 bits.

Notice the logarithmic growth. Increasing SNR by a factor of 10

adds only about 1.66 bits of capacity. You cannot simply blast your
way to infinite throughput by shouting louder. The universe imposes
fundamental limits.

This formula—the Shannon capacity of the Gaussian channel—governs
every wireless signal you have ever received. Your cell phone’s data
rate, your wifi bandwidth, satellite communications, deep space probes
talking to Earth—all are constrained by this equation. When engineers
talk about approaching the “Shannon limit,” this is what they mean.

3.12 The Data Processing Inequality

We now come to one of the most important results in information
theory. It tells us something that sounds obvious but has profound
implications: you cannot create information by processing.

Markov Chains

First, some terminology. We say that X → Y → Z forms a Markov chain
if:

P(Z|X, Y) = P(Z|Y).

In words: once you know Y, learning X tells you nothing new about
Z. All the information that X has about Z “flows through” Y. The notation X → Y → Z is suggestive:

information from X passes through Y to
reach Z. But remember, we’re talking
about statistical dependence, not neces-
sarily causation.

46 claude opus 4.5

Example: Alice sends a message X through a noisy channel to Bob,
producing Y. Bob then processes Y to produce Z. Here X → Y → Z
is a Markov chain: once we know what Bob received (Y), the original
message (X) tells us nothing more about Bob’s processed output (Z).

The Theorem

If X → Y → Z is a Markov chain, then:

I (X; Z) ≤ I (X; Y) .

Processing cannot increase information about the source.
Proof : Use the chain rule for mutual information.

I (X; Y, Z) = I (X; Y) + I (X; Z | Y) .

We can also expand the other way:

I (X; Y, Z) = I (X; Z) + I (X; Y | Z) .

Since X → Y → Z is Markov, knowing Y makes X and Z condition-
ally independent: I (X; Z | Y) = 0.

From the first expansion: I (X; Y, Z) = I (X; Y) + 0 = I (X; Y).
Substituting into the second:

I (X; Y) = I (X; Z) + I (X; Y | Z) .

Since I (X; Y | Z) ≥ 0 (mutual information is non-negative):

I (X; Y) ≥ I (X; Z) . �
The proof is short but the implications
are vast. No algorithm can recover
information lost in transmission.

What This Means

The data processing inequality says: if information is lost in transmis-
sion from X to Y, no amount of clever processing can recover it.

Consider the television show trope where investigators “enhance” a
blurry security camera image. They zoom in on a reflection, sharpen,
enhance, and suddenly see a face clearly enough to identify the criminal.
This is fiction. The data processing inequality explains why. “Enhance!” makes for good television but

bad science. You cannot create detail that
the image never contained.

If X is the true scene and Y is the blurry image, then I (X; Y) is the
information the image contains about the scene. Any processing Y → Z
(enhancement, sharpening, interpolation) cannot increase this. The best
you can do is I (X; Z) = I (X; Y)—preserve all the information—but
you cannot exceed it.

What enhancement algorithms actually do is make guesses based on
prior knowledge (faces have certain shapes, text has certain patterns).
They hallucinate details that are plausible given what is known. Some-
times the guesses are right; sometimes they are wrong. But they are not
recovering information from the image—they are adding assumptions.

information theory 47

More Applications of the Data Processing Inequality

The data processing inequality appears throughout science and engi-
neering. Let us examine a few more examples.

Telephone game. In the children’s game, a message passes from
person to person. Each transmission adds noise. By the data processing
inequality, each step can only lose information:

I (X; Yn) ≤ I (X; Yn−1) ≤ · · · ≤ I (X; Y1) .

The final message cannot contain more information about the original
than any intermediate version did. This explains why the final message
is often unrecognizable—each step loses a little, and losses accumulate. The telephone game is a Markov chain:

X → Y1 → Y2 → · · · . Information de-
grades monotonically.

Lossy compression. When you convert a WAV audio file to MP3,
information is discarded. If you then convert the MP3 to a different
format, you cannot recover the lost frequencies. The data processing
inequality makes this precise: the information about the original record-
ing in any downstream format is bounded by the information in the
MP3.

This is why audio engineers keep “lossless masters.” Once you
compress, you cannot uncompress back to the original quality.

Scientific measurement. When a physicist measures a quantity θ using
instrument X that produces noisy reading Y, and then summarizes the
data with statistic T(Y), the data processing inequality says:

I (θ; T(Y)) ≤ I (θ; Y) .

No summary can contain more information about θ than the raw data.
If T is sufficient, equality holds; otherwise, the summary discards
relevant information.

Neural network layers. Consider a deep neural network trained for
classification. Let X be the input image, Y be the activations of layer k,
and Z be the output classification. The data processing inequality says:

I (X; Z) ≤ I (X; Y) .

Early layers preserve more information about the input; later layers
have compressed it down to what is relevant for the task. This is
sometimes called the “information bottleneck” view of deep learning. The information bottleneck hypothesis

suggests that networks learn by first
memorizing, then compressing to retain
only task-relevant features.When Does Equality Hold?

The data processing inequality is an inequality. When is it tight?
Equality holds when X → Y → Z and Z is a sufficient statistic for X

given Y. That is, Z captures everything about Y that is relevant to X.
More precisely: I (X; Z) = I (X; Y) if and only if X → Z → Y also

forms a Markov chain. In that case, Y and Z contain exactly the same
information about X, just possibly in different forms.

48 claude opus 4.5

Sufficient Statistics

The data processing inequality has an important corollary. Sometimes
processing loses no information.

A statistic T(Y) is sufficient for X if X → T(Y)→ Y forms a Markov
chain. That is, once you know T(Y), the original data Y tells you
nothing more about X.

For sufficient statistics, the data processing inequality becomes an
equality:

I (X; T(Y)) = I (X; Y) .
A sufficient statistic compresses the data
without losing any information about the
parameter of interest. This is the ideal of
statistical inference.

You can throw away the original data and keep only the sufficient
statistic, losing nothing about X.

Example: Suppose Y1, . . . , Yn are independent draws from a normal
distribution with unknown mean µ and known variance σ2. The sample
mean Ȳ = 1

n ∑ Yi is sufficient for µ.
Why? Because P(Y1, . . . , Yn|Ȳ, µ) = P(Y1, . . . , Yn|Ȳ). Once you know

the sample mean, knowing µ doesn’t help you predict the individual
observations any better.

This means: if your goal is to learn about µ, you can replace all n
data points with a single number—the sample mean—and lose nothing.
The sample mean contains everything the data has to say about µ.

3.13 A Mathematical Theory of Communication

Let us pause for history.
In the summer of 1948, Claude Shannon was 32 years old. He worked

at Bell Telephone Laboratories in New Jersey, where the practical prob-
lem was telephone communication. How much information could flow
through a wire? How should signals be encoded to resist noise? These
were engineering questions, but Shannon saw something deeper. Bell Labs in the 1940s was extraordinary.

Shannon’s colleagues included the inven-
tors of the transistor, information theory,
and the laser.

His paper, “A Mathematical Theory of Communication,” appeared
in two parts in the Bell System Technical Journal that July and October.
It was 55 pages long and invented a field.

What Shannon did was audacious. He separated the problem of
communication into distinct layers. The meaning of a message—what
it’s about, whether it’s true, whether it’s important—was declared
irrelevant to the engineering problem. What mattered was the statistical
structure of the source and the physical properties of the channel.

“The fundamental problem of communication,” Shannon wrote,
“is that of reproducing at one point either exactly or approximately
a message selected at another point. Frequently the messages have
meaning; that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem.”

information theory 49

This was strategic clarity. By ignoring meaning, Shannon could focus
on what wires actually need to transmit: bits, regardless of what those
bits represent. Shannon’s decision to ignore semantics

was controversial but brilliant. It allowed
precise theorems where before there was
only vague intuition.

Mutual information appears in Section 8 of the paper, introduced
almost casually: “The rate of actual transmission, R, is the entropy of
the source less the equivocation.” In our notation: the rate is I (X; Y) =
H (X)− H (X | Y).

Shannon called H (X | Y) the “equivocation”—the average ambiguity
of the received signal. It is a perfect word. To equivocate is to be unclear,
to say something that could mean multiple things. The equivocation
measures how unclear the channel makes the message.

The paper had immediate impact. Engineers recognized that Shan-
non had given them the right concepts and the right theorems. But
the proofs were existence proofs—Shannon showed that good codes
exist without saying how to construct them. Finding codes that actually
achieved Shannon’s limits occupied the next fifty years. We’ll take up
that story in Chapters 7 and 8.

Shannon himself was playful about his work. He built maze-solving
robots, juggling machines, and a calculator that operated in Roman
numerals. He unicycled through the halls of Bell Labs. He worked
on problems because they were interesting, not because they were
useful—and the most interesting problems often turned out to be the
most useful.

3.14 What Does “Information Transfer” Really Mean?

Let us turn philosophical. We speak of information “flowing” through
channels, of data being “transmitted” and “received.” But what is
actually happening?

When you speak into a telephone, sound waves vibrate a membrane,
electrical signals propagate through wires, and speakers vibrate on the
other end. Something physical clearly moves. But when we say “one bit
of information transferred,” we don’t mean a bit-object traveled from
sender to receiver. Information is not a substance that flows.

It is a relationship between random
variables—a correlation structure.

Mutual information measures correlation, not causation. I (X; Y) > 0
means that learning X tells you something about Y—but it doesn’t
mean X caused Y, or that anything traveled from X to Y.

Consider this thought experiment. Alice flips a coin in New York.
Bob, in London, flips a completely independent coin. We have I (X; Y) =
0. Now suppose they flip the same coin remotely—say, by prior arrange-
ment, they both flip when a shared random beacon triggers. Now
I (X; Y) > 0, even though no signal traveled between them at the
moment of flipping.

The mutual information changed because the correlation structure

50 claude opus 4.5

changed, not because information physically moved at that instant.
In quantum mechanics, this becomes even stranger. Entangled parti-

cles can have I (X; Y) > 0 without any signal passing between them—
and provably, no signal can pass faster than light. The correlation exists,
but it wasn’t “transmitted” in any physical sense.

Three Views of Information

Let me sketch three philosophical positions on what information “is.”
None is definitively correct; each illuminates a different aspect of the
concept.

The epistemic view. Information is about knowledge. Entropy mea-
sures our ignorance; mutual information measures how much learning
one thing teaches us about another. On this view, information is inher-
ently observer-relative. The entropy of a coin is 1 bit to you but 0 bits to
someone who has seen it. Information doesn’t exist “out there” in the
world—it exists in the relationship between an observer and the world. The epistemic view traces back to Jaynes,

who argued that probability itself is a
measure of knowledge, not a physical
quantity.

This view explains why Shannon could ignore semantics. What
matters is not what messages mean but how much we can learn from
them. A gibberish message and a profound message can have the same
entropy if they are equally unpredictable.

The physical view. Information is as physical as energy or momentum.
When you erase a bit of memory, you must dissipate energy (Landauer’s
principle). When you measure a quantum system, you gain information
and disturb the system. The universe has a finite information capacity,
bounded by the Bekenstein limit. On this view, information is not
merely about what we know—it is a fundamental physical quantity.

The physical view connects information theory to thermodynamics.
Maxwell’s demon, who seems to violate the second law by sorting
fast and slow molecules, fails because acquiring information about
molecules has an entropic cost. The demon’s memory fills up, and
erasing it generates heat. Information and entropy are two sides of the
same coin.

The structural view. Information is pattern, structure, constraint.
A random string has no structure and hence no information (in the
Kolmogorov sense). A structured sequence—even if unpredictable—
has information in it because it has low Kolmogorov complexity. On
this view, mutual information measures how much structure is shared
between two systems. Kolmogorov complexity measures the

length of the shortest program that pro-
duces a string. This is incomputable in
general but conceptually powerful.

Each view captures something true. The epistemic view explains
why information theory works for communication. The physical view
explains why information cannot be created or destroyed without
physical consequences. The structural view explains why we find
information theory useful for understanding complex systems.

information theory 51

Does Information Flow?

We say information “flows” through channels. But consider carefully:
what flows?

In a telephone call, electromagnetic signals flow through wires. But
the information—the mutual information between Alice’s speech and
Bob’s perception—doesn’t “flow” in the same sense. It is a statistical
relationship that exists because of how the physical channel works.

Here is an analogy. Suppose Alice and Bob each have a copy of the
same book. There is high mutual information between Alice’s copy and
Bob’s copy—knowing one tells you a lot about the other. But nothing
flows between them. The mutual information exists because of their
common origin (the publisher), not because of any ongoing connection. Mutual information is symmetric:

I (X; Y) = I (Y; X). If information
“flowed,” we would expect a direction.
But the mathematics is agnostic about
direction.

When we say “Alice sent Bob one bit of information,” we mean
something operational: Alice made a choice, the channel transformed it
according to its transition probabilities, and Bob’s observation became
correlated with Alice’s choice. The mutual information quantifies this
correlation. But nothing called “information” traveled from Alice to
Bob like a package.

This might seem like philosophical hairsplitting, but it matters
for understanding what information theory can and cannot tell us.
Information theory tells us about correlations, not about mechanisms.
It tells us that a channel can support a certain rate of reliable communi-
cation, but it does not tell us how the channel works physically.

Meaning and Information

Shannon explicitly excluded meaning from his theory. “The semantic
aspects of communication,” he wrote, “are irrelevant to the engineering
problem.”

This was strategic brilliance, not philosophical naïveté. By ignoring
meaning, Shannon could prove powerful theorems that apply to any
communication system, regardless of what is being communicated. The
same capacity formula applies whether you are transmitting Shake-
speare or grocery lists. A channel cannot tell whether the bits

passing through it represent poetry or
noise. It only knows the statistical struc-
ture.

But we might ask: is there a deeper theory that includes meaning?
Information theory tells us how many bits can be transmitted, but not
which bits matter. When you compress an image, the algorithm doesn’t
know that the face is more important than the background—unless you
tell it.

Some researchers have proposed semantic information theories that
try to quantify not just how much is transmitted but how much of
what matters is transmitted. These are active research areas, but none
has achieved the universality and mathematical elegance of Shannon’s
theory.

52 claude opus 4.5

Perhaps meaning is irreducibly context-dependent in a way that
resists general mathematical treatment. Or perhaps we simply haven’t
found the right framework yet.

The Unreasonable Effectiveness of Information Theory

“The universe doesn’t care about information,” one might say. “Information
is what we care about.” Entropy and mutual information are measures
of our knowledge and ignorance, our ability to predict and infer. They
are not properties of physical systems independent of observers, but
relationships between physical systems and those who observe them.

And yet—information theory works. It predicts the limits of com-
pression and transmission with astonishing accuracy. It provides the
mathematical foundation for modern communication systems. It con-
nects to physics through thermodynamics and quantum mechanics. Wigner wrote about “the unreasonable ef-

fectiveness of mathematics in the natural
sciences.” Information theory is another
example.

This is not a defect of information theory but a feature. Shannon’s
theory works precisely because it makes no metaphysical claims about
the nature of information. It defines useful quantities, proves theo-
rems about them, and applies them to engineering. The philosophical
questions remain open, but they don’t block the engineering.

Perhaps the deepest lesson is this: you don’t need to know what
information is to know what you can do with it. Shannon gave us a
calculus of communication that works regardless of our philosophical
commitments. The theorems are true whether information is epistemic,
physical, or something else entirely.

3.15 Looking Forward: The Source Coding Theorem

We have now built two fundamental tools. Entropy measures uncer-
tainty about a single source. Mutual information measures the shared
information between two variables—the information that survives trans-
mission through a channel.

These are not mere abstractions. They answer concrete questions
about the physical world.

In the next chapter, we turn to the first of Shannon’s great theorems:
the source coding theorem. It answers a question people have asked since
the invention of writing: How much can a message be compressed? The source coding theorem: entropy is

exactly the limit of compression. Not
approximately—exactly.

Here is a preview. Suppose you have a source producing symbols
with entropy H bits per symbol. The source coding theorem says:

• You cannot compress below H bits per symbol on average.

• You can get arbitrarily close to H bits per symbol with sufficiently
clever coding.

information theory 53

The entropy is exactly the compression limit. Not an approximation,
not an upper bound, but the precise answer.

This is remarkable. Entropy, which we derived from abstract re-
quirements about how uncertainty should behave, turns out to be the
answer to a concrete engineering problem. The same quantity appears
in compression, in communication, in thermodynamics, in statistical
inference. It is not that we defined entropy to equal the compression
limit; it is that the compression limit must equal entropy, because both
are measuring the same thing.

The source coding theorem also sets the stage for the even more
surprising channel coding theorem of Chapter 7: that reliable commu-
nication over noisy channels is possible, as long as we communicate
slowly enough. The maximum reliable rate is the channel capacity—the
maximum mutual information between input and output.

Both theorems will use the ideas we’ve developed: entropy, mutual
information, typical sequences. The conceptual foundations are in place.
Now we will see what they can build.

From uncertainty to shared uncertainty. From isolation to connection.
From the abstract mathematics of probability to the concrete limits of
what can be communicated.

Let us continue.

4
The Source Coding Theorem

How much can a message be compressed?
This question has been asked since the invention of writing. Ancient

scribes developed abbreviations. Medieval copyists used contractions.
Telegraph operators invented codes—Morse gave common letters short
patterns, rare letters long ones. Everyone who has tried to fit a thought
into a limited space has wrestled with this problem.

But the question has a different character depending on how you
ask it. “How do I compress this particular message?” is an engineering
question with many answers. “What is the best compression possible
for any message from this source?” is a scientific question. It asks not
what we can do, but what the universe allows. The source coding theorem answers a

question people have asked for millen-
nia. The answer turns out to be entropy—
the same quantity that arose from our
abstract requirements about uncertainty.

In 1948, Shannon gave the definitive answer. He proved that there
is a fundamental limit on compression, that this limit can be achieved,
and that it equals exactly the entropy of the source. Not approximately,
not in some limit—exactly. Entropy is the compression limit.

This is Shannon’s first major theorem, and it deserves to be treated
as a revelation. We have been building toward it through Chapters
2 and 3, developing entropy and mutual information as measures of
uncertainty. Now we discover that entropy is not merely a mathematical
convenience. It is the answer to a concrete physical question.

Let us begin with the question itself.

4.1 The Compressibility Question

Imagine you are a telegraph operator in 1880. You pay by the symbol.
English text is obviously redundant—“q” is always followed by “u,”
the letter “e” appears far more often than “z,” certain words repeat
constantly. Surely you can represent messages more efficiently than by
sending every character verbatim.

But how efficiently? Can you compress English to half its length? A
third? Is there a theoretical minimum, or can clever enough schemes

56 claude opus 4.5

compress arbitrarily far? The telegraph operators of the 19th cen-
tury were practical information theorists.
They developed compression schemes by
intuition; Shannon provided the theory.

This is not an idle question. The answer determines the capacity of
communication infrastructure, the storage requirements for data, the
feasibility of applications we haven’t imagined yet.

Let us make the question precise.

The Setup

A source produces a sequence of symbols X1, X2, . . . , Xn from some
alphabet X . For simplicity, we will mostly consider independent and
identically distributed (i.i.d.) sources: each Xi is drawn independently
from the same probability distribution P(x).

We want to encode this sequence as a binary string—a sequence of
0s and 1s. We want to be able to decode perfectly: given the binary
string, we should be able to recover X1, . . . , Xn exactly. This is called
lossless compression. Lossless means no information is lost. We

will briefly discuss lossy compression—
where we allow some distortion—at the
end of the chapter.

The rate of a code is the average number of bits per source symbol:

R =
expected length of encoded string

n
.

The question becomes: what is the minimum achievable rate?

Codes and Decodability

Not every assignment of binary strings to source sequences makes
sense. Consider trying to encode two symbols, A and B, as follows: A
→ 0, B→ 00. Now suppose you receive the string 00. Was the message
“AA” or “B”? You cannot tell. The code is ambiguous.

A code is uniquely decodable if every encoded string corresponds to
exactly one source sequence. We will only consider uniquely decodable
codes. A uniquely decodable code lets us re-

cover the original message without ambi-
guity. This is the minimum requirement
for any useful code.

A particularly useful class is prefix codes, where no codeword is a
prefix of another. Our bad example above fails because “0” is a prefix
of “00.” In a prefix code, as soon as you see a complete codeword, you
know it is complete—no need to look ahead.

Prefix codes have a beautiful structure: they correspond to binary
trees. Each codeword is a path from the root to a leaf, with 0 meaning
“go left” and 1 meaning “go right.” The prefix property ensures that
every codeword reaches a leaf—no codeword corresponds to an internal
node.

A

0

B

0

C

0

D

1

1

1

Figure 4.1: A prefix code as a binary tree.
Codewords: A → 0, B → 10, C → 110,
D → 111. No codeword is a prefix of
another.

Here is a fact that simplifies our analysis enormously. The Kraft in-
equality states that for any prefix code with codeword lengths `1, . . . , `m:

m

∑
i=1

2−`i ≤ 1.

information theory 57

Conversely, if a set of lengths satisfies the Kraft inequality, there
exists a prefix code with those lengths. More remarkably, for any
uniquely decodable code—even non-prefix codes—there exists a prefix
code with the same lengths. The Kraft inequality connects codeword

lengths to a geometric constraint. The
“volume” of all codewords cannot exceed
1.

This means we lose nothing by restricting our attention to prefix
codes. They are the natural objects of study.

4.2 Why Entropy Appears: A First Bound

Before proving the full theorem, let us see intuitively why entropy must
be the limit.

Symbol-by-Symbol Codes

The simplest approach is to encode each source symbol independently,
assigning a fixed binary codeword to each symbol in X . For a pre-
fix code with codeword lengths `1, . . . , `m assigned to symbols with
probabilities p1, . . . , pm, the expected length per symbol is:

L =
m

∑
i=1

pi`i.

Can we choose lengths to minimize L? There is a constraint from
the Kraft inequality. Using Lagrange multipliers (or a direct argument
with Jensen’s inequality), one can show:

L ≥ H (X) = −∑
i

pi log2 pi.

The expected codeword length is at least the entropy. This inequality is sometimes called the
“noiseless coding theorem” for symbol-
by-symbol codes. Shannon’s full theorem
extends it to block codes.

Moreover, equality holds when `i = − log2 pi—that is, when we
assign log2(1/pi) bits to a symbol with probability pi. Rare symbols
get long codewords; common symbols get short ones.

But there is a problem. Codeword lengths must be integers. If
− log2 pi is not an integer, we cannot achieve equality.

A Worked Example: Near-Optimal Coding

Consider a source with probabilities P(A) = 1/2, P(B) = 1/4, P(C) =

1/8, P(D) = 1/8.
The entropy is:

H = −1
2

log2
1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

8
log2

1
8
=

1
2
+

1
2
+

3
8
+

3
8
= 1.75 bits.

The optimal codeword lengths are − log2 pi: for A, this is 1 bit; for B,
2 bits; for C and D, 3 bits each. These are all integers! We can achieve:

• A→ 0 (1 bit)

58 claude opus 4.5

• B→ 10 (2 bits)

• C→ 110 (3 bits)

• D→ 111 (3 bits)

Expected length: 1
2 (1) +

1
4 (2) +

1
8 (3) +

1
8 (3) = 0.5 + 0.5 + 0.375 +

0.375 = 1.75 bits.
We achieved exactly the entropy! This happens when all probabilities

are powers of 2.

When Probabilities Do Not Cooperate

Now consider a biased coin with P(H) = 0.9 and P(T) = 0.1.
The entropy is:

H = −0.9 log2(0.9)− 0.1 log2(0.1) ≈ 0.137 + 0.332 = 0.469 bits.
For a very biased source, most of the
“information” comes from the rare event.
But symbol-by-symbol coding cannot ex-
ploit this efficiently.

The optimal lengths would be − log2(0.9) ≈ 0.152 bits for H and
− log2(0.1) ≈ 3.32 bits for T. These are not integers.

The best we can do with a symbol-by-symbol prefix code: H→ 0 (1
bit), T→ 1 (1 bit). Expected length: 1 bit per symbol.

We pay 1 bit per flip, but the entropy is only 0.469 bits. We are
wasting more than half our transmission! The problem is that we
cannot assign “0.152 bits” to the common outcome H.

This is where block coding helps.

4.3 Block Coding: Overcoming the Integer Barrier

Instead of encoding symbols one at a time, encode entire blocks of n
symbols together.

For an i.i.d. source, a block of n symbols has entropy n · H (X). We
treat the entire block as a single “super-symbol” from an alphabet of
size |X |n. Block coding trades the granularity of

individual symbols for the smoothness of
large numbers. The law of large numbers
helps us.

The expected number of bits for the block is at least n · H (X). The
rate per original symbol is at least H (X).

But now the “rounding” overhead is shared across n symbols. If
we need to round up to the next integer, that extra bit is divided by n
when computing the rate. As n→ ∞, the rounding overhead vanishes.

This suggests we can approach the entropy bound arbitrarily closely.
But showing this rigorously requires a key insight: typical sequences.

4.4 The Library of Babel

Before the formal proof, let me develop a metaphor that will illuminate
the entire argument.

information theory 59

Jorge Luis Borges imagined a library containing every possible book
of 410 pages. Every arrangement of letters, spaces, and punctuation
marks—meaningful text, gibberish, books in every language, books
containing every possible truth and every possible falsehood. The
total number of books is unimaginably vast: roughly 251,312,000, for a
25-symbol alphabet. Borges’s “Library of Babel” (1941) is a

meditation on infinity and meaning. It
also illustrates the curse of combinatorics:
most possibilities are useless.

The librarians who live in this library face an existential problem.
They seek meaningful books among an ocean of noise. The overwhelm-
ing majority of books are random character sequences with no meaning
in any language.

Now imagine you are such a librarian, tasked with creating a catalog.
You need to assign each book a unique call number so it can be retrieved.
If you must catalog every possible book, you need about 1,312,000 ·
log2(25) ≈ 6,000,000 bits per call number.

But suppose you only care about books written in English. English
has structure. Not every letter sequence is English. In fact, the entropy
rate of English is estimated at about 1–1.5 bits per character, far below
the log2(25) ≈ 4.6 bits that would be needed if every character were
equally likely.

The “meaningful” books—those following English statistics—form a
tiny subset of all possible books. We might call this the typical set: the
books that are statistically plausible outputs of the English language
source.

How many bits do you need to catalog the typical books? The
entropy rate gives the answer. With about 1,312,000× 1.3 ≈ 1,700,000
bits, you can uniquely identify every typical English book. This is far
fewer than the six million bits needed for arbitrary books. The typical set is exponentially smaller

than the full set of possibilities, but it
contains almost all the probability mass.
This is the key to compression.

This is the source coding theorem in disguise. The typical set is small
enough to be indexed efficiently, yet large enough to contain almost
everything we will ever encounter.

4.5 Typical Sequences: The Heart of the Matter

Let us make the library metaphor precise.

Definition of Typical Sequences

For an i.i.d. source with entropy H = H (X), a sequence (x1, . . . , xn) is
ε-typical if:

2−n(H+ε) ≤ P(x1, . . . , xn) ≤ 2−n(H−ε).

In words: a typical sequence has probability close to 2−nH . A typical sequence is one whose proba-
bility is “about what you’d expect” from
the entropy. Neither surprisingly likely
nor surprisingly unlikely.

Why this definition? For i.i.d. sequences:

P(x1, . . . , xn) =
n

∏
i=1

P(xi).

60 claude opus 4.5

Taking logs:

log2 P(x1, . . . , xn) =
n

∑
i=1

log2 P(xi).

Dividing by n:

1
n

log2 P(x1, . . . , xn) =
1
n

n

∑
i=1

log2 P(xi).

The right side is an average of i.i.d. random variables. By the law of
large numbers, it converges to:

E [log2 P(X)] = −H.

So for large n, the log-probability per symbol concentrates around
−H, meaning the total probability concentrates around 2−nH .

Properties of the Typical Set

Let A(n)
ε denote the set of ε-typical sequences of length n.

Property 1: High probability. For any ε > 0 and sufficiently large n:

P(A(n)
ε) > 1− ε.

Almost all the probability mass is on typical sequences. Atypical
sequences are negligible.

Property 2: Bounded size. The number of typical sequences satisfies:

|A(n)
ε | ≤ 2n(H+ε).

The typical set has at most 2n(H+ε) se-
quences. This is exponentially smaller
than the |X |n total sequences when the
source is not uniform.

This follows directly from the definition: each typical sequence has
probability at least 2−n(H+ε), and probabilities sum to at most 1.

Property 3: Lower bound on size. For large enough n:

|A(n)
ε | ≥ (1− ε) · 2n(H−ε).

The typical set has at least roughly 2nH sequences.
Together, these properties say: there are about 2nH typical sequences,

they account for almost all the probability, and each has probability
about 2−nH .

4.6 The Impossibility Proof: Why We Cannot Beat Entropy

Now we can prove that compression below entropy is impossible. The converse theorem: no code can
achieve rate below entropy. This is the
“you can’t do better than the limit” half
of the theorem.

Suppose we try to encode n-symbol sequences using a code with
rate R < H − δ for some δ > 0. The expected codeword length is at
most n(H − δ).

information theory 61

For a uniquely decodable code, each sequence must map to a distinct
binary string. If the expected length is n(H − δ), then there can be at
most roughly 2n(H−δ) codewords that we use.

But the typical set contains about 2nH sequences, all of which have
significant probability. The ratio is:

2nH

2n(H−δ)
= 2nδ.

The pigeonhole argument: there are ex-
ponentially more typical sequences than
short codewords. Most typical sequences
cannot have short representations.

For large n, this ratio is astronomical. There are exponentially more
typical sequences than codewords. We cannot assign distinct codewords
to all of them.

This is the pigeonhole argument in its purest form. If you have more
pigeons than pigeonholes, some pigeonhole must contain multiple
pigeons. If you have more typical sequences than short codewords,
some sequences must share codewords or have no codeword at all.

Either way, we cannot decode correctly for all typical sequences.
Since typical sequences account for almost all the probability mass, our
error probability is bounded away from zero.

The Formal Statement

Theorem (Source Coding Converse): For any sequence of uniquely decod-
able codes with block length n and rate Rn:

lim inf
n→∞

Rn ≥ H.

No code can achieve rate below entropy in the limit.

Addressing an Objection

You might say: “But I’ve seen compression below entropy! I com-
pressed a file and the compressed version is smaller than the entropy
of individual characters would suggest.”

This is true, but it does not contradict the theorem. Real files have
structure beyond individual characters. English text has dependencies
between letters, words, and phrases. The relevant quantity is the entropy
rate—the entropy per symbol accounting for all dependencies—not the
single-symbol entropy. ZIP and similar algorithms exploit corre-

lations. The source coding theorem ap-
plies to the true entropy rate of the source,
which is lower than the single-symbol en-
tropy when there are dependencies.

For a stationary ergodic source:

H̄ = lim
n→∞

1
n

H (X1, X2, . . . , Xn) .

This entropy rate can be much lower than H (X1) when there are
dependencies. ZIP files exploit these dependencies. But no algorithm
can compress below the entropy rate—that is what the theorem says.

62 claude opus 4.5

4.7 The Achievability Proof: Reaching the Entropy Bound

The more remarkable half of the theorem is that we can achieve rates
arbitrarily close to entropy. Shannon’s proof is constructive: we build a
code and show it works.

The Strategy

1. Enumerate all ε-typical sequences.

2. Assign each a short binary codeword.

3. Use a fallback encoding for atypical sequences.

4. Show the average rate approaches H.
The achievability proof is constructive.
We build an explicit code and analyze its
performance.

The Construction

Fix ε > 0 and block length n.
There are at most 2n(H+ε) typical sequences. We can enumerate them

and assign each an index from 1 to 2n(H+ε).
Each index can be represented in binary using dn(H + ε)e bits. We

add a 1-bit header (say, “0”) to indicate this is a typical sequence
encoding.

Total bits for typical sequences: at most n(H + ε) + 2.
For atypical sequences, we use a fallback: a header bit “1” fol-

lowed by the raw sequence. If the alphabet has size |X |, this takes
1 + n log2 |X | bits.

Computing the Rate

The expected number of bits is:

Expected bits = P(typical) · (bits for typical) + P(atypical) · (bits for atypical)

≤ (1)(n(H + ε) + 2) + ε(1 + n log2 |X |).
Typical sequences dominate because they
have probability close to 1. The rare atypi-
cal sequences contribute negligibly to the
average.

The rate is:

R =
Expected bits

n
≤ H + ε +

2
n
+

ε(1 + n log2 |X |)
n

.

As n→ ∞:

R→ H + ε + ε log2 |X |.

Since ε was arbitrary, we can make the rate as close to H as desired
by choosing ε small enough and n large enough.

information theory 63

The Formal Statement

Theorem (Source Coding Achievability): For any ε > 0, there exists a
sequence of uniquely decodable codes with rate:

Rn ≤ H + ε

for all sufficiently large n.
Combined with the converse, this gives us Shannon’s source coding

theorem: the minimum achievable rate is exactly H.

4.8 A Worked Example: Compressing a Biased Coin

Let us see the theorem in action with actual numbers.

The Source

A biased coin with P(H) = 0.9 and P(T) = 0.1.
Entropy: H = −0.9 log2(0.9)− 0.1 log2(0.1) = 0.469 bits per flip. This coin is highly predictable—heads

happens nine times out of ten. The en-
tropy reflects this: less than half a bit of
surprise per flip.

Recall that symbol-by-symbol encoding gives 1 bit per flip—more
than double the entropy.

Block Encoding with n = 10

Consider encoding blocks of 10 flips.
Total possible sequences: 210 = 1024.
Typical sequences: Roughly those with 8, 9, or 10 heads (close to the

expected 9 heads).
Let us count precisely. A sequence with k heads has probability

0.9k · 0.110−k.

Heads Count P(each) Total P

10 1 0.349 0.349

9 10 0.0387 0.387

8 45 0.00430 0.194

7 120 0.000478 0.057

Table 4.1: Sequences of 10 biased coin
flips, grouped by number of heads.

The 56 sequences with 8–10 heads account for probability 0.349 +

0.387 + 0.194 = 0.930.
If we call these “typical,” we can assign each a 6-bit codeword (since

26 = 64 > 56), plus a 1-bit header.
Bits for typical sequences: 7 bits for 10 symbols = 0.7 bits per symbol.
Bits for atypical sequences: 1 (header) + 10 (raw) = 11 bits = 1.1 bits per

symbol.
Expected rate: 0.930× 0.7 + 0.070× 1.1 = 0.651 + 0.077 = 0.728 bits

per symbol.
We have reduced from 1 bit per symbol (symbol-by-symbol) to 0.728

bits per symbol, approaching the entropy of 0.469.

Scaling Up

Block size n Rate (bits/symbol)

1 1.000

10 0.728

100 0.52

1000 0.48

∞ 0.469

Table 4.2: Compression rate approaches
entropy as block length increases.

As we increase n:

• n = 100: Rate ≈ 0.52 bits per symbol

64 claude opus 4.5

• n = 1000: Rate ≈ 0.48 bits per symbol

• n→ ∞: Rate→ 0.469 bits per symbol

The approach to entropy is not just theoretical—it is computable.
With large enough blocks, we can compress arbitrarily close to the
entropy bound. Each factor of 10 increase in block length

roughly halves the gap between our rate
and entropy. This is the power of the law
of large numbers.

4.9 Shannon and the Birth of Information Theory

Let us pause for history. In the summer of 1948, Claude Shannon
was 32 years old. He worked at Bell Telephone Laboratories, where
the practical problems involved telephone communication. How much
information could flow through a wire? How should signals be encoded
to resist noise?

Shannon’s paper, “A Mathematical Theory of Communication,” ap-
peared in the Bell System Technical Journal that July and October. In 55

pages, he defined entropy, proved the source coding theorem, defined
channel capacity, and proved the noisy channel coding theorem. He
invented a field. Shannon’s 1948 paper is one of the most

influential scientific works of the twenti-
eth century. It created information theory
essentially from scratch.

What Shannon did was audacious. He separated communication into
layers. The meaning of a message—what it’s about, whether it’s true—
was declared irrelevant to the engineering problem. What mattered
was the statistical structure of the source and the physical properties of
the channel.

“The fundamental problem of communication,” Shannon wrote, “is
that of reproducing at one point either exactly or approximately a
message selected at another point.”

The paper was not immediately understood. Some engineers thought
it was pure theory; some mathematicians thought it lacked rigor. Both
were wrong. Shannon had identified the right concepts and proved the
right theorems. Finding practical codes that achieved his limits would
occupy the next fifty years.

Shannon himself was playful. He built maze-solving robots, juggling
machines, and a calculator that worked in Roman numerals. He uni-
cycled through Bell Labs’ corridors. He worked on problems because
they were interesting—and the most interesting problems often proved
the most useful.

There is a lesson here. The most practical result in communication
theory—telling engineers exactly how much they can compress—came
from asking the most abstract question: what does physics allow?

information theory 65

4.10 What If We Allow Errors? Rate-Distortion Theory

So far we have demanded perfect reconstruction: the decoder must re-
cover the source sequence exactly. But sometimes we can tolerate errors.
Lossy compression—JPEG for images, MP3 for audio—deliberately
introduces distortion to achieve smaller files.

How does the fundamental limit change when we allow errors?

Measuring Distortion

We need a way to measure how bad our errors are. A distortion function
d(x, x̂) quantifies the “cost” of reproducing symbol x as x̂. The distortion function encodes what

kind of errors we care about. Different ap-
plications have different distortion mea-
sures.

Common choices:

• Hamming distortion: d(x, x̂) = 0 if x = x̂, otherwise 1. This counts
the number of errors.

• Squared error: d(x, x̂) = (x − x̂)2. This is natural for continuous
signals.

The average distortion of a code is the expected distortion per symbol:

D =
1
n

n

∑
i=1

E
[
d(Xi, X̂i)

]
.

The Rate-Distortion Function

For a given maximum average distortion D, define:

R(D) = min
P(X̂|X)

E[d(X,X̂)]≤D

I
(
X; X̂

)
.

The minimum is over all conditional distributions—all possible ways
to reconstruct X as X̂—subject to the distortion constraint. R(D) is the minimum rate needed to

achieve distortion D. It trades off com-
pression against quality.

The rate-distortion theorem (which we state without proof) says:
R(D) is the minimum achievable rate for reproducing the source with
average distortion at most D.

Example: Binary Source with Hamming Distortion

Consider a Bernoulli(1/2) source (fair coin) with Hamming distortion.
At D = 0: We demand perfect reconstruction. R(0) = H (X) = 1 bit.
At D = 1/2: We are allowed to be wrong half the time. We can just

output a random guess, ignoring the input entirely. R(1/2) = 0 bits.
For intermediate D, the rate-distortion function is:

R(D) = 1− h(D) = 1 + D log2 D + (1− D) log2(1− D).

0 0.25 0.5
0

0.5

1

Distortion D

R
at

e
R
(D

)

Figure 4.2: Rate-distortion curve for a
binary symmetric source. At D = 0 we
need 1 bit; at D = 0.5 we need nothing.

66 claude opus 4.5

This curve captures a fundamental tradeoff. If you want perfect
reproduction, you pay the full entropy. If you can tolerate being wrong
some fraction of the time, you pay less. But there is still a floor: even
allowing distortion, you cannot escape the laws of information.

4.11 What Does the Theorem Mean?

Let us step back and reflect on what we have proved.

Entropy as a Physical Quantity

The source coding theorem transforms entropy from a mathematical
abstraction into a physical reality. Before Shannon, entropy was a for-
mula: −∑ p log p. After Shannon, entropy is the answer to a question
you can ask about real data: how many bits do I need? This is what makes information theory

a physical science. Entropy answers a
concrete question about the world, not
just a mathematical exercise.

Imagine explaining this to a 19th-century telegraph operator. “There
is a number—computed from the statistics of your messages—that tells
you exactly how efficient your compression can be. Not approximately.
Exactly.” This would seem like magic, or perhaps like numerology.
Shannon proved it is neither; it is a theorem.

The Inevitability of Typical Sequences

The theorem rests on a deep fact: as sequences grow long, almost all
the probability concentrates on a small set of typical sequences. This
is not a peculiarity of our definitions but a consequence of the law of
large numbers.

Consider what this means. For any source with any distribution,
long sequences sort themselves into typical and atypical. The typical
sequences form a tiny fraction of all possible sequences, but they contain
almost all the probability mass. And there are 2nH of them—exactly
the number that nH bits can index. The typical set is where probability con-

centrates. Everything else is negligible.
This is why compression is possible and
why entropy sets the limit.

The compression limit is not arbitrary. It reflects the statistical
regularity of the world. A source with structure has typical patterns; a
source without structure is already incompressible.

Compression and Prediction

There is a deep connection, which we will explore more in Chapter 12:
the ability to compress is the ability to predict. If you can predict the
next symbol, you don’t need to transmit it—you just confirm or deny
the prediction.

Consider the extreme case. If a source always produces the same
symbol, the entropy is zero. You need not transmit anything; the
receiver already knows what’s coming. At the other extreme, if all

information theory 67

symbols are equally likely and independent, the entropy is maximal;
every symbol is a complete surprise and must be transmitted in full. Prediction and compression are two faces

of the same coin. Good predictions mean
low entropy mean high compressibility.

Entropy measures unpredictability. The source coding theorem says
you need exactly as many bits as there is genuine surprise. No more,
no less.

The Unreasonable Effectiveness

Why should there be a single number that answers such a complex
question? The theorem could have said: “the minimum rate depends on
your encoding scheme, your computational resources, your cleverness.”
Instead, it says there is a universal limit depending only on the source.

This is a remarkable simplification. Nature could have been more
complicated. That it isn’t—that entropy alone determines compressibility—
is a gift.

4.12 From Theory to Practice

We have proved that entropy is the fundamental limit on compression.
Not “a” limit—“the” limit. Given a source, we know exactly how much
it can be compressed.

But knowing the limit exists is not the same as achieving it. The
proof of achievability is elegant but impractical. It requires knowing
the source statistics exactly. It requires exponentially long block lengths.
It says nothing about computational efficiency. Shannon proved that good codes exist.

Finding them efficiently would occupy
the next fifty years.

This is the gap between existence and construction. Shannon’s
theorem guarantees that codes approaching entropy exist. But which
codes? How do we build them? How fast can we encode and decode?

In the next chapter, we turn from theory to practice. We will develop
Huffman codes—optimal among symbol-by-symbol codes. We will
develop arithmetic coding, which approaches entropy more closely by
avoiding the integer-bit constraint. We will develop the Lempel-Ziv
family, algorithms that adapt to unknown sources.

These practical algorithms are guided by Shannon’s theorem. It
tells us what to aim for, and it warns us when we are wasting effort
trying to beat the impossible. The theory constrains the engineering;
the engineering vindicates the theory.

Shannon showed that the universe has a speed limit for compression.
Now we must learn to drive near that limit.

5
The Art of Compression

Shannon proved that entropy is the compression limit. His proof is
beautiful: identify the typical sequences, assign them short codewords,
done. The typical set contains about 2nH sequences and accounts for
almost all the probability mass. Index them with nH bits each, and you
achieve the limit.

But imagine trying to actually use this proof. To encode a sequence,
you would first need to check whether it belongs to the typical set.
This requires knowing the exact probability of the sequence, which
means multiplying together n probabilities—and n might be millions.
You would need to store a codebook assigning binary strings to each
typical sequence. But there are 2nH of them; for English text at 1.3 bits
per character, a codebook for 1000-character blocks would have 21300

entries. The codebook itself would be larger than all the atoms in the
observable universe. Shannon’s proof shows that good codes

exist. It does not tell us how to find them
efficiently. This gap between existence
and construction runs throughout mathe-
matics.

Shannon’s theorem is like knowing that somewhere in a vast library
there exists a book containing exactly the story you want to tell. The
theorem guarantees the book exists. But you still need to write it.

This is the gap between proof and practice, between mathematics
and engineering. In this chapter, we cross that gap. We will develop
three practical compression algorithms, each embodying a different
insight about what compression means.

The first is Huffman coding: given the symbol probabilities, construct
the optimal code one symbol at a time. The second is arithmetic coding:
escape the constraint of integer-bit codewords by encoding entire mes-
sages as intervals on the number line. The third is the Lempel-Ziv family:
learn the source statistics on the fly, achieving optimal compression
without knowing anything in advance.

By the end, we will see how these building blocks combine in systems
you use every day—gzip, PNG, JPEG—and we will be ready to confront
the problem that compression alone cannot solve: noise.

70 claude opus 4.5

5.1 Huffman Coding: The Optimal Symbol-by-Symbol Code

Let us begin with the simplest approach: assign each symbol its own
codeword. David Huffman was a graduate student

when he invented his algorithm in 1952.
The story goes that his professor offered
a choice: take the final exam, or solve
an open problem. Huffman chose the
problem.

Recall from Chapter 4 that for a prefix code with codeword lengths
`1, . . . , `m assigned to symbols with probabilities p1, . . . , pm, the ex-
pected length is L = ∑i pi`i. We proved that L ≥ H, with equality
when `i = − log2 pi. But codeword lengths must be integers. If the
optimal lengths are not integers, we cannot achieve entropy exactly.

The question becomes: given the integer constraint, what is the best
we can do?

The Algorithm

Huffman’s insight was to build the code tree from the bottom up,
always combining the two least probable symbols first.

Given symbols {a1, . . . , am} with probabilities {p1, . . . , pm}:

1. Create a leaf node for each symbol, labeled with its probability.

2. Find the two nodes with the smallest probabilities.

3. Create a new internal node as their parent, labeled with the sum of
their probabilities.

4. Remove the two children from consideration; add the parent.

5. Repeat until only one node remains—the root.

6. Assign codewords by tracing paths from root to leaves: left branch
means 0, right branch means 1.

The greedy strategy—always combining
the smallest—turns out to be optimal.
This is not obvious. Many greedy algo-
rithms fail to find optimal solutions.

This is a greedy algorithm: at each step, make the locally best choice
without looking ahead. Such algorithms often fail to find global optima.
But for Huffman coding, the greedy choice is provably optimal.

A Worked Example

Let us build a Huffman code for a five-symbol source with probabilities:

P(A) = 0.40, P(B) = 0.20, P(C) = 0.20,

P(D) = 0.10, P(E) = 0.10.

First, compute the entropy:

H = −0.4 log2(0.4)− 0.2 log2(0.2)− 0.2 log2(0.2)− 0.1 log2(0.1)− 0.1 log2(0.1)

= 0.529 + 0.464 + 0.464 + 0.332 + 0.332 = 2.122 bits.

Now build the tree:

information theory 71

Step 1: The two smallest are D and E, each with probability 0.10.
Combine them into a node with probability 0.20. Call it (DE).

Step 2: The remaining nodes have probabilities: A (0.40), B (0.20), C
(0.20), (DE) (0.20). The two smallest are any pair among B, C, (DE). Let
us combine B and (DE) into (B,DE) with probability 0.40.

Step 3: Remaining: A (0.40), C (0.20), (B,DE) (0.40). Combine the two
smallest: C and one of the 0.40 nodes. Combine C with (B,DE) into
(C,B,DE) with probability 0.60.

Step 4: Remaining: A (0.40), (C,B,DE) (0.60). Combine into the root
with probability 1.00.

A

0

C

0

B

0

D

0

E

1

1

1

1

Figure 5.1: Huffman tree for the five-
symbol source. The most probable sym-
bol (A) gets the shortest codeword.

Reading off the codewords by tracing paths from root to leaves:

A→ 0 (1 bit)

C→ 10 (2 bits)

B→ 110 (3 bits)

D→ 1110 (4 bits)

E→ 1111 (4 bits)

The expected codeword length is:

L = 0.40(1)+ 0.20(2)+ 0.20(3)+ 0.10(4)+ 0.10(4) = 0.4+ 0.4+ 0.6+ 0.4+ 0.4 = 2.2 bits.

We aimed for 2.122 bits (the entropy) and achieved 2.2 bits. The
overhead is 0.078 bits per symbol—about 3.7% above the theoretical
limit. Not bad for such a simple algorithm.

Why Huffman Is Optimal

You might ask: “Could there be a cleverer construction that beats Huff-
man?” No. Among all prefix codes, Huffman achieves the minimum
expected length. Here is why. The optimality proof uses an exchange

argument: if Huffman were not optimal,
we could swap codewords to make it bet-
ter, leading to a contradiction.

Consider any optimal prefix code. It must have these properties:
Property 1: The two least probable symbols have the longest code-

words. If not, we could swap a short codeword from a rare symbol to a
common symbol and reduce the expected length.

Property 2: The two longest codewords have the same length and
differ only in the last bit. If not, we could shorten one of them without
violating the prefix property, reducing the expected length.

Property 2 means the two least probable symbols are siblings in the
code tree—children of the same parent node.

Now here is the key insight. Replace those two symbols with a
single “super-symbol” whose probability is the sum of theirs. This
reduces the problem by one symbol. By induction, Huffman’s greedy
construction—always combining the two smallest—builds an optimal
tree.

72 claude opus 4.5

The Gap from Entropy

Huffman is optimal among prefix codes, but it does not always achieve
entropy. The gap comes from the integer constraint on codeword
lengths. The bound H ≤ L < H + 1 holds for any

source. When one symbol has very high
probability, the gap can approach 1 bit.

For any source, the Huffman code satisfies:

H ≤ LHuffman < H + 1.

The lower bound is the source coding theorem. The upper bound
follows from the Kraft inequality: we can always find a prefix code
with lengths d− log2 pie, which exceeds the optimal length − log2 pi by
at most 1.

When is the gap large? Consider a highly biased source: P(A) = 0.99,
P(B) = 0.01. The entropy is:

H = −0.99 log2(0.99)− 0.01 log2(0.01) = 0.014 + 0.066 = 0.081 bits.

The optimal codeword lengths would be − log2(0.99) = 0.014 bits
for A and − log2(0.01) = 6.64 bits for B. But we cannot assign 0.014

bits to any symbol. The shortest possible codeword is 1 bit.
Huffman assigns: A→ 0, B→ 1. Expected length: 1 bit per symbol.

We are paying 1 bit when the entropy is only 0.081 bits—more than 12

times the theoretical limit!
This is where Huffman fails. When one symbol dominates, the

integer constraint bites hard.

5.2 Arithmetic Coding: Escaping the Integer Trap

Huffman encodes symbols one at a time, paying at least 1 bit for each
symbol, even if the symbol carries almost no information. Can we do
better?

The insight behind arithmetic coding is radical: instead of encoding
symbols individually, encode the entire message as a single number.

The Core Idea
Arithmetic coding represents messages
as intervals on [0, 1). The more proba-
ble the message, the wider its interval.
The number of bits needed to specify a
point in the interval equals the message’s
information content.

Think of the unit interval [0, 1) as a number line. We will assign each
possible message to a sub-interval. The width of the sub-interval equals
the message’s probability. To encode, we specify any number within
the message’s interval. To decode, we find which interval contains that
number.

Why does this work? The number of bits needed to specify a number
in an interval of width w is approximately − log2 w. If we assign
intervals proportional to message probabilities, then a message with
probability p gets an interval of width p, requiring− log2 p bits—exactly
the self-information of the message.

information theory 73

No integer constraint. No rounding. The bits needed precisely match
the information content.

The Encoding Algorithm

Let me show you how it works with a concrete example.
Suppose our alphabet is {A, B, C} with probabilities P(A) = 0.5,

P(B) = 0.3, P(C) = 0.2.
We partition [0, 1) according to these probabilities:

• A occupies [0, 0.5)

• B occupies [0.5, 0.8)

• C occupies [0.8, 1.0)
0 10.5 0.8

A B C

Figure 5.2: Initial partition of [0, 1) ac-
cording to symbol probabilities.

Now let us encode the message “BAC.”
Start: Our interval is [0, 1).
First symbol (B): B occupies [0.5, 0.8) of the current interval. Our new

interval is [0.5, 0.8).
Second symbol (A): Within [0.5, 0.8), we subdivide proportionally. The

width is 0.8− 0.5 = 0.3.

• A: [0.5, 0.5 + 0.5× 0.3) = [0.5, 0.65)

• B: [0.65, 0.65 + 0.3× 0.3) = [0.65, 0.74)

• C: [0.74, 0.8)

Since the second symbol is A, our new interval is [0.5, 0.65).
Third symbol (C): Within [0.5, 0.65), width = 0.15.

• A: [0.5, 0.575)

• B: [0.575, 0.62)

• C: [0.62, 0.65)

Since the third symbol is C, our final interval is [0.62, 0.65).

Start
[0, 1)

After B
[0.5, 0.8)

After A
[0.5, 0.65)

After C
[0.62, 0.65)

Figure 5.3: The interval narrows with
each symbol. After “BAC,” we have
[0.62, 0.65).

The final interval [0.62, 0.65) has width 0.03.
To encode, we can output any number in this interval. A convenient

choice is 0.625, which in binary is 0.101. We need about 5 bits to specify
this with sufficient precision, plus some framing to indicate where the
message ends.

Let us check the information content of “BAC”:

− log2 P(BAC) = − log2(0.3× 0.5× 0.2) = − log2(0.03) = 5.06 bits.

We needed about 5 bits. The information content is 5.06 bits. Arith-
metic coding achieves essentially the theoretical limit.

74 claude opus 4.5

Decoding

Given the encoded number (say, 0.625) and knowledge of the probability
distribution, decoding reverses the process:

1. Find which symbol’s interval contains 0.625. Initial partition: A
is [0, 0.5), B is [0.5, 0.8), C is [0.8, 1). Since 0.625 ∈ [0.5, 0.8), the first
symbol is B.

2. Rescale: map [0.5, 0.8) back to [0, 1). The value 0.625 becomes
(0.625− 0.5)/(0.8− 0.5) = 0.125/0.3 = 0.417.

3. Find which symbol’s interval contains 0.417. Since 0.417 ∈ [0, 0.5),
the second symbol is A.

4. Rescale: 0.417/0.5 = 0.833.
5. Find which symbol’s interval contains 0.833. Since 0.833 ∈ [0.8, 1),

the third symbol is C.
We have recovered “BAC.” Encoder and decoder must use identi-

cal probability models. Any mismatch—
even in the tenth decimal place—can
cause cascading errors.Why Arithmetic Coding Approaches Entropy

After encoding a message x1, x2, . . . , xn, the final interval has width:

width = P(x1) · P(x2) · · · P(xn) = P(x1, . . . , xn).

The number of bits needed to specify a number in this interval is:

bits ≈ − log2(width) = − log2 P(x1, . . . , xn) =
n

∑
i=1

(− log2 P(xi)).

This is exactly the sum of self-informations—the total information
content of the message.

For an i.i.d. source, by the law of large numbers:

1
n

n

∑
i=1

(− log2 P(Xi))
n→∞−−−→ E [− log2 P(X)] = H.

The rate converges to entropy. The overhead—a few bits for framing
and termination—becomes negligible as messages grow long.

Huffman versus Arithmetic: A Comparison

Let us return to the troublesome 99%/1% source.
With Huffman: 1 bit per symbol, but entropy is 0.081 bits. Overhead:

12×.
With arithmetic coding on a message of length n:

• Total bits ≈ n× 0.081 + (framing overhead)

• Rate per symbol→ 0.081 as n→ ∞
Arithmetic coding shines when distri-
butions are highly skewed. For more
balanced sources, Huffman may be pre-
ferred for its simplicity and speed.

For a 1000-symbol message from the 99%/1% source:

information theory 75

• Huffman: 1000 bits

• Arithmetic: approximately 81 bits plus overhead, say 85-90 bits total

Arithmetic coding achieves more than 10× better compression on
this source.

The tradeoff: arithmetic coding requires more computation. Each
symbol involves multiplication and comparison of potentially long
numbers. Huffman just does table lookups. For many applications,
Huffman’s simplicity wins. But when compression really matters,
arithmetic coding (or its practical cousin, range coding) is the tool.

5.3 A Metaphor: Addressing the Library

Before we continue, let me develop a metaphor that illuminates what
these algorithms are doing. Think of compression as addressing.

Huffman gives each neighborhood a
name. Arithmetic coding gives GPS coor-
dinates. Lempel-Ziv creates personalized
landmarks.

Imagine you need to address houses in a city. One approach: give
each neighborhood a name of fixed length. “Downtown” is short
because it is large and frequently referenced. “Industrial District North
Subsection 7” is long because it is small and rarely needed. This is
Huffman coding: assign names according to frequency, but each name
is a discrete unit.

A different approach: GPS coordinates. Latitude and longitude
pinpoint any location. The precision you need depends on how small
the target is. To locate a large park, two decimal places suffice: 40.78,
-73.97. To locate a specific mailbox, you might need five: 40.78123,
-73.96847. This is arithmetic coding: the message selects a sub-interval,
and you specify a point in that interval with just enough precision.

A third approach: create landmarks as you go. “The red house
by the bakery on Main Street.” The first time you visit, you note the
landmark. Later, you reference it: “three blocks past the red house,
turn left.” This is Lempel-Ziv: build a dictionary of patterns you have
seen, and reference them when they recur.

Each approach has virtues. The first is simple and fast. The second
is optimally precise. The third adapts to whatever patterns the data
contains.

We turn now to the third approach.

5.4 Lempel-Ziv: Learning the Source

Huffman and arithmetic coding require knowing the symbol probabili-
ties. But where do these probabilities come from?

For English text, we could estimate letter frequencies from a large
corpus. But what if we are compressing a new language? Or DNA

76 claude opus 4.5

sequences? Or software binaries? We would need different probability
models for each—and the models themselves take space to transmit. The chicken-and-egg problem: to com-

press optimally, we need the source statis-
tics. To learn the statistics, we need to
read the data. But reading the data is
what we are trying to compress!

There is a more fundamental issue. Real data has structure beyond
individual symbols. English text is not just biased toward “e” and away
from “z”; it has words, phrases, repeated patterns. The string “the”
appears constantly. How do we exploit this?

In 1977 and 1978, Jacob Ziv and Abraham Lempel published two
papers that changed everything. Their algorithms—now called LZ77

and LZ78—learn the source statistics on the fly. They achieve optimal
compression without knowing anything about the source in advance.

This is called universal compression. It is one of the most remarkable
results in the field.

The Key Insight: Patterns Repeat

If a source has low entropy, it must have structure. Structure means
patterns. Patterns repeat.

Consider English text. The word “the” appears about 7% of the time
in typical prose. The digraph “th” is even more common. The phrase
“in the” recurs constantly. If we can recognize these repetitions and
reference earlier occurrences instead of spelling them out each time, we
save bits.

This is the Lempel-Ziv insight: build a dictionary of patterns as you
read; when you see a pattern again, just point to the dictionary entry. Lempel-Ziv algorithms do not estimate

probabilities. They just look for rep-
etitions. Yet they achieve optimal
compression—a remarkable fact.LZ77: The Sliding Window

The first Lempel-Ziv algorithm maintains a “sliding window” of re-
cently seen symbols. To encode the current position, find the longest
match in the window and encode it as a reference.

The encoding for each step is a triple: (distance back to match, length
of match, next symbol).

Example: Encode “ABRACADABRA.”
We process left to right, maintaining a window of what we have

already seen.

• Position 0: No history yet. Output (0, 0, A)—no match, next symbol
is A.

• Position 1: Window contains “A.” The symbol B does not match.
Output (0, 0, B).

• Position 2: Window contains “AB.” The symbol R does not match.
Output (0, 0, R).

• Position 3: Window contains “ABR.” The symbol A matches position

information theory 77

0. Match length 1, next symbol is C. Output (3, 1, C)—go back 3

positions, copy 1 symbol, then output C.

• Position 5: Window contains “ABRAC.” The symbol A matches
position 0 or position 3. Match length 1, next symbol is D. Output
(2, 1, D) or (5, 1, D).

• Position 7: Window contains “ABRACAD.” Starting from A, we can
match “ABRA” from the beginning—4 symbols! Output (7, 4,−) or
similar, indicating the end.

A B R A C A D A B R A

0 1 2 3 4 5 6 7 8 9 10

Match 4 symbols

Figure 5.4: LZ77 finding a match: “ABRA”
at position 7 matches “ABRA” at position
0.

Instead of transmitting 11 symbols, we transmit a smaller encoded
form. The savings grow dramatically with longer texts, because longer
matches become possible.

LZ78: The Explicit Dictionary

A year later, Ziv and Lempel published a variant that maintains an
explicit dictionary rather than a sliding window.

The algorithm parses the input into phrases, where each phrase
extends a previous phrase by exactly one symbol. Each phrase is
encoded as (dictionary index, new symbol) and added to the dictionary.

Example: Encode “AABABCABABC.”

• See “A.” Not in dictionary. Output (0, A). Add “A” as entry 1.

• See “A” again, then “B.” Entry 1 is “A,” so we have “A” extended by
“B” = “AB.” Output (1, B). Add “AB” as entry 2.

• See “A” again, then “B,” then “C.” Entry 2 is “AB,” so we have “AB”
extended by “C” = “ABC.” Output (2, C). Add “ABC” as entry 3.

• And so on.

The dictionary grows to capture recurring patterns. Later occur-
rences of “ABC” would reference entry 3 directly.

LZW: The Practical Refinement

In 1984, Terry Welch refined LZ78 into what became the most widely
used variant: LZW. LZW was used in GIF images and the

Unix compress utility. Patent disputes
eventually pushed the web toward PNG,
which uses LZ77 variants instead.

The key improvement: initialize the dictionary with all single sym-
bols, so we never need to transmit raw symbols—only dictionary refer-
ences. This simplifies the encoding and slightly improves compression.

LZW became ubiquitous. The GIF image format used it. The Unix
compress command used it. And then Unisys, which held the patent,
began demanding licensing fees. The resulting controversy helped
drive the development of PNG and the broader move toward patent-
free formats.

78 claude opus 4.5

The Universality Theorem

Here is the remarkable fact about Lempel-Ziv algorithms:
Theorem (Ziv-Lempel): For any stationary ergodic source, the com-

pression rate of LZ77 (and LZ78) converges to the entropy rate as the
input length goes to infinity. Without knowing anything about the

source statistics, Lempel-Ziv achieves the
information-theoretic optimum. It learns
the source from the data itself.

This is universal compression. The algorithm knows nothing about
the source—no probability estimates, no model, no assumptions beyond
stationarity and ergodicity. Yet it achieves entropy.

Why does this work? The intuition is beautiful:

1. Low-entropy sources have predictable patterns.

2. Predictable patterns must repeat (otherwise they would not be pre-
dictable).

3. Repetitions get captured in the dictionary (or found in the sliding
window).

4. Referencing dictionary entries is cheap.

5. Therefore, low-entropy sources compress well.

The algorithm does not compute entropy. It does not estimate
probabilities. It just looks for repetitions. And yet this is sufficient to
achieve the fundamental limit.

5.5 Compression in Practice: What You Use Every Day

Let us connect these algorithms to systems you encounter constantly,
often without realizing it.

gzip and DEFLATE

When you download a file from the web, it is often compressed with
gzip. When you unzip a ZIP archive, you are using the same algorithm.
When your browser loads a PNG image, the same again.

The underlying algorithm is DEFLATE, which combines LZ77 with
Huffman coding:

1. Apply LZ77 to find repeated patterns. The output is a stream of
literal bytes (symbols that did not match) and (distance, length) pairs
(references to earlier occurrences).

2. Apply Huffman coding to this stream. The Huffman code is opti-
mized for the specific data being compressed.

DEFLATE combines the pattern-finding
power of LZ77 with the probability-based
efficiency of Huffman coding. Each com-
pensates for the other’s weaknesses.

Why the combination? LZ77 captures long-range repetitions—entire
words and phrases that recur. Huffman squeezes out the remaining

information theory 79

redundancy in the references themselves (some distances and lengths
are more common than others).

Typical compression ratios:

• English text: 3:1 to 4:1

• Source code: 4:1 to 5:1

• Already-compressed data (JPEG, MP3): essentially 1:1—no further
compression possible

bzip2 and the Burrows-Wheeler Transform

A different approach: instead of finding repetitions directly, transform
the data to group similar characters together, then compress the trans-
formed data.

The Burrows-Wheeler Transform (BWT) is a remarkable reversible
permutation. It rearranges the input so that characters from similar con-
texts cluster together. After BWT, a text that had scattered occurrences
of “t” followed by “h” now has many “t”s in a row.

After BWT, apply move-to-front encoding (recently seen symbols
get small numbers) and then Huffman coding. The result is bzip2,
which typically beats gzip by 10-20% on text—at the cost of slower
compression and decompression.

PNG: Lossless Image Compression

Images have structure that text lacks: two-dimensional correlation. A
blue pixel is likely to be next to another blue pixel.

PNG exploits this with prediction. Before compressing, it predicts
each pixel from its neighbors (above, left, and above-left). It then
encodes the prediction error—the difference between the actual pixel and
the predicted one. Prediction reduces redundancy before

compression. If the predictor is good,
the errors are small numbers clustered
around zero—easy to compress.

If neighboring pixels are similar, the prediction errors are small.
Small numbers concentrated around zero compress far better than the
original pixel values.

After prediction, DEFLATE compresses the error stream.
Typical compression ratios:

• Photographs: 2:1 (lots of noise defeats prediction)

• Screenshots with large flat regions: 10:1 or better

• Line art and diagrams: 20:1 or more

80 claude opus 4.5

JPEG: Crossing into Lossy Territory

So far, everything has been lossless—the original can be perfectly re-
constructed. JPEG crosses a boundary: it discards information that
humans do not notice. JPEG trades fidelity for compression.

The “quality” setting controls how much
information is discarded. Low quality
means small files but visible artifacts.

The JPEG pipeline:

1. Convert RGB to YCbCr (luminance plus two chrominance channels).
The human eye is more sensitive to luminance than to color, so we
can treat them differently.

2. Subsample the chrominance channels—keep only every second pixel
in each direction. This alone gives 2:1 compression with minimal
visible effect.

3. Apply the Discrete Cosine Transform (DCT) to convert from spa-
tial to frequency domain. The image becomes a set of frequency
coefficients.

4. Quantize the coefficients: divide by a quantization matrix and round.
High-frequency components (fine detail) are quantized more coarsely,
often to zero. This is where information is lost.

5. Entropy code the remaining coefficients with Huffman coding.

The quantization step implements rate-distortion theory in practice.
The quantization matrix controls the tradeoff: coarser quantization
means smaller files but more visible artifacts.

Typical compression: 10:1 to 20:1 with acceptable quality for pho-
tographs. At lower quality settings, you see the characteristic JPEG
artifacts—blocky regions and ringing around sharp edges.

Video: H.264 and Beyond

Video compression achieves ratios of 100:1 or more by exploiting tem-
poral redundancy: adjacent frames are nearly identical. Modern video codecs use motion com-

pensation: “This block moved 3 pixels
right since the last frame.” Only the mo-
tion vectors and residual errors need to
be encoded.

H.264 (and its successor H.265/HEVC) use:

• Spatial prediction (like JPEG)

• Temporal prediction: predict each block from previous frames

• Motion compensation: when an object moves, encode the motion
vector rather than the pixels

• Arithmetic coding (CABAC—Context-Adaptive Binary Arithmetic
Coding), which adapts its probability model based on context

A two-hour movie might be 8 GB uncompressed (at 1080p) but
compress to 2-4 GB with excellent quality. The savings come largely
from exploiting the fact that most frames are similar to their neighbors.

information theory 81

5.6 Actual Numbers: Compression Ratios on Real Data

Let us ground the theory in concrete measurements.

Text Compression

Method Size Bits/char

None 5.4 MB 8.0
Huffman 3.0 MB 4.5
gzip 1.9 MB 2.8
bzip2 1.4 MB 2.1
xz 1.3 MB 1.9

Table 5.1: Compressing the complete
works of Shakespeare (5.4 MB).

The complete works of Shakespeare: 5.4 MB of plain text.
Character Huffman achieves about 4.5 bits per character—close to

the single-character entropy of English. But gzip does much better: 2.8
bits per character. It exploits word-level and phrase-level patterns that
character-by-character coding misses.

The best general-purpose compressors (xz, using LZMA) reach 1.9
bits per character. The entropy rate of English, accounting for all
context, is estimated at 1.0-1.5 bits per character. We are approaching
but not quite reaching the limit.

Why the gap? Practical algorithms make approximations. They
use finite windows and dictionaries. They do not perfectly model
long-range dependencies. There is room for improvement—but not
much.

DNA Sequences

DNA uses four symbols: A, C, G, T. If the sequence were random,
entropy would be 2 bits per base (since log2 4 = 2). DNA is not random—it has genes, regula-

tory regions, repeated sequences. Special-
ized compressors exploit this structure.

General-purpose compressors achieve about 1.5 bits per base on
human genome data. Specialized genomic compressors, exploiting the
structure of DNA (repeated sequences, reverse complements, similar
regions across chromosomes), achieve 0.5-1.0 bits per base.

The gap between general and specialized compressors is larger here
than for text. DNA has structure that general algorithms do not exploit
well.

What Cannot Be Compressed

Truly random data is incompressible. If bytes are independent and
uniformly distributed, entropy is 8 bits per byte, and no algorithm can
do better. Claims of “super-compression” that beats

entropy are either fraudulent or measur-
ing the wrong thing. The source coding
theorem is not negotiable.

Already-compressed files (JPEG, MP3, ZIP) are essentially incom-
pressible. They have already extracted the structure; what remains is
nearly random.

Encrypted data is incompressible without the key. Good encryption
makes ciphertext indistinguishable from random—that is the point.

You might ask: “But I have seen programs that claim to compress
anything! They must violate information theory.”

82 claude opus 4.5

They do not. Such claims are either fraudulent, measuring against an
inefficient baseline, or working only on specific data types. The source
coding theorem is a mathematical fact. You cannot compress below
entropy any more than you can build a perpetual motion machine.

5.7 What Compression Teaches Us

Let us step back and reflect on what we have learned.

Compression Is Understanding

To compress data is to find its patterns, its regularities, its structure.
A good compressor must predict what comes next; the better the
prediction, the fewer bits needed to correct it. Scientific laws are compression algo-

rithms for nature. Newton’s laws “com-
press” the trajectories of all falling objects
into a few equations.

This is not just a metaphor. Consider: if you know that a sequence
consists of alternating 0s and 1s, you can compress it to almost nothing—
just “alternating, starting with 0, length 1000.” If you know nothing
about a sequence, you must transmit it verbatim.

Knowledge enables compression. Compression reveals knowledge.
There is a provocative claim here: perhaps all understanding is

compression—finding the shortest description of the regularities in
experience. This is the intuition behind the Minimum Description
Length principle, which we will explore in Chapter 12.

The Incompressible Core

Every source has an irreducible core: the entropy. This is the genuine
unpredictability, the true surprise. No cleverness can compress it
further.

For English text, about 1-1.5 bits per character is irreducible—the
genuine uncertainty about which word comes next.

For a physical system, the entropy is the logarithm of the number of
microstates compatible with the macrostate—the information we would
need to specify exactly which microstate the system occupies. Entropy measures what we cannot pre-

dict. It is both the limit of compression
and the measure of our ignorance.

Is this entropy “real” or just a reflection of our ignorance? This is
a deep question. In quantum mechanics, the answer seems to be that
some unpredictability is fundamental—not a failure of knowledge but
a feature of nature. We will return to this in Chapter 14.

The Miracle of Universal Compression

Lempel-Ziv algorithms know nothing about the source. They make no
assumptions about probabilities. They just look for repetitions. And
yet they achieve the information-theoretic optimum.

information theory 83

This is remarkable. The algorithm does not compute entropy. It does
not need to. The patterns are there in the data, and finding them is
sufficient.

There is a connection here to machine learning. Modern language
models (GPT and its successors) are, at their core, sophisticated com-
pression algorithms. They learn to predict the next token—which is
exactly what a good compressor does. The hypothesis that better com-
pression implies better understanding of language is taken seriously by
researchers.

But we should be careful. Compression is necessary for understand-
ing, but is it sufficient? A lookup table that memorizes everything
compresses perfectly but understands nothing. The relationship be-
tween compression, prediction, and intelligence is deep and not fully
understood.

5.8 From Compression to Noise

We have crossed from theory to practice. Given Shannon’s limit—
entropy—we now know how to approach it:

• Huffman for quick-and-simple symbol-by-symbol coding

• Arithmetic coding for highly skewed distributions

• Lempel-Ziv for unknown sources

These are not academic exercises. They are the engines inside gzip,
PNG, H.264, and every compression system you use.

But all of this assumes something we have not questioned: that
communication is perfect. We encode a message, transmit the bits, and
assume they arrive uncorrupted. Every 0 sent arrives as 0. Every 1

arrives as 1. Compression removes redundancy to
minimize bits. Error correction adds re-
dundancy to survive noise. They seem
opposite but are two faces of the same
coin.

This is a fiction. Real channels have noise. Bits flip. Packets drop. Sig-
nals fade in and out. The wireless signal from your phone, the scratched
surface of a CD, the fluctuating voltage in a wire—all introduce errors.

Is reliable communication possible in the presence of noise? Can we
send a message and be confident it arrives correctly?

Shannon’s second great theorem answers yes—but only if we do
not try to communicate too fast. There is a maximum rate, called the
channel capacity, beyond which reliable communication is impossible.
Below capacity, arbitrary reliability can be achieved with clever coding.

This is the subject of the next three chapters. We will define channel
capacity, prove Shannon’s noisy channel coding theorem, and develop
the error-correcting codes that make modern communication possible.

The source coding theorem told us how much we can compress. The
noisy channel coding theorem will tell us how fast we can communicate.

84 claude opus 4.5

Together, they form the foundation of information theory—and the
foundation of the digital world.

6
Channel Capacity

Suppose you need to send a message across a room where someone is
playing loud music. You shout; your friend hears something—maybe
what you said, maybe not. You could repeat yourself: say each word
twice, three times, ten times. Eventually your friend will probably get
it right. But here is the catch: you have limited time. The concert starts
in five minutes. How many messages can you reliably convey before
then? The problem of communication over

noisy channels seems to present an im-
possible tradeoff: more repetition means
more reliability but slower communica-
tion. Shannon showed this intuition is
wrong.

The naive answer seems depressing. Any amount of noise requires
some redundancy to overcome. The lower you want your error proba-
bility, the more redundancy you need. In the limit of perfect reliability—
zero errors, ever—you would need infinite redundancy. Your rate of
actual information transfer would drop to zero. If you want perfection,
you can communicate nothing at all.

But this cannot be right. Telephone networks work. Satellite links
work. The internet works—even when packets get corrupted and bits
get flipped. How?

The answer, discovered by Claude Shannon in 1948, is one of the
most remarkable results in all of science. There exists a quantity—the
channel capacity—below which reliable communication is possible and
above which it is not. You do not need infinite repetition to achieve
arbitrarily small error probability. You just need to stay below capacity.

This is not obvious. In fact, it is so non-obvious that many engineers
refused to believe it at first. The natural intuition is that there should be
a smooth tradeoff: lower rate means better reliability, but never perfect
reliability, always some errors sneaking through. Shannon showed this
intuition is completely wrong. Below capacity, you can have arbitrarily
small error probability—as close to zero as you like. Above capacity,
errors are inevitable no matter how clever you are. Shannon’s result cleaves communication

into two regimes: below capacity (reli-
able communication possible) and above
capacity (reliable communication impos-
sible). There is no middle ground.

The capacity is defined in terms of mutual information—the quantity
we developed in Chapter 3. Our task now is to understand what this
definition means, compute it for specific channels, and see why it

86 claude opus 4.5

represents a genuine physical limit on communication. In the next
chapter, we will prove that capacity is achievable. But first we must
understand what we are trying to achieve.

6.1 What Is Channel Capacity?

Let us set up the problem precisely. We have a communication channel
described by a conditional probability P(Y|X): given input X, the
channel produces output Y according to this distribution. The channel
is noisy, meaning Y is not a deterministic function of X—randomness
creeps in.

We want to send one of M possible messages through n uses of the
channel. The encoder takes a message m ∈ {1, 2, . . . , M} and produces
a sequence of channel inputs x1, x2, . . . , xn. The decoder observes the
channel outputs y1, y2, . . . , yn and produces an estimate m̂ of which
message was sent. The rate R measures information per

channel use. If we send one of M mes-
sages in n uses, we are conveying log2 M
bits of information in n transmissions, so
R = (log2 M)/n bits per channel use.

The rate of communication is

R =
log2 M

n
bits per channel use.

The error probability is Pe = P(m̂ 6= m)—the probability that the
decoder gets it wrong.

Now we can ask: what rates are achievable? A rate R is achievable
if there exist encoding and decoding schemes such that, as the block
length n grows, the error probability Pe can be made arbitrarily small.
Not just small—arbitrarily small. As small as 10−6, or 10−100, or any
positive number you name.

Capacity as Maximum Mutual Information

The channel capacity is defined as

C = max
P(X)

I(X; Y)

where the maximum is over all possible input distributions P(X).
Let us unpack this definition carefully. The channel P(Y|X) is given

by nature—it is the physics of our communication medium. We cannot
change how noise corrupts our signal. But we can choose how we use
the channel. Should we favor 0s over 1s? Should our signal be Gaussian
or uniform? Should we use some symbols more than others? The input
distribution P(X) is the one thing we control. The capacity represents the best possible

performance with the optimal use of the
channel. It is a property of the channel it-
self, not of any particular coding scheme.

The capacity is what we get when we choose optimally.
Why mutual information? Recall from Chapter 3 that I(X; Y) mea-

sures how much the output tells us about the input. It quantifies the
statistical dependence between what we send and what we receive.

information theory 87

If I(X; Y) = 0, the output is statistically independent of the input.
The channel is useless—what comes out has nothing to do with what
went in. Looking at the output tells you nothing about the message.

If I(X; Y) = H(X), the output determines the input completely.
Given the output, there is no remaining uncertainty about what was
sent. The channel is perfect.

For noisy channels, we get something in between. The mutual
information quantifies exactly how much information flows through.

Why Maximizing H(Y) Is Not Enough

You might think: “The output carries the information. Should we not
just maximize H(Y)?”

Consider a noiseless channel where Y = X. If we choose P(X =

0) = 1 (always send 0), then H(Y) = 0. If we choose P(X) uniform
over {0, 1}, then H(Y) = 1 bit. So yes, maximizing H(Y) gives the
uniform input, and that is indeed optimal here.

But for noisy channels, the story is more subtle. What we want is
not large H(Y) per se, but large I(X; Y) = H(Y)− H(Y|X). The term
H(Y|X) represents the noise—the randomness in the output that is
unrelated to the input. We cannot reduce this; it is intrinsic to the
channel. What we can do is choose P(X) to maximize H(Y) while
keeping H(Y|X) fixed.

For some channels, the capacity-achieving input distribution is not
uniform. The optimization problem can be nontrivial.

What the Coding Theorem Will Say

Let me preview what we will prove in Chapter 7. The channel coding
theorem has two parts:

Achievability: If R < C, there exist codes with error probability
Pe → 0 as n→ ∞.

Converse: If R > C, every code has error probability bounded away
from zero. The coding theorem says capacity is a

sharp threshold. This is not an approxi-
mation or a rule of thumb. It is a mathe-
matical theorem.

In other words, capacity is a sharp threshold. Below it, we can do
arbitrarily well—not just “pretty well,” but as close to perfect as we
want. Above it, no amount of cleverness helps.

The remarkable thing is that below the threshold, the improvement
is not gradual. Going from rate 0.9C to rate 0.8C does not just give
you somewhat better reliability. Both rates can achieve arbitrarily small
error probability. The difference is in how long your codewords need
to be to achieve a given error level, not in what error level is ultimately
achievable.

But I am getting ahead of myself. First, let us compute capacity for
some specific channels.

88 claude opus 4.5

6.2 The Binary Symmetric Channel

The simplest interesting noisy channel is the binary symmetric channel
(BSC) with crossover probability p. The input is a bit: X ∈ {0, 1}. The
output is also a bit: Y ∈ {0, 1}. With probability 1− p, the output
equals the input. With probability p, the bit gets flipped.

0

1

0

1

1− p

1− p

p
pInput Output

Figure 6.1: The binary symmetric channel
with crossover probability p. Each bit is
flipped independently with probability
p.

Formally:

P(Y = 0|X = 0) = 1− p

P(Y = 1|X = 0) = p

P(Y = 0|X = 1) = p

P(Y = 1|X = 1) = 1− p

The channel is “symmetric” because it treats 0 and 1 the same way.
The probability of an error does not depend on which bit was sent.

Computing the Capacity

Let q = P(X = 1), so P(X = 0) = 1− q. We need to find the value of q
that maximizes I(X; Y).

Step 1: Compute H(Y).
What is the probability that Y = 1?

P(Y = 1) = P(Y = 1|X = 0)P(X = 0) + P(Y = 1|X = 1)P(X = 1)

= p(1− q) + (1− p)q

= p− pq + q− pq

= p + q(1− 2p).

Let us call this quantity r = p + q(1− 2p). Then H(Y) = Hb(r),
where Hb is the binary entropy function:

Hb(r) = −r log2 r− (1− r) log2(1− r).

Step 2: Compute H(Y|X). The key property of the BSC: the noise
entropy H(Y|X) does not depend on the
input distribution. The channel flips bits
at rate p regardless of what we send.

What is the entropy of Y given that we know X?
If X = 0: Y is 0 with probability 1− p and 1 with probability p. So

H(Y|X = 0) = Hb(p).
If X = 1: Y is 0 with probability p and 1 with probability 1− p. So

H(Y|X = 1) = Hb(p).
Either way, the conditional entropy is Hb(p). This is the entropy of

“flip or not flip”—the noise of the channel. It does not depend on what
we sent, only on the channel’s crossover probability.

Therefore:

H(Y|X) = P(X = 0)H(Y|X = 0)+ P(X = 1)H(Y|X = 1) = (1− q)Hb(p)+ qHb(p) = Hb(p).

information theory 89

Step 3: Compute mutual information.

I(X; Y) = H(Y)− H(Y|X) = Hb(r)− Hb(p)

where r = p + q(1− 2p).
Step 4: Maximize over q.
Since Hb(p) does not depend on q, we just need to maximize Hb(r).

The binary entropy function Hb is maximized when its argument is
1/2. So we want:

r = p + q(1− 2p) =
1
2

.

Solving for q:

q =
1/2− p
1− 2p

=
1
2

.

The capacity-achieving input distribution is uniform: use 0 and 1

with equal probability.

The BSC Capacity Formula

0 0.1 0.2 0.3 0.4 0.5
0

0.25

0.5

0.75

1

Crossover probability p

C
ap

ac
it

y
(b

it
s/

us
e)

Figure 6.2: Capacity of the BSC as a func-
tion of crossover probability p. At p = 0,
capacity is 1 bit. At p = 0.5, capacity is
zero.

With q = 1/2, we have r = 1/2, so H(Y) = Hb(1/2) = 1 bit. The
capacity is:

CBSC(p) = 1− Hb(p) bits per channel use.

Let us compute some actual numbers.

p Hb(p) CBSC(p)

0 0 1.000

0.01 0.081 0.919

0.05 0.286 0.714

0.10 0.469 0.531

0.20 0.722 0.278

0.30 0.881 0.119

0.50 1.000 0.000

Table 6.1: BSC capacity for various
crossover probabilities.

Several observations are worth making.
At p = 0 (perfect channel): Capacity is 1 bit per use. Every bit sent

is a bit received. There is no noise to overcome.
At p = 0.5 (random channel): Capacity is zero. The output is

statistically independent of the input—each output bit is equally likely
to be 0 or 1, regardless of what was sent. You might as well be shouting
into a void. At p = 0.1, one bit in ten gets flipped,

yet we can still reliably communicate at
more than half a bit per channel use. The
coding theorem will explain how.

At p = 0.1: One bit in ten gets flipped, on average. Yet capacity
is 0.531 bits per channel use—more than half a bit! We can reliably
communicate substantial information despite 10% of our bits being
corrupted.

90 claude opus 4.5

You might say, “Half a bit? What does it mean to send half a bit?”
Remember that capacity is about rates over many uses. We cannot

send half a bit in one channel use. But over 1000 uses of a BSC with
p = 0.1, we can reliably send 531 bits of information, even though
about 100 of those 1000 transmissions will be corrupted. How is this
possible? That is what the coding theorem will tell us. The key is to
spread information across many channel uses in a clever way, so that
local errors do not destroy the global message.

One more observation: C(p) = C(1− p). A channel that always flips
is just as good as one that never flips—you just need to know which
you have. If p = 0.9, every bit gets flipped with 90% probability. But
that means the output is a noisy version of the complement of the input.
Decode accordingly, and you have the same capacity as a channel with
p = 0.1.

6.3 The Binary Erasure Channel

Another fundamental channel model is the binary erasure channel (BEC)
with erasure probability ε. The input is a bit. The output is either that
same bit, or a special symbol “?” indicating that the bit was lost.

0

1

0

?

1

1− ε

1− ε

ε

ε

Input Output

Figure 6.3: The binary erasure channel
with erasure probability ε. Bits are either
delivered perfectly or replaced with “?”.

Formally:

P(Y = 0|X = 0) = 1− ε

P(Y = ?|X = 0) = ε

P(Y = 1|X = 1) = 1− ε

P(Y = ?|X = 1) = ε

The channel either delivers the bit perfectly or confesses that it lost
it. It never lies—when you receive a 0 or 1, you know it is correct. The
uncertainty is confined to the erasures.

Computing the Capacity

Let q = P(X = 1). We could compute H(Y) and H(Y|X) as before,
but there is an easier approach. Let us use the alternative expression
I(X; Y) = H(X)− H(X|Y).

We have H(X) = Hb(q).
For H(X|Y), we need to think about what we know about X after

observing Y:

• If Y = 0: We know with certainty that X = 0. So H(X|Y = 0) = 0.

• If Y = 1: We know with certainty that X = 1. So H(X|Y = 1) = 0.

• If Y = ?: We know nothing new. Our uncertainty about X is still
Hb(q).

information theory 91

The erasure channel is honest: when it
delivers a bit, the bit is correct. When
it loses a bit, it tells you. This honesty
makes the channel easier to analyze—and
easier to achieve capacity on.

The output probabilities are:

P(Y = 0) = (1− ε)(1− q)

P(Y = 1) = (1− ε)q

P(Y = ?) = ε

Therefore:

H(X|Y) = P(Y = 0) · 0 + P(Y = 1) · 0 + P(Y = ?) · Hb(q)

= ε · Hb(q).

The mutual information is:

I(X; Y) = Hb(q)− ε · Hb(q) = (1− ε)Hb(q).

To maximize over q: Hb(q) is maximized at q = 1/2, giving Hb(1/2) =
1.

The BEC Capacity Formula

CBEC(ε) = 1− ε bits per channel use.

The capacity of the erasure channel is exactly 1 minus the erasure
probability. If half your bits get erased, you can reliably send half a bit
per channel use. If 10% get erased, you can send 0.9 bits per channel
use.

The formula could not be simpler. And it reveals something impor-
tant: erasures are much less damaging than errors.

Erasures versus Errors

Compare the two channels at the same “loss rate”:

• BSC with p = 0.1: C = 0.531 bits per use

• BEC with ε = 0.1: C = 0.9 bits per use
Erasures tell you what you do not know.
Errors let you think you know when you
do not. The certainty that comes from
knowing where the losses are has value.

The erasure channel has nearly twice the capacity! Why?
When the BSC flips a bit, you receive a 0 or a 1, but you do not know

whether it is correct. You might think you know the message when you
do not. This uncertainty is insidious—it spreads confusion.

When the BEC erases a bit, you receive a “?”. You know exactly
which bits are missing. You can design your code to recover from
known missing pieces. The certainty about what you received—even
when that certainty is “I received nothing”—has value.

This insight matters in practice. Packet networks (like the internet)
often use protocols that detect corrupted packets and request retrans-
mission. A detected error becomes an erasure—much easier to handle.

92 claude opus 4.5

6.4 The Gaussian Channel

The BSC and BEC are discrete channels: inputs and outputs take finitely
many values. The Gaussian channel is continuous, and it models many
physical communication systems: radio, telephone, optical fiber.

The model is simple:

Y = X + Z

where Z ∼ N (0, N) is Gaussian noise with variance N, independent of
the input X. The Gaussian channel captures the

essence of analog communication. The
input is a signal, the noise is thermal fluc-
tuations, and the output is the corrupted
signal.

There is one crucial constraint: the input must have bounded average
power. We require

E[X2] ≤ P.

Without this constraint, we could communicate any amount of
information by simply increasing the signal strength. The power con-
straint is the physics: every transmitter has limited power.

Why Gaussian Input Is Optimal

For continuous random variables, we use differential entropy h instead
of discrete entropy H. The mutual information is

I(X; Y) = h(Y)− h(Y|X).

Since Y = X + Z where Z is independent of X:

h(Y|X) = h(X + Z|X) = h(Z|X) = h(Z) =
1
2

log2(2πeN).

The noise entropy h(Z) is fixed—we cannot change the noise. To
maximize I(X; Y), we must maximize h(Y).

Now, a fundamental result from information theory: among all dis-
tributions with a given variance, the Gaussian distribution has the max-
imum differential entropy. If Var(Y) = σ2, then h(Y) ≤ 1

2 log2(2πeσ2),
with equality if and only if Y is Gaussian.

What is the variance of Y? Since Y = X + Z with X and Z indepen-
dent:

Var(Y) = Var(X) + Var(Z) = E[X2] + N ≤ P + N.
The Gaussian input maximizes the out-
put entropy, and hence the mutual
information. This is a beautiful conse-
quence of the entropy-maximizing prop-
erty of the Gaussian distribution.

The variance is maximized when E[X2] = P (using all available
power). And h(Y) is maximized when Y is Gaussian, which happens
when X is Gaussian (since the sum of independent Gaussians is Gaus-
sian).

Therefore: the capacity-achieving input is X ∼ N (0, P).

information theory 93

The Capacity Formula

With Gaussian input X ∼ N (0, P):

h(Y) =
1
2

log2(2πe(P + N))

h(Y|X) =
1
2

log2(2πeN)

The capacity is:

C = h(Y)− h(Y|X)

=
1
2

log2(2πe(P + N))− 1
2

log2(2πeN)

=
1
2

log2
P + N

N

C =
1
2

log2

(
1 +

P
N

)
bits per channel use.

This is Shannon’s famous formula. The ratio SNR = P/N is the
signal-to-noise ratio—the fundamental quantity governing analog com-
munication.

Actual Numbers

Let us compute capacities for various signal-to-noise ratios.

SNR (P/N) SNR (dB) C (bits/use) Comment

0.1 −10 0.069 Very noisy
0.5 −3.0 0.292

1.0 0 0.500 Signal = noise
3.0 4.8 1.000 One bit per use
7.0 8.5 1.500

15.0 11.8 2.000 Two bits per use
31.0 14.9 2.500

63.0 18.0 3.000

Table 6.2: Gaussian channel capacity for
various signal-to-noise ratios. SNR in dB
is 10 log10(SNR).

The signal-to-noise ratio is measured in
decibels (dB): SNRdB = 10 log10(P/N).
Every 3 dB doubles the power ratio.

Several patterns emerge.
At SNR = 1 (0 dB): Signal and noise have equal power, and capacity

is exactly 0.5 bits per use. This is the breakeven point.
At SNR = 3 (about 5 dB): Capacity is 1 bit per use. Getting that first

bit requires about 5 dB of SNR.
Doubling the capacity requires roughly quadrupling the SNR. To

go from 1 bit/use to 2 bits/use, we need to go from SNR = 3 to SNR
= 15—an increase of a factor of 5, or about 7 dB. There is a law of
diminishing returns: the first bit is cheap, but each additional bit costs
more power.

94 claude opus 4.5

At high SNR, the formula simplifies:

C ≈ 1
2

log2
P
N

=
1
2
· SNRdB

3.01
≈ SNRdB

6
.

You get about one bit per 3 dB of signal-to-noise ratio in the high-
SNR regime.

A Real-World Calculation

Let me make this concrete with a practical example. Consider a cellular
data link with:

• Bandwidth: W = 10 MHz

• SNR: 20 dB (which means P/N = 100)
Modern cellular systems (LTE, 5G) rou-
tinely achieve 50-75% of the Shannon
limit. This represents 70+ years of
progress in coding theory.

For a bandwidth W, we can make about W channel uses per second
(this is a deep result from sampling theory—the Nyquist rate). So the
channel capacity in bits per second is:

Cbits/sec = W · Cbits/use = W · 1
2

log2(1 + SNR).

With our numbers:

C = 107 · 1
2

log2(101) = 107 · 6.66
2
≈ 33 Mbps.

Modern LTE achieves around 20-25 Mbps under similar conditions—
about 70% of the theoretical limit. This represents 70 years of progress
since Shannon’s 1948 paper.

The Shannon Limit

The curve C = 1
2 log2(1 + P/N) represents an absolute bound. No

communication system can operate above this curve. Engineers call it
the Shannon limit.

−5 0 5 10 15 20
0

1

2

3
Operating points

SNR (dB)

C
ap

ac
it

y
(b

it
s/

us
e)

Figure 6.4: The Shannon limit for the
Gaussian channel. No system can operate
above this curve. Red points show typical
operating regimes.

For decades, practical systems operated far below the Shannon limit.
The gap between what was theoretically possible and what could
actually be built seemed unbridgeable. In 1993, turbo codes achieved
rates within 0.7 dB of capacity—the first practical codes to approach
the limit. Around the same time, LDPC codes (originally proposed by
Gallager in 1960 but ignored for decades) were rediscovered and shown
to also approach capacity.

Shannon proved in 1948 that capacity was achievable. It took until
1993 to find codes that actually approached it. This is the gap between
existence and construction—a recurring theme in information theory.

information theory 95

6.5 Water-Filling for Parallel Channels

So far, we have considered single channels. But many communication
systems use multiple channels in parallel. A radio might transmit on
several frequency bands simultaneously. A DSL modem uses thousands
of parallel sub-channels. How should we allocate resources across
channels?

Suppose we have K independent parallel Gaussian channels:

Yk = Xk + Zk, k = 1, 2, . . . , K

where each Zk ∼ N (0, Nk) has its own noise variance. We have a total
power budget P to distribute among the channels:

K

∑
k=1

Pk ≤ P, Pk ≥ 0.

The question is: how should we allocate power to maximize total
capacity?

The Water-Filling Solution

Let me give you an image that captures the solution perfectly. The water-filling metaphor: pour wa-
ter (power) into containers of different
depths (noise levels). Water seeks its own
level, putting more power where noise is
low.

Imagine the noise levels N1, N2, . . . , NK as the depths of K containers.
You pour water (power) into these containers. Water naturally seeks its
own level. The resulting allocation is:

• Channels with less noise (shallower containers) get more power.

• Channels with more noise (deeper containers) get less power.

• Very noisy channels might get no power at all—it is not worth using
them.

λ

N1

N2

N3P1

P2
P3

Figure 6.5: Water-filling: noise levels Nk
are container depths. Power fills up to
a common level λ. Noisier channels get
less power.

Mathematically, the optimal power allocation is:

Pk = max(λ− Nk, 0)

where λ (the “water level”) is chosen so that ∑k Pk = P.
Channels with Nk < λ receive power Pk = λ− Nk. Channels with

Nk ≥ λ receive no power—they are too noisy to be worth using.

A Worked Example

Consider three parallel channels with noise variances N1 = 1, N2 = 2,
N3 = 5. We have total power P = 6.

Attempt 1: Assume all three channels are used. The water level λ

satisfies:
(λ− 1) + (λ− 2) + (λ− 5) = 6

96 claude opus 4.5

3λ− 8 = 6 =⇒ λ =
14
3
≈ 4.67.

This gives:

P1 = 4.67− 1 = 3.67

P2 = 4.67− 2 = 2.67

P3 = 4.67− 5 = −0.33

Negative power! Channel 3 is too noisy—at this water level, we
should not use it at all.

Attempt 2: Use only channels 1 and 2.

(λ− 1) + (λ− 2) = 6

2λ− 3 = 6 =⇒ λ = 4.5.

This gives:

P1 = 4.5− 1 = 3.5

P2 = 4.5− 2 = 2.5

P3 = 0

All non-negative. This is the optimal allocation. The noisiest channel gets no power at all.
It is better to concentrate resources on
good channels than to spread them thin.

Compute the total capacity:

C =
1
2

log2

(
1 +

3.5
1

)
+

1
2

log2

(
1 +

2.5
2

)
+ 0

=
1
2

log2(4.5) +
1
2

log2(2.25)

≈ 1.09 + 0.59 = 1.68 bits per use.

Compare this to equal power allocation (P/3 = 2 per channel):

Cequal =
1
2

log2(3) +
1
2

log2(2) +
1
2

log2(1.4)

≈ 0.79 + 0.50 + 0.24 = 1.53 bits per use.

Water-filling gains about 10% over equal allocation in this example.
The gain can be larger when channel qualities vary more dramatically.

Applications

Water-filling appears throughout modern communications.
OFDM (Orthogonal Frequency Division Multiplexing) is used in

WiFi, LTE, 5G, and DSL. It divides the available bandwidth into many
parallel sub-channels, each a narrow frequency band. The noise varies
across frequencies (some bands are cleaner than others), and water-
filling tells you how to allocate power optimally.

information theory 97

MIMO (Multiple-Input Multiple-Output) systems use multiple an-
tennas to create parallel spatial channels. Water-filling determines how
to split power across these spatial dimensions.

The principle is always the same: put more resources where they do
the most good.

6.6 The Historical Moment

It is worth pausing to appreciate what Shannon accomplished in his
1948 paper, “A Mathematical Theory of Communication.” Shannon’s 1948 paper is among the most

influential scientific papers ever written.
It created a new field and established
results that engineers still rely on today.

Before Shannon, engineers thought about communication in terms
of signals and noise. They knew that noise limited how well you could
communicate, but they had no precise way to quantify the limit. They
knew that redundancy could help combat errors, but they did not
know how much redundancy was enough, or whether there was a
fundamental tradeoff between rate and reliability.

Shannon changed everything. He showed that:

1. Information can be quantified precisely, using entropy.

2. Every channel has a capacity—a maximum rate of reliable commu-
nication.

3. Below capacity, reliable communication is possible. Not “mostly reli-
able,” not “pretty good”—arbitrarily reliable, with error probability
as small as you like.

4. Above capacity, reliable communication is impossible, no matter
how clever you are.

The theorem was so counterintuitive that many engineers did not
believe it. The idea that you could communicate with vanishingly small
error over a noisy channel—as long as you stayed below capacity—
seemed like magic.

“The fundamental problem of communication,” Shannon wrote, “is
that of reproducing at one point either exactly or approximately a
message selected at another point.” “Frequently the messages have mean-

ing... These semantic aspects of com-
munication are irrelevant to the engi-
neering problem.” Shannon separated
the physics of communication from its
meaning—a crucial insight.

This framing was itself revolutionary. Shannon separated the prob-
lem of communication from the problem of meaning. The message
might be a love letter or a stock price or a genome sequence. It does not
matter. Information theory treats them all the same way: as probability
distributions over possible messages.

The theorem was proved in 1948. But the proof was not constructive—
it showed that good codes exist without showing how to find them.
For the next 45 years, engineers searched for practical codes that ap-
proached capacity. Hamming codes (1950) corrected single errors.

98 claude opus 4.5

Reed-Solomon codes (1960) became the workhorse of digital storage.
Convolutional codes with Viterbi decoding (1967) powered deep-space
communication.

But a significant gap remained between what these codes achieved
and what Shannon said was possible.

In 1993, Berrou, Glavieux, and Thitimajshima at France Telecom
introduced turbo codes. The key insight was an interleaver structure
that enabled iterative decoding. Turbo codes operated within 0.5 dB of
capacity—forty-five years after the theorem, the limit was finally within
reach.

Around the same time, Robert McEliece at Caltech and David
MacKay at Cambridge independently rediscovered LDPC codes, which
Gallager had proposed in his 1960 PhD thesis but which had been
ignored for decades. LDPC codes also approach capacity, and they
power modern WiFi and 5G networks.

It took half a century to build what Shannon proved must exist. The
theorem was true in 1948, but the engineering took until the 1990s.

6.7 What Does Capacity Mean?

Let us step back and ask a philosophical question: what does capacity
really represent?

The operational meaning is clear: capacity is the rate below which
reliable communication is possible and above which it is not. This is a
theorem, proved mathematically, with no loopholes or approximations.

But why should there be such a sharp threshold? The sharp threshold comes from the law
of large numbers. With long codewords,
typical behavior dominates. Below ca-
pacity, there are enough distinguishable
codewords; above, there are not.

You might expect a smooth tradeoff. Lower your rate, improve your
reliability—but never achieve perfection, always have some residual er-
ror. This is how many engineering problems work. But communication
is different.

The resolution comes from the law of large numbers. The channel
coding theorem relies on the statistics of long sequences. When we use
the channel n times, the probability of an “atypical” event—an unusual
pattern of errors that defeats our code—decays exponentially in n.

Below capacity, we can find 2nR codewords that are sufficiently
separated from each other. Each codeword occupies a “region” in the
space of possible outputs, and the regions do not overlap (with high
probability). When we receive a sequence, we can tell which codeword
was sent.

Above capacity, we cannot find enough well-separated codewords.
No matter how we choose them, their regions overlap. Different mes-
sages become indistinguishable.

Capacity is the rate at which we run out of room. Below it, we can
fit all our codewords comfortably. Above it, crowding causes confusion.

information theory 99

Connection to Thermodynamics

There is a deep analogy between capacity and thermodynamic entropy.
Just as entropy measures the number of accessible microstates in

a physical system, capacity measures the number of distinguishable
codewords that can fit through a channel. This connection is not a coincidence.

Information entropy and thermodynamic
entropy are the same thing viewed from
different angles. We will explore this
fully in Chapter 9.

Just as the second law of thermodynamics describes typical behavior
of large systems, the channel coding theorem describes typical behavior
of long codes.

Just as thermodynamic equilibrium maximizes entropy subject to
constraints (fixed energy, volume, etc.), the capacity-achieving distribu-
tion maximizes mutual information subject to the channel constraints.

This is not mere analogy. As we will see in Chapter 9, information
entropy and thermodynamic entropy are mathematically identical. The
capacity theorem is, in a sense, a statement about the physics of com-
munication.

6.8 Looking Ahead: The Coding Theorem

We have now computed the capacity of several important channels:

• BSC: C = 1− Hb(p)

• BEC: C = 1− ε

• Gaussian: C = 1
2 log2(1 + P/N)

We have seen that capacity is a meaningful quantity—it tells us
exactly how much information can flow through a noisy channel. But
we have not proved that capacity is achievable. So far, capacity is just a
number: the maximum mutual information. Why should there exist
codes that actually achieve this rate with vanishing error probability? The next chapter proves the crown jewel

of information theory: reliable communi-
cation is possible below capacity. Shan-
non’s proof is one of the most beautiful
in all of mathematics.

In the next chapter, we prove Shannon’s noisy channel coding
theorem—perhaps the most surprising result in all of information
theory. The theorem has two parts.

The converse: If R > C, reliable communication is impossible. Any
code operating above capacity has error probability bounded away
from zero.

The achievability: If R < C, reliable communication is possible. There
exist codes with error probability approaching zero as the block length
grows.

The achievability proof is constructive: Shannon showed that random
codes work. Pick codewords at random, and with high probability you
will get a good code. This does not tell you how to find a good code
efficiently—that took another 45 years—but it proves good codes exist.

100 claude opus 4.5

The coding theorem transforms capacity from a mathematical defini-
tion into a physical law. It says that the mutual information between
input and output is not just a measure of correlation; it is the opera-
tional limit on communication. Nature enforces this limit, and clever
engineering can approach it.

Let us now see why this is true.

7
The Noisy Channel Coding Theorem

In 1947, if you had asked any engineer how to send reliable messages
over a noisy telephone line, you would have received sensible, depress-
ing advice. Repeat yourself. Send each bit three times, or five, or a
hundred. The more you repeat, the more likely your message gets
through correctly. But here is the cost: to cut your error rate in half, you
must double your repetition. To cut it to a tenth, you must repeat ten
times as often. In the limit of perfect reliability—zero errors, ever—you
would need infinite repetition. Your actual rate of information transfer
would drop to zero. Before Shannon, engineers believed reli-

able communication required sacrificing
rate. The more reliable you wanted to be,
the slower you had to communicate. This
seemed as inevitable as friction.

This was not just intuition. Engineers had worked with noisy chan-
nels for decades, and every practical system confirmed the tradeoff. You
could have reliability or speed, but not both. The harder you pushed
one, the more you sacrificed the other. It seemed as fundamental as the
tradeoff between speed and fuel consumption, or between precision
and cost. Some things cannot be escaped.

In 1948, Claude Shannon proved this intuition completely, spectacu-
larly wrong.

Shannon showed that for any noisy channel, there exists a number
C—the channel capacity we computed in the last chapter—with an
astonishing property. At any rate below C, you can communicate with
error probability as small as you like. Not “small but nonzero.” Not
“small if you are lucky.” Arbitrarily small. As close to zero as you want,
while communicating at nearly the maximum possible rate.

The cost? Not slower communication. Not more power. Not better
hardware. Just cleverness. The right encoding scheme can achieve
near-perfect reliability at rates approaching capacity. Shannon’s theorem says you can have

both reliability and rate—up to a point.
Below capacity, you lose nothing by de-
manding perfection. Above capacity, per-
fection is impossible at any rate.

The engineers did not believe it. How could you possibly communi-
cate reliably over a channel that corrupts information? Where does the
redundancy come from if not from repetition? What magic erases the
noise?

The answer is that there is no magic—only mathematics. And the

102 claude opus 4.5

mathematics is among the most beautiful in all of science. Shannon did
not construct a code that achieves capacity. He proved that such codes
must exist, by an argument so elegant it feels like cheating. He counted.
He showed that if you pick a code at random, it is almost certainly
good enough. The actual construction of practical codes would occupy
the best minds in coding theory for the next fifty years.

Let us understand both halves of this remarkable theorem: why
rates above capacity are impossible, and why rates below capacity are
achievable. The first is natural; the second is miraculous.

7.1 The Problem We Face

Let me set up the problem with complete precision, because the theo-
rem’s power lies in its exactness.

We have a sender who wants to communicate one of M possible
messages to a receiver. The sender encodes message w ∈ {1, 2, . . . , M}
as a sequence of n channel inputs: xn = (x1, x2, . . . , xn). This sequence
goes through the noisy channel. The receiver observes the corrupted
output yn = (y1, y2, . . . , yn) and produces an estimate ŵ of which
message was sent. The rate R = (log2 M)/n measures

information per channel use. We pack
log2 M bits of information into n channel
uses.

An error occurs when ŵ 6= w—the receiver guesses wrong.
The rate of communication is

R =
log2 M

n
bits per channel use.

If we want to send one of a million messages (M = 106 ≈ 220) using
100 channel uses, our rate is R = 20/100 = 0.2 bits per channel use.

Source w

Encoder

Channel Noise

Decoder

Output ŵ

xn

yn

Figure 7.1: The communication system.
Message w is encoded into codeword xn,
corrupted by the channel to produce yn,
then decoded to estimate ŵ.

The question is: for what rates R can we make the error probability
Pe = P(ŵ 6= w) arbitrarily small?

The Two Parts of the Theorem

Shannon’s theorem has two parts, and it is worth stating them sepa-
rately because they feel so different.

Part I (The Converse—the pessimistic half): If R > C, then Pe is
bounded away from zero. No matter how clever your encoder and
decoder, no matter how long your codewords, you will make errors
on a substantial fraction of messages. Reliable communication above
capacity is impossible.

Part II (Achievability—the miraculous half): If R < C, then there
exist codes with Pe → 0 as n → ∞. Reliable communication below
capacity is not just possible—it is achievable with vanishing error
probability.

Together, these two parts say that capacity is a sharp threshold.
Below it, essentially perfect communication. Above it, inevitable errors.

information theory 103

There is no gradual tradeoff, no smooth decay of performance. Capacity
is a cliff. The theorem’s structure—impossibility

above, existence below—is the signature
style of information theory. Define a fun-
damental limit, prove you cannot exceed
it, prove you can approach it.

Notice what the theorem does not say. It does not say “here is how
to build a good code.” It says “good codes exist.” This is an existence
proof, not a construction. Shannon showed that if you search through
all possible codes, you will find ones that work. Finding such codes
efficiently—that is another matter entirely, one that took fifty years to
resolve.

7.2 The Converse: Why You Cannot Beat Capacity

Let us prove the pessimistic half first. This is the natural part of the
theorem, the part that confirms our intuition that you cannot push
more water through a pipe than it can carry.

The Intuition

Suppose you want to send one of M = 2nR messages through n uses of
the channel. Your message contains log2 M = nR bits of information.
But the channel can carry at most C bits of information per use, or nC
bits total.

If nR > nC—that is, if R > C—you are trying to push more
information through the channel than it can carry. Some information
must be lost. And if information is lost, you cannot perfectly recover
the message. The converse says: you cannot transmit

more information than the channel can
carry. If you try, information gets lost,
and errors are inevitable.

This is the essence of the converse. But let us make it precise.

Fano’s Inequality: Connecting Errors to Information Loss

We need a mathematical tool that connects error probability to information
loss. This tool is Fano’s inequality, and it is one of the workhorses of
information theory.

Let W be the message we sent (a random variable uniform over
{1, . . . , M}), and let Ŵ be the decoder’s estimate. Define the error
probability Pe = P(W 6= Ŵ).

Fano’s inequality says:

H(W|Ŵ) ≤ 1 + Pe · log2(M− 1).

What does this mean? The left side, H(W|Ŵ), is our remaining
uncertainty about the true message W after we have seen the decoder’s
guess Ŵ. If the decoder is always right, this uncertainty is zero—given
Ŵ, we know W exactly. If the decoder is often wrong, this uncertainty
is large. Fano’s inequality: if you decode with low

error probability, you must have learned
most of the information about the mes-
sage. High errors imply high residual
uncertainty.

104 claude opus 4.5

The right side bounds this uncertainty in terms of the error prob-
ability. When Pe is small, H(W|Ŵ) must be small. When Pe is large,
H(W|Ŵ) can be large.

Let me sketch why this bound holds. Define an error indicator E:
E = 1 if W 6= Ŵ, E = 0 otherwise. We can decompose the uncertainty
about W given Ŵ:

H(W|Ŵ) = H(W, E|Ŵ)− H(E|W, Ŵ)

= H(E|Ŵ) + H(W|E, Ŵ)

since H(E|W, Ŵ) = 0—once you know both the true message and the
guess, you know whether they match.

Now, H(E|Ŵ) ≤ H(E) ≤ 1 because E is binary. And H(W|E, Ŵ)

decomposes further:

• When E = 0 (no error): H(W|E = 0, Ŵ) = 0 because W = Ŵ.

• When E = 1 (error): H(W|E = 1, Ŵ) ≤ log2(M − 1) because W
could be any of the M− 1 wrong messages.

Putting it together:

H(W|Ŵ) ≤ 1 + Pe · log2(M− 1) ≤ 1 + Pe · nR.

The Converse Proof

Now we can prove that communication above capacity fails.
Step 1: Information flows through the channel.
The message W contains H(W) = log2 M = nR bits of entropy.

After transmission, how much do we know about W from the received
sequence Yn?

By the definition of mutual information:

H(W) = I(W; Yn) + H(W|Yn).

The term I(W; Yn) is the information that the channel output reveals
about the message. The term H(W|Yn) is our remaining uncertainty.

Step 2: Bound the information that flows. The data processing inequality: you can-
not increase information about W by pro-
cessing Yn. The decoder sees only Yn, so
I(W; Ŵ) ≤ I(W; Yn).

How much information can the channel carry? The encoder maps
W to a codeword Xn, which is then corrupted to produce Yn. For a
memoryless channel (where each symbol is corrupted independently):

I(W; Yn) ≤ I(Xn; Yn) ≤
n

∑
i=1

I(Xi; Yi) ≤ nC.

The first inequality is the data processing inequality: W → Xn → Yn is
a Markov chain, so W cannot have more information about Yn than Xn

does. The second inequality uses the memoryless property. The third
uses that C = maxP(X) I(X; Y).

information theory 105

So the channel can carry at most nC bits of information about the
message.

Step 3: Connect to the decoder via Fano.
The decoder produces Ŵ from Yn. By the data processing inequality

again:
I(W; Ŵ) ≤ I(W; Yn) ≤ nC.

But I(W; Ŵ) = H(W)− H(W|Ŵ) = nR− H(W|Ŵ).
So: H(W|Ŵ) ≥ nR− nC = n(R− C).
Step 4: Apply Fano’s inequality.
From Fano: H(W|Ŵ) ≤ 1 + Pe · nR.
Combining with Step 3:

n(R− C) ≤ 1 + Pe · nR.

Solving for Pe:

Pe ≥
n(R− C)− 1

nR
= 1− C

R
− 1

nR
.

The Punchline: For any R > C, as n→ ∞:

Pe ≥ 1− C
R

> 0.
If R > C, then Pe ≥ 1 − C/R > 0 for
large n. A positive fraction of messages
must be decoded incorrectly. No amount
of cleverness can overcome this.

The error probability is bounded away from zero. If you try to
communicate above capacity, you will make errors on at least a frac-
tion (1− C/R) of your messages. No amount of cleverness in code
design can overcome this. The channel simply cannot carry that much
information.

7.3 The Achievability: Shannon’s Audacious Proof

The converse was natural: you cannot push more through than the pipe
can carry. Now comes the miraculous half. Below capacity, you can
communicate with arbitrarily small error probability.

This is where Shannon’s genius shines. His proof is audacious. He
does not construct a good code. He proves that random codes work.
Pick codewords at random, and with high probability you will get a
code that achieves capacity. Shannon’s random coding argument:

generate a codebook randomly, prove the
average error probability goes to zero,
conclude that at least one specific code
must be good. Existence without con-
struction.

You might say, “But a random code will be terrible! Random code-
words might overlap, or be too close to each other, or have no structure
at all.”

And you would be right—for small n. For short codes, randomness
gives garbage. But as n grows, something remarkable happens. The
codewords spread out in the high-dimensional space of all possible
sequences. The curse of dimensionality becomes a blessing. There is so
much room in high dimensions that random codewords almost never
interfere with each other.

Let me show you how this works.

106 claude opus 4.5

Joint Typicality: The Key Idea

Before proving the theorem, we need to understand a crucial concept:
joint typicality. This is the decoding criterion Shannon used, and it is
the heart of his proof.

Recall from Chapter 2 that a sequence xn is typical for a distribution
P(X) if its empirical frequencies match the true probabilities. The
typical set contains about 2nH(X) sequences, and the probability that a
randomly drawn sequence is typical approaches 1 as n grows.

Now extend this to pairs. A pair (xn, yn) is jointly typical for the joint
distribution P(X, Y) if:

• xn is typical for P(X)

• yn is typical for P(Y)

• The empirical joint frequencies of (xi, yi) pairs match P(X, Y)
Jointly typical sequences look like they
came from the true joint distribution.
Their empirical statistics match what the
probability law predicts.

The Joint Asymptotic Equipartition Property tells us two crucial facts.
Fact 1: If (Xn, Yn) are drawn from the true joint distribution P(X, Y),

then P((Xn, Yn) is jointly typical)→ 1 as n→ ∞.
Truly related sequences—an input and its actual output—are almost

certainly jointly typical.
Fact 2: If X̃n is drawn independently from P(X) and Yn is drawn

independently from P(Y), then

P((X̃n, Yn) is jointly typical) ≈ 2−nI(X;Y).

Unrelated sequences—a random input that was not the one transmit-
ted, paired with the received output—are almost certainly not jointly
typical. The probability of a coincidental match decays exponentially
fast. The probability of a false match decays

like 2−nI(X;Y). This exponential decay
is what makes joint typicality decoding
work.

This is the miracle. Joint typicality is a filter. It lets the true message
through and blocks the impostors. The true codeword stands out from
the crowd because it is statistically related to the received sequence,
while all other codewords are merely random.

The Random Coding Argument

Now let us prove that codes with vanishing error probability exist.
Setting up the random codebook.
Fix a block length n and a rate R < C. Let M = 2nR be the number

of messages. Generate the codebook randomly:
For each message w ∈ {1, 2, . . . , M}, draw a codeword Xn(w) by

choosing each symbol independently from the capacity-achieving input
distribution P∗(X)—the distribution that achieves I(X; Y) = C.

The codebook is a collection of M random codewords, each of length
n.

information theory 107

The decoding rule.
When the receiver observes Yn, look for a codeword Xn(w) that is

jointly typical with Yn.

• If exactly one codeword is jointly typical with Yn, decode as that
message.

• If no codeword is jointly typical, or if multiple codewords are jointly
typical, declare an error.

Joint typicality decoding: find the code-
word that “looks like” it produced the
received sequence. With high probability,
only the true codeword qualifies.

Analyzing the error probability.
Suppose message w was sent. There are two ways decoding can fail.
Event E1: The transmitted codeword Xn(w) is not jointly typical with

the received Yn. The true signal got lost.
Event E2: Some other codeword Xn(w′) with w′ 6= w is jointly typical

with Yn. An impostor snuck through.
The total error probability is Pe ≤ P(E1) + P(E2). We need both to

vanish.
Bounding P(E1).
The codeword Xn(w) was actually sent through the channel, so

(Xn(w), Yn) was drawn from the true joint distribution P(X, Y). By
Fact 1 of the Joint AEP:

P(E1)→ 0 as n→ ∞.

The true codeword-output pair is almost certainly jointly typical.
Bounding P(E2).
Now for the crucial part. Consider any specific wrong codeword

Xn(w′) where w′ 6= w. This codeword was generated independently of
everything—it was not transmitted, so it has no relationship to Yn. By
Fact 2:

P(Xn(w′) is jointly typical with Yn) ≤ 2−n(I(X;Y)−ε) = 2−n(C−ε)

for any small ε > 0 and large enough n.
How many impostors are there? There are M − 1 < 2nR wrong

codewords. By the union bound:

P(E2) ≤ ∑
w′ 6=w

P(Xn(w′) is jointly typical with Yn) ≤ 2nR · 2−n(C−ε) = 2−n(C−R−ε).

The union bound: the probability that any
impostor gets through is at most the sum
of the individual probabilities. With 2nR

impostors, each with probability 2−nC ,
the total is 2n(R−C).

The Crucial Inequality.
If R < C− ε, then P(E2)→ 0 as n→ ∞.
Since ε can be arbitrarily small, for any R < C:

Pe ≤ P(E1) + P(E2)→ 0 as n→ ∞.

From Average to Existence.

108 claude opus 4.5

We have shown that the average error probability, averaged over all
random codebooks, goes to zero. But we want a specific code that works.

Here is the trick: if the average error probability is less than ε, then at
least one codebook must have error probability less than ε. Otherwise,
every codebook would have error probability at least ε, and the average
would be at least ε—a contradiction.

Therefore: for any R < C and any ε > 0, there exists a code with
error probability less than ε.

The Noisy Channel Coding Theorem. For any discrete memoryless channel with capacity C:
(Converse) If R > C, every code has Pe bounded away from zero as n→ ∞.
(Achievability) If R < C, there exist codes with Pe → 0 as n→ ∞.

7.4 Understanding Joint Typicality

The proof went by quickly. Let me dwell on joint typicality, because it
is the heart of the matter.

The Geometry of High Dimensions

Picture all possible received sequences yn as points in a vast space—2n

points if the output alphabet is binary. When you transmit a codeword
xn through the channel, the received sequence Yn wanders around
a neighborhood of xn. Sometimes it lands close to what was sent;
sometimes noise pushes it farther away.

Define the typical neighborhood of xn as all sequences yn that are
jointly typical with xn. The Joint AEP tells us: Each codeword has a “cloud” of likely

outputs around it. Below capacity, the
clouds do not overlap. Above capacity,
they must.1. The received sequence Yn almost certainly lands in the typical neigh-

borhood of the transmitted Xn.

2. The typical neighborhoods of different codewords almost never
overlap.

This second fact is the key. In high dimensions, there is enough
room for all the neighborhoods to stay separate. The sphere-packing
picture from error correction is not quite right—the neighborhoods are
not spheres, they are strangely shaped typical sets—but the intuition is
similar.

How big are these neighborhoods? Each typical neighborhood con-
tains roughly 2nH(Y|X) sequences—the number of typical outputs given
a particular input. The total space has 2nH(Y) typical sequences. We are
fitting M = 2nR neighborhoods into this space.

information theory 109

For the neighborhoods to fit without overlapping, we need:

M · 2nH(Y|X) . 2nH(Y).

Taking logarithms and dividing by n:

R + H(Y|X) . H(Y)

R . H(Y)− H(Y|X) = I(X; Y) ≤ C.

Below capacity, there is room. Above capacity, there is not.

Why Doesn’t Noise Destroy Everything?

This is the deep question. The channel adds noise. Bits get flipped.
Symbols get corrupted. Why can the receiver still figure out what was
sent?

The answer lies in the law of large numbers. Yes, the channel corrupts
individual symbols. But the corruption follows a predictable pattern.
A sequence that suffers “typical” noise still looks statistically related to
its source. A sequence that suffers “atypical” noise—enough to push it
into another codeword’s neighborhood—is exponentially rare. Noise corrupts individual symbols, but

cannot corrupt the statistical structure
of long sequences. The pattern survives
even when individual bits do not.

You might say, “But what if the noise happens to look like a differ-
ent codeword? What if random bit flips transform codeword 1 into
something that looks like codeword 2?”

The answer is: yes, this can happen, but it is exponentially unlikely.
There are exponentially many ways to corrupt a sequence. But only one
way—statistically speaking—matches any particular wrong codeword.
Random noise does not conspire to create meaningful patterns. It
creates random patterns, which joint typicality decoding can identify
as noise.

The receiver does not need to know which specific bits were flipped.
It only needs to recognize that the overall pattern is consistent with a
particular codeword. The law of large numbers guarantees that the true
relationship between codeword and output will shine through.

7.5 A Complete Worked Example

Let us make this concrete with the binary symmetric channel.

The Setup

The BSC with crossover probability p = 0.1:

• Each bit is flipped independently with probability 0.1

• Capacity: C = 1− Hb(0.1) = 1− 0.469 = 0.531 bits per channel use
For the BSC with p = 0.1: 10% of bits are
corrupted, yet we can reliably communi-
cate at more than half a bit per channel
use.

Consider a block length n = 100 and rate R = 0.5 < C = 0.531.

110 claude opus 4.5

Counting the Codewords and Clouds

Number of messages: M = 2nR = 250 ≈ 1015.
Each codeword has a typical neighborhood—the set of received

sequences that are jointly typical with it. For the BSC, this is approxi-
mately the set of sequences within Hamming distance about np = 10
of the codeword.

Size of typical neighborhood: roughly ∑k≈np (
n
k) ≈ 2nHb(p) = 2100·0.469 =

246.9.

Do the Clouds Fit?

We have 250 codewords, each with a typical neighborhood of size 246.9.
The total “volume” occupied is:

250 · 246.9 = 296.9.

The total space of received sequences has size 2100.
We are fitting 296.9 into 2100—plenty of room! The clouds can be

non-overlapping. With 250 codewords and neighborhoods
of size 247, the total volume is 297, fitting
comfortably in the space of size 2100.

What the Theorem Guarantees

At rate R = 0.5:

• We send one of 250 messages using 100 channel uses

• About 10 bits will be flipped on average

• Despite these errors, the decoder can identify the correct message
with probability approaching 1

At rate R = 0.6 > C:

• We would try to send one of 260 messages

• Total cloud volume: 260 · 246.9 = 2106.9

• This exceeds the space size 2100—clouds must overlap

• Errors are inevitable

Rate R Messages M Cloud volume Fits? Error Pe

0.3 230 276.9 Yes → 0
0.4 240 286.9 Yes → 0
0.5 250 296.9 Yes → 0

0.531 253.1 2100 Barely Small
0.6 260 2106.9 No! > 0

Table 7.1: Sphere-packing picture for BSC
with p = 0.1, n = 100. Below capacity,
clouds fit; above, they overflow.

information theory 111

7.6 The Beautiful Symmetry

Let us step back and see a pattern that connects this chapter to Chapter
4.

Two Theorems, One Structure

Source Coding Theorem (Chapter 4):

• You cannot compress below entropy

• You can compress down to entropy

Channel Coding Theorem (this chapter):

• You cannot communicate above capacity

• You can communicate up to capacity
Source coding removes redundancy;
channel coding adds it. They are inverses,
and both achieve their limits through the
same mechanism: typical sequences.

In both cases: a fundamental limit, achievable but not exceedable.
The proofs have the same structure. Both rely on typical sequences.

Both use counting arguments. Both exploit the law of large numbers in
high dimensions. In a sense, they are the same theorem viewed from
two directions.

The Duality

Source coding removes redundancy from a message. Channel coding
adds redundancy to protect against noise. They are inverses.

If you combine optimal source coding (compress to entropy H) with
optimal channel coding (expand to capacity C), you can transmit H/C
source symbols per channel use—exactly the limit.

This separation principle says you can design source and channel
codes independently. Compress optimally, then protect optimally. The
product of the two rates is the achievable end-to-end rate.

But notice: this only holds asymptotically. For finite block lengths,
there can be gains from joint source-channel coding. The separation
principle is a theoretical convenience, not an engineering mandate.

7.7 The Fifty-Year Quest

Shannon proved that good codes exist. He did not say how to find
them.

This was not a minor detail. Shannon’s random codes have complex-
ity that grows exponentially with block length. To decode, you would
need to compare the received sequence against all 2nR codewords—an
impossible computation for any practical n. The theorem guarantees a
needle exists in the haystack; it does not help you find it. Shannon’s proof was non-constructive.

He showed codes exist without showing
how to build them. This gap between ex-
istence and construction took fifty years
to close.

112 claude opus 4.5

The Initial Reaction

At Bell Labs, some engineers were skeptical. The theorem was “inter-
esting but useless,” one reportedly said. How could you find these
magical codes? How could you decode them in reasonable time?

Shannon himself seemed unconcerned. He had answered the funda-
mental question: what are the limits of communication? The engineer-
ing details would work themselves out.

The Search for Practical Codes

And work themselves out they did—eventually.
1950s: The First Codes. Richard Hamming, also at Bell Labs, devel-

oped the first practical error-correcting codes. Hamming codes correct
single errors and detect double errors. They were far from capacity-
achieving, but they worked. Peter Elias developed convolutional codes,
which could be decoded efficiently with the Viterbi algorithm. Still not
approaching capacity, but useful.

1960s-1980s: Algebraic Codes. BCH codes and Reed-Solomon codes
emerged from the algebraic theory of finite fields. Reed-Solomon
codes became the workhorse of digital storage—they protect CDs,
DVDs, and QR codes. The Voyager spacecraft used concatenated Reed-
Solomon and convolutional codes to send images from Jupiter and
Saturn. Performance improved steadily, but Shannon’s limit remained
distant. Voyager’s cameras reached Jupiter in

1979. The images traveled 600 million
kilometers, protected by codes that oper-
ated at perhaps 50% of capacity. Good
enough for a revolution in planetary sci-
ence.

The gap between what codes achieved and what Shannon proved
possible seemed to be a permanent feature of the landscape. Perhaps,
some thought, practical constraints made capacity unachievable. Per-
haps Shannon’s random codes were a theoretical curiosity with no
engineering relevance.

1993: The Turbo Revolution. At a conference in Geneva, three
engineers from France Telecom—Berrou, Glavieux, and Thitimajshima—
presented a paper on “turbo codes.” The name came from the iterative
decoding algorithm, which recycled information like a turbocharger
recycles exhaust.

The performance was stunning: within 0.5 dB of Shannon’s limit.
Forty-five years after the theorem, the limit was finally within reach.

The coding theory community was electrified. Some initially doubted
the results. But verification came quickly, and the race was on to under-
stand why turbo codes worked so well.

1995-present: LDPC Codes. It turned out that Robert Gallager had
invented equally powerful codes in his 1960 PhD thesis: low-density
parity-check (LDPC) codes. They had been forgotten for thirty years—
the hardware of the 1960s could not implement the iterative decoding
algorithm. LDPC codes were invented in 1960, for-

gotten for 30 years, then rediscovered to
become the standard in WiFi, 5G, and
solid-state storage. Sometimes the world
has to catch up to the mathematics.

information theory 113

Rediscovered by MacKay and Neal in the 1990s, LDPC codes matched
and then exceeded turbo code performance. Today they power WiFi
(802.11n/ac/ax), 5G cellular networks, and solid-state drives. They
operate within a fraction of a decibel of capacity.

Shannon’s “useless” theorem had become the most useful result in
communications engineering.

7.8 What the Theorem Really Means

Let us step back from the mathematics and ask what this theorem tells
us about the nature of communication.

Noise Is Not the Enemy

The naive view: noise is the enemy, and we must fight it. Send stronger
signals. Repeat more often. Shout louder.

Shannon’s view: noise is a constraint to be respected, not fought.
The channel has a capacity—a maximum rate of information flow. Work
within that rate, and noise cannot stop you. Exceed it, and nothing can
save you. Noise is not the enemy—it is a constraint.

Below capacity, you can work around it.
Above capacity, you cannot escape it.

This shift in perspective is profound. Nature gives and takes in
a precise way. A noisy channel takes away reliability on individual
symbols. But it gives back capacity—a fixed amount of information can
still flow. The exchange rate is exact.

The theorem does not say communication is easy. It says communi-
cation is possible. The difference matters.

Existence Without Construction

Shannon proved codes exist without constructing them. This pattern is
common in mathematics: we prove something exists before we know
how to find it.

Some find this unsatisfying. What good is a theorem you cannot
use?

But the existence proof did something crucial: it told engineers
exactly what to aim for. Without Shannon’s theorem, they would have
been shooting in the dark. How close to capacity can we get? Is 50%
efficiency the best possible, or can we do better? Shannon answered:
you can get arbitrarily close to 100%. The existence proof told engineers exactly

what to aim for. Without it, they might
have settled for 50% efficiency, thinking
that was the best nature allowed.

Moreover, the random coding argument provides insight. Good
codes are not rare—they are almost universal. Pick a code at random,
and it probably works. The hard part is not finding a good code; it is
finding one we can decode efficiently.

114 claude opus 4.5

The Universality of Capacity

Why should there be a single number—capacity—that determines
everything?

The theorem could have said: achievability depends on your com-
putational resources, your specific encoding scheme, your decoder’s
sophistication. Instead, it says: capacity is the boundary, period.

Different codes, different decoders, different technologies—all bump
against the same limit. Capacity is not a property of our codes. It is a
property of the channel itself.

Here is nature revealing simplicity beneath complexity. A noisy
channel is a messy, stochastic object. But its fundamental limitation is
captured by one clean number: C = max I(X; Y).

This is what makes information theory a science and not just engi-
neering.

7.9 Extensions and Caveats

Our proof covered the cleanest case. Let me note what we did and did
not prove.

What We Proved

• Discrete memoryless channels: Each symbol is corrupted indepen-
dently according to the same distribution.

• Asymptotic block length: We let n→ ∞. The theorem says nothing
about n = 100 or n = 1000.

• Average error probability: We averaged over all messages. Any
particular message might have higher error probability.

The theorem is asymptotic—it describes
what happens as block length goes to in-
finity. For finite n, there is a gap between
achievable rate and capacity.What Remains

Finite block length. For practical n, there is a gap between achievable
rate and capacity. Modern “finite block length” analysis quantifies this
precisely. The gap shrinks like 1/

√
n—not fast, but predictably.

Channels with memory. Real channels have memory: errors come
in bursts, signal quality varies over time. The theory extends, but the
analysis is more complex.

Maximum vs. average error. With a bit more work, one can show
that the maximum error probability (over all messages) also goes to
zero. No message is left behind.

Feedback. Does feedback help? If the transmitter can observe the
channel outputs, can it do better? Shannon proved that feedback does

information theory 115

not increase capacity for memoryless channels. You can already achieve
capacity without feedback; knowing the channel outputs does not help.
Feedback can simplify code design, but it cannot beat the fundamental
limit.

Multiple users. Network information theory extends these ideas to
multiple senders and receivers. The story becomes richer and is not
fully resolved. Some capacity regions are known; others remain open
problems.

7.10 Looking Ahead

We have proved the crown jewel of information theory. Reliable com-
munication over noisy channels is possible up to capacity. The proof
was non-constructive: we showed good codes exist by counting, not by
building.

This existence proof changed how engineers think. It gave them a
target: capacity. It told them the target was achievable. It even told
them how to think about code design: make codewords “look different”
to the channel, so that noise cannot confuse one for another. Shannon proved the destination exists.

Finding the path took fifty years. Chap-
ter 8 explores that path—from Hamming
codes to LDPC codes, from theory to
practice.

But existence is not construction. Shannon proved codes exist; he did
not say how to find them or decode them efficiently. The next chapter
takes up this challenge.

We will see Hamming codes—the first step, elegant but limited. We
will see linear codes and the beautiful algebra they bring. We will
glimpse modern codes—the turbo and LDPC codes that finally, fifty
years after Shannon, achieve what he proved possible.

Shannon told us the destination exists. Now we must find the path.

Historical note. Shannon’s 1948 paper, “A Mathematical Theory of Communication,” is among the most influential
scientific papers ever written. It created a new field, established results that engineers still rely on, and connected
disciplines from physics to linguistics. When asked late in life about the reception of his work, Shannon reportedly said
that the theorem was “surprising to everybody, including me.” The surprise was not that there were limits—limits are
everywhere. The surprise was that the limits were so generous, and so precisely achievable.

8
Error-Correcting Codes

Imagine a mathematician proving that a treasure exists somewhere on
a vast island. Is this useful? Perhaps—you now know the search is
not hopeless. But you still have to dig. Shannon’s theorem, which we
proved in the last chapter, is exactly like this. It guarantees that codes
achieving reliable communication at rates up to capacity must exist. It
says nothing about how to find them. Shannon proved that good codes exist.

He did not construct any. This gap be-
tween existence and construction domi-
nated coding theory for fifty years.

The engineers of 1948 immediately asked: “Show me the code.”
Shannon could not. His proof worked by counting—most random
codes are good enough, so at least one good code must exist. But
“most” random codes are also incomprehensible. They are gigantic
lookup tables with 2n entries, impossible to store and impossible to
decode in reasonable time. A truly useful code needs structure: patterns
we can exploit for efficient encoding, patterns we can exploit for efficient
decoding, patterns we can analyze mathematically.

This chapter bridges the gap from existence to construction. We
will build actual codes that correct actual errors. We start simple—
repetition and parity checks, the brute-force approaches that everyone
first imagines. We then develop Hamming codes, the first elegant
construction, where a beautiful pattern emerges from asking the right
question. We generalize to linear codes, a framework that encompasses
most practical error-correcting codes. We ask what limits exist on code
performance, discovering the sphere-packing bound. And we tell the
story of how, after fifty years of searching, engineers finally found codes
that achieve Shannon’s limit. The journey from Shannon’s theorem

(1948) to practical capacity-achieving
codes (1993) took forty-five years. This
chapter traces that journey.

The codes we develop here are not merely theoretical. Every wireless
signal you send, every file you store, every photograph from deep
space—all depend on error correction. The mathematics is beautiful;
the engineering is everywhere.

118 claude opus 4.5

8.1 Repetition: The Brute-Force Approach

Let us start with the simplest possible strategy for fighting noise. If the
channel might corrupt a single bit, send that bit multiple times. Surely
three copies are more reliable than one.

The Three-Repetition Code

We want to send one bit of information—either 0 or 1—over a binary
symmetric channel (BSC) with crossover probability p. The BSC flips
each bit independently with probability p. The repetition code: to send 0, transmit

000; to send 1, transmit 111. Decode by
majority vote. Simple, but wasteful.

The naive encoding scheme:

• To send 0: transmit 000

• To send 1: transmit 111

The decoder takes a majority vote. If at least two of the three received
bits are 0, decode as 0. Otherwise, decode as 1.

Let us calculate the error probability. For p = 0.1—a reasonably
noisy channel where one in ten bits gets flipped:

P(correct) = P(0 or 1 errors in 3 bits)

= (1− p)3 + 3p(1− p)2

= 0.729 + 0.243

= 0.972

So P(error) = 0.028. Compare this to uncoded transmission, where
P(error) = 0.1. The repetition code has cut our error rate by a factor of
3.5.

For p = 0.01—a less noisy channel:

P(error) = 3p2(1− p) + p3 ≈ 3(0.01)2 = 0.0003

The improvement is even more dramatic: from 1% error to 0.03%
error.

The Fatal Flaw

You might say, “Wonderful! Let us use more repetition. Five copies,
seven copies, a hundred copies. Eventually we can make the error
arbitrarily small.”

This is true. With n repetitions (odd n), the error probability is
roughly (np)n/2 for small p, which can be made as small as desired.

But consider what we sacrifice. We transmitted 3 bits to send 1 bit of
information. The rate of the code is:

R =
information bits
transmitted bits

=
1
3
≈ 0.333

information theory 119

For a BSC with p = 0.1, recall from Chapter 6 that the channel
capacity is:

C = 1− Hb(p) = 1− Hb(0.1) ≈ 0.531 bits per channel use
The capacity of a BSC with p = 0.1 is
about 0.531 bits per use. The 3-repetition
code achieves rate 0.333—throwing away
nearly 40% of the available capacity.

Our repetition code operates at rate 0.333, far below the capacity of
0.531. We are leaving almost 40% of the channel’s capacity unused!

Worse: if we increase repetition to reduce errors further, the rate
drops. A 5-repetition code has rate 1/5 = 0.2. A 7-repetition code has
rate 1/7 ≈ 0.143. In the limit of perfect reliability, the rate approaches
zero.

This is precisely the tradeoff that Shannon’s theorem says we do not
have to accept. Below capacity, we should be able to achieve arbitrarily
low error probability without sacrificing rate. Repetition codes cannot
do this. We need something cleverer.

8.2 Parity Checks: The Idea of Structured Redundancy

Instead of mindlessly repeating everything, let us add just enough
redundancy to detect errors. This leads us to parity checks.

Single Parity Check
A single parity check can detect any sin-
gle error, but cannot locate it. We know
something is wrong, but not what.

Consider 4 bits of data. We add a fifth bit—the parity bit—chosen so
that the total number of 1s is even.

For example, encoding the message 1011:

• Data bits: 1, 0, 1, 1

• Sum of data bits: 1 + 0 + 1 + 1 = 3 (odd)

• Parity bit: 1 (to make the total even)

• Codeword: 10111

Now suppose we transmit 10111 and receive 10011—the third bit has
flipped. We compute the parity of the received word: 1+ 0+ 0+ 1+ 1 =

3, which is odd. The parity check fails, so we know an error occurred.
But we do not know which bit was corrupted. Was it the third bit?

The first? The parity bit itself? A single parity check detects errors
without locating them.

The rate is R = 4/5 = 0.8, much better than repetition. But we can
only detect, not correct.

Multiple Parity Checks

Here is the key insight: what if different parity checks covered different
subsets of bits? Then the pattern of which checks fail could pinpoint
the error location. The crucial insight: overlapping parity

checks. Different checks cover different
bit positions. The pattern of failures re-
veals the error location.

120 claude opus 4.5

Let us work with 7 bits: 4 data bits and 3 parity bits. We design
three parity checks, each covering a different subset:

Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7

Check 1 covers: × × × ×
Check 2 covers: × × × ×
Check 3 covers: × × × ×

Suppose bit 5 is corrupted. Which checks fail?

• Check 1 covers positions 1, 3, 5, 7: bit 5 is included, so Check 1 fails.

• Check 2 covers positions 2, 3, 6, 7: bit 5 is not included, so Check 2

passes.

• Check 3 covers positions 4, 5, 6, 7: bit 5 is included, so Check 3 fails.

The pattern of failures is (fail, pass, fail), or in binary: (1, 0, 1).
Reading this as a binary number: 1012 = 5. The error is in position 5!

This is not a coincidence. Look at which positions each check covers:

• Check 1 covers positions whose binary representation has a 1 in the
first position: 1, 3, 5, 7

• Check 2 covers positions with a 1 in the second position: 2, 3, 6, 7

• Check 3 covers positions with a 1 in the third position: 4, 5, 6, 7

The pattern of check failures literally spells out the error position
in binary. Three checks can locate any single error among 7 positions,
which is exactly 23 − 1 = 7 positions.

We have just reinvented the Hamming code.

8.3 Hamming Codes: The First Elegant Construction

Richard Hamming developed these codes at Bell Labs in 1950, frustrated
by the errors that kept crashing his weekend computing runs. His
insight was the same as ours: structure the parity checks so that their
failures form the binary address of the error.

The Hamming (7,4) Code
The Hamming (7,4) code: 4 data bits,
3 parity bits, corrects any single error.
Named after Richard Hamming of Bell
Labs, 1950.

The Hamming (7,4) code encodes 4 message bits into 7 codeword bits.
The notation (n, k) = (7, 4) means: codeword length n = 7, message
length k = 4.

We place the bits strategically. The parity bits occupy positions that
are powers of 2: positions 1, 2, and 4. The data bits fill the remaining
positions: 3, 5, 6, and 7.

information theory 121

Position: 1 2 3 4 5 6 7

Binary: 001 010 011 100 101 110 111

Bit type: p1 p2 d1 p3 d2 d3 d4

Each parity bit checks all positions whose binary representation has
a 1 in the corresponding place:

• p1 (position 1) checks positions 1, 3, 5, 7 (binary: ∗ ∗ 1)

• p2 (position 2) checks positions 2, 3, 6, 7 (binary: ∗1∗)

• p3 (position 4) checks positions 4, 5, 6, 7 (binary: 1 ∗ ∗)

Encoding: A Worked Example

Let us encode the 4-bit message m = 1011.
Step 1: Place the data bits in positions 3, 5, 6, 7.

Position: 1 2 3 4 5 6 7

Bit: p1 p2 1 p3 0 1 1

Step 2: Compute each parity bit.
p1 checks positions 1, 3, 5, 7. Currently: p1 + 1 + 0 + 1 = p1 + 2. For

even parity, we need p1 = 0.
p2 checks positions 2, 3, 6, 7. Currently: p2 + 1 + 1 + 1 = p2 + 3. For

even parity, we need p2 = 1.
p3 checks positions 4, 5, 6, 7. Currently: p3 + 0 + 1 + 1 = p3 + 2. For

even parity, we need p3 = 0. Encoding 1011: place data in positions
3,5,6,7, then compute parity bits. Result:
codeword 0110011.

Step 3: The complete codeword is:

Position: 1 2 3 4 5 6 7

Codeword: 0 1 1 0 0 1 1

The codeword for message 1011 is 0110011.

Decoding and Error Correction

Suppose we transmit 0110011 but receive 0110111—bit 5 has flipped
from 0 to 1.

Step 1: Compute the syndrome—the pattern of parity check results. The syndrome is the pattern of parity
check failures. For Hamming codes, the
syndrome is the error position in binary.

Check 1 (positions 1, 3, 5, 7): 0 + 1 + 1 + 1 = 3 (odd). Result: s1 = 1.
Check 2 (positions 2, 3, 6, 7): 1 + 1 + 1 + 1 = 4 (even). Result: s2 = 0.
Check 3 (positions 4, 5, 6, 7): 0 + 1 + 1 + 1 = 3 (odd). Result: s3 = 1.
The syndrome is (s1, s2, s3) = (1, 0, 1).
Step 2: Interpret the syndrome as a binary number.
Reading s3s2s1 = 1012 = 5 in decimal. The error is in position 5.
Step 3: Correct the error by flipping bit 5.
Received: 0110111. After correction: 0110011.
Step 4: Extract the message from positions 3, 5, 6, 7.
Message: 1, 0, 1, 1. Correct!

122 claude opus 4.5

Parameters and Performance

Let us summarize what the Hamming (7,4) code achieves:

• Codeword length: n = 7

• Message bits: k = 4

• Rate: R = k/n = 4/7 ≈ 0.571

• Error correction: any single bit error

• Minimum distance: d = 3
Minimum distance d = 3 means any two
codewords differ in at least 3 positions.
This allows correcting 1 error or detecting
2.

The minimum distance deserves explanation. It is the smallest Ham-
ming distance—the number of positions where they differ—between
any two distinct codewords. For the Hamming (7,4) code, d = 3.

Why does minimum distance d = 3 imply single-error correction? If
a codeword suffers one bit flip, it moves to a word at distance 1 from
the original codeword. But every other codeword is at distance at least
3 from the original. The corrupted word is closer to the true codeword
(distance 1) than to any impostor (distance at least 2). The decoder can
always identify the correct codeword.

More generally, a code with minimum distance d can correct t =

b(d − 1)/2c errors. The corrupted word stays within a “sphere” of
radius t around the true codeword, and these spheres do not overlap.

The Hamming Family

The Hamming (7,4) code is not unique. For any integer r ≥ 2, there is a
Hamming code with:

n = 2r − 1 (codeword length)

k = 2r − 1− r (message bits)

d = 3 (minimum distance)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Block length n

R
at

e
R
=

k/
n

Figure 8.1: Hamming code rates ap-
proach 1 as block length increases, but all
only correct single errors.

r n k Rate Name

2 3 1 0.333 Hamming (3,1)
3 7 4 0.571 Hamming (7,4)
4 15 11 0.733 Hamming (15,11)
5 31 26 0.839 Hamming (31,26)

As r increases, the rate R = (2r − 1− r)/(2r − 1) approaches 1. We
can get arbitrarily close to rate 1 while correcting single errors!

But notice the catch: all Hamming codes have d = 3 and correct
only single errors. Higher rate does not mean more powerful error
correction. For a highly noisy channel where multiple errors per block
are common, even a long Hamming code will fail.

information theory 123

8.4 Linear Codes: A General Framework

Hamming codes have a beautiful property: the set of codewords is
closed under addition. If c1 and c2 are codewords, then c1 + c2 (computed
mod 2, meaning XOR) is also a codeword. This makes them linear codes,
and linearity unlocks powerful tools. Linear codes are closed under addition

(mod 2). This seemingly simple prop-
erty enables compact representation and
efficient decoding.The Generator Matrix

A linear code with k message bits and n codeword bits can be described
by a generator matrix G, a k× n binary matrix. To encode message m (a
k-bit row vector), compute:

c = m · G

where multiplication is over F2 (binary arithmetic: 1 + 1 = 0).
For the Hamming (7,4) code, one choice of generator matrix is:

G =


1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1


Let us verify with our earlier example. Encoding m = (1, 0, 1, 1):

c = (1, 0, 1, 1) · G
= 1 · (1, 1, 0, 1, 0, 0, 0) + 0 · (1, 0, 1, 0, 1, 0, 0) + 1 · (0, 1, 1, 0, 0, 1, 0) + 1 · (1, 1, 1, 0, 0, 0, 1)

= (1, 1, 0, 1, 0, 0, 0) + (0, 1, 1, 0, 0, 1, 0) + (1, 1, 1, 0, 0, 0, 1)

= (0, 1, 0, 1, 0, 1, 1)
With the generator matrix, encoding is
a matrix multiplication. Different gen-
erator matrices can produce the same
code in different “systematic” or “non-
systematic” forms.

Wait—this does not match the codeword 0110011 we computed
earlier! What went wrong?

Nothing is wrong. The generator matrix I wrote encodes to a differ-
ent equivalent form of the same codeword. Different generator matrices
give different representations of the same code. The important point is
that the encoding is a simple matrix multiplication.

For a systematic code—one where the message bits appear unchanged
in the codeword—we would use a different generator matrix where the
last k columns form an identity matrix.

The Parity-Check Matrix

There is another way to describe a linear code: by the constraints its
codewords must satisfy. The parity-check matrix H is an (n − k) × n
binary matrix such that c is a codeword if and only if:

H · cT = 0

124 claude opus 4.5

For the Hamming (7,4) code:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


Notice something remarkable: the columns of H are the binary

representations of 1 through 7! Column 1 is (1, 0, 0)T = 1 in binary.
Column 5 is (1, 0, 1)T = 5 in binary. Column 7 is (1, 1, 1)T = 7 in binary.

This is not a coincidence. It is the whole point of the Hamming
construction. For Hamming codes, the columns of H

are binary representations of 1 through n.
This is why the syndrome gives the error
position directly.Syndrome Decoding

When we receive a word r, it might be a corrupted codeword: r = c + e,
where c is the transmitted codeword and e is the error pattern.

Compute the syndrome:

s = H · rT = H · (c + e)T = H · cT + H · eT = 0 + H · eT = H · eT

The syndrome depends only on the error pattern, not on which
codeword was sent! Every correctable error pattern produces a unique
syndrome.

For a single-bit error in position j, the error vector e has a 1 only in
position j. The syndrome is:

s = H · eT = column j of H

For the Hamming code, column j of H is the binary representation
of j. So the syndrome is the error position.

This is the magic of Hamming codes: decoding requires no lookup
table. Compute the syndrome (3 parity checks), interpret it as a binary
number, flip that bit. Done.

Minimum Distance for Linear Codes

For a linear code, the minimum distance has a simple characterization:
it equals the minimum weight (number of 1s) of any nonzero codeword. For linear codes, minimum distance

equals minimum weight. This follows
because c1 − c2 = c1 + c2 is also a code-
word, so distances equal weights.

Why? Because for linear codes, the difference of two codewords is
also a codeword. If c1 and c2 are codewords, then c1 − c2 = c1 + c2 (in
binary) is also a codeword. The Hamming distance between c1 and c2

equals the weight of c1 + c2. So the minimum distance between any
two codewords equals the minimum weight of any nonzero codeword.

This is useful for analysis: instead of checking all (2k

2) pairs of code-
words, we just need to find the minimum-weight nonzero codeword.

information theory 125

8.5 The Sphere-Packing Bound

We have built codes that correct errors. But how good can codes be?
Is there a fundamental limit on how many errors we can correct at a
given rate?

Yes. The limit comes from a beautiful geometric argument: sphere
packing.

Codewords as Sphere Centers
c1

c2

c3

t

Figure 8.2: Codewords as sphere cen-
ters. Each sphere of radius t contains
all words within Hamming distance t.
Spheres must not overlap.

Think of codewords as points in the space of all n-bit binary vectors.
Around each codeword, imagine a “sphere” of radius t: all vectors
within Hamming distance t of that codeword.

If the code corrects t errors, then when we receive a word within
distance t of a codeword, we decode to that codeword. For this to
work unambiguously, the spheres around different codewords must
not overlap. Otherwise, a received word could be within distance t of
two different codewords, and we would not know which was sent. Sphere-packing: if t-error-correcting

spheres around codewords must not over-
lap, and must fit in the space, we get a
bound on how many codewords are pos-
sible.

So the spheres must be disjoint. And they must all fit within the
total space of n-bit vectors. This gives us a bound.

The Hamming Bound

How many n-bit vectors are within Hamming distance t of a given
codeword? We must count all vectors differing in 0, 1, 2, . . . , or t
positions:

V(n, t) =
t

∑
i=0

(
n
i

)
There are M = 2k codewords, each with a sphere of size V(n, t). The

total “volume” of all spheres is M ·V(n, t). This must fit in the space
of all 2n binary vectors:

2k ·V(n, t) ≤ 2n

Taking logarithms:

k + log2 V(n, t) ≤ n

This is the Hamming bound or sphere-packing bound.
Example: For n = 7 and t = 1 (single-error correction):

V(7, 1) =
(

7
0

)
+

(
7
1

)
= 1 + 7 = 8

The bound gives:
2k · 8 ≤ 27 = 128

2k ≤ 16

126 claude opus 4.5

k ≤ 4

The Hamming (7,4) code achieves k = 4 exactly! The spheres per-
fectly tile the space with no gaps and no overlaps. Such codes are called
perfect codes. A perfect code achieves the sphere-

packing bound with equality. The only
nontrivial perfect binary codes are Ham-
ming codes (for t = 1) and the Golay
code (for t = 3, n = 23).

Perfect Codes Are Rare

You might hope that for any n and t, we could find a perfect code that
achieves the bound. Unfortunately, perfection is rare.

The only nontrivial perfect binary codes are:

• The Hamming codes (correcting t = 1 error)

• The binary Golay code with n = 23, k = 12, t = 3

That is it. For most combinations of n and t, perfect codes do not
exist. The spheres cannot be packed without gaps.

Approaching Capacity

What does the sphere-packing bound say about approaching channel
capacity?

For a code correcting a fraction δ of errors (so t = δn), the bound
becomes, for large n:

R =
k
n
≤ 1− Hb(δ) + o(1)

where Hb is the binary entropy function.
For a BSC with crossover probability p, we need to correct roughly

pn errors, so δ ≈ p. The bound says:

R ≤ 1− Hb(p)

But this is exactly the channel capacity C = 1− Hb(p)! The sphere-
packing bound, applied asymptotically, agrees with Shannon’s theorem.
We cannot do better than capacity. The sphere-packing bound recovers Shan-

non’s capacity as n → ∞. This con-
sistency is reassuring: geometry and
information theory agree.

The sphere-packing bound is an upper bound—it says we cannot
do better. Shannon’s theorem says we can approach this limit. But for
fifty years, the practical codes fell far short. Where were the codes that
achieved capacity?

8.6 Beyond Single Errors

Before telling the story of how capacity was finally achieved, let us
briefly survey the codes developed in the intervening decades.

information theory 127

BCH and Reed-Solomon Codes

Hamming codes correct single errors. What about multiple errors?
BCH codes (Bose-Chaudhuri-Hocquenghem, 1959-1960) generalize

Hamming codes to correct multiple errors. They use finite field arithmetic—
algebra over F2m —to design parity checks that can locate multiple error
positions. Reed-Solomon codes are the workhorses

of digital storage. They protect CDs,
DVDs, QR codes, and deep-space com-
munications.

Reed-Solomon codes are a special class of BCH codes that operate
on symbols (groups of bits) rather than individual bits. They are
particularly good at correcting burst errors—errors that cluster together.
Reed-Solomon codes protect CDs, DVDs, QR codes, and deep-space
communications. When the Voyager spacecraft sent images of Jupiter
and Saturn across billions of kilometers, Reed-Solomon codes ensured
the pictures arrived intact.

We will not develop the algebra of these codes—that would require
a chapter on finite fields. But know that they exist, they are practical,
and they pushed coding theory forward for decades.

Convolutional Codes

There is another approach entirely: instead of encoding fixed blocks,
encode a continuous stream. Convolutional codes have memory—the
current output depends on past inputs. Convolutional codes encode streams

rather than blocks. The Viterbi algorithm
(1967) decodes them efficiently using dy-
namic programming.

Picture a shift register with XOR gates. As bits stream through, parity
bits are computed from a sliding window of inputs. The encoder is sim-
ple; the decoder uses the celebrated Viterbi algorithm (1967), which finds
the most likely transmitted sequence using dynamic programming.

Convolutional codes powered dial-up modems, early cell phones,
and satellite communications. They are efficient to decode and perform
well in practice.

But neither algebraic codes nor convolutional codes achieved Shan-
non’s limit. By 1990, the best practical codes operated 2-3 dB from
capacity—meaning they required 1.5-2 times the signal power of an
ideal code. The gap had narrowed since 1948, but seemed stuck.

8.7 The Modern Breakthrough

The breakthrough came in 1993.

Turbo Codes: The Revolution

At the International Conference on Communications in Geneva, Claude
Berrou and Alain Glavieux presented a paper claiming near-capacity
performance. The coding theory community was skeptical—such claims
had been made before and had not held up.

128 claude opus 4.5

The results held up. Turbo codes (1993): two simple encoders
plus iterative decoding. Within 0.5 dB of
Shannon’s limit. The coding community
was stunned.

Turbo codes use a deceptively simple structure:

1. Two convolutional encoders in parallel

2. The second encoder sees the data in scrambled (interleaved) order

3. An iterative decoder that passes “soft” information between two
component decoders

The key is iteration. Each component decoder provides probabilistic
information about the bits—not hard decisions, but likelihoods. This
soft information passes to the other decoder, which refines its estimates.
After 10-20 iterations, the combined decoder performs far better than
either component alone.

Performance: within 0.5 dB of Shannon’s limit. After forty-five years,
the goal was in sight.

Berrou later said he did not realize how close to capacity he was
until after the fact. He was just trying to build a good code. Sometimes
engineering succeeds where theory stumbles.

LDPC Codes: Rediscovering Gallager

Here is a twist in the story. The codes that match turbo code per-
formance were not new—they had been invented in 1962 by Robert
Gallager in his PhD thesis.

Low-Density Parity-Check (LDPC) codes have sparse parity-check ma-
trices. Most entries are 0; only a few are 1. But what exactly makes a
matrix “low density”? LDPC codes were invented in 1962, for-

gotten for 30 years, then rediscovered.
Gallager’s thesis was ahead of its time—
computers could not decode his codes.

Consider the Hamming (7,4) code. Its parity-check matrix has 21

entries (3 rows × 7 columns), of which 12 are ones. That is a density of
12/21 ≈ 57%—more than half the entries are nonzero. For an LDPC
code with, say, n = 1000 bits and n − k = 500 check equations, a
comparable density would mean 285,000 ones in a matrix with 500,000

entries.
An LDPC code might instead have only 3 ones per row and 6

ones per column. That gives 500× 3 = 1500 ones total—a density of
1500/500,000 = 0.3%. This sparsity is the “low density” that gives
LDPC codes their name and their power. Density comparison: Hamming (7,4) has

57% ones. A typical LDPC code has less
than 1% ones. This sparsity enables effi-
cient decoding.

Why does sparsity help? Each parity check involves only a handful
of bits—typically 3 to 6 in well-designed codes. This means each check
provides focused information about a small subset of bits, and the
decoding algorithm can process each check in constant time regardless
of block length.

information theory 129

The Tanner Graph: A Crossword Puzzle

0 1 2 3 4 5

A B C

Bits

Parity checks

Figure 8.3: Tanner graph for a (6,3) LDPC
code. Variable nodes (circles) represent
bits. Check nodes (squares) represent
parity checks. Each check constrains 3

bits.

The structure of an LDPC code is best visualized as a Tanner graph—
a bipartite graph with two types of nodes. Variable nodes represent
codeword bits. Check nodes represent parity constraints. An edge
connects variable node i to check node j if bit i participates in parity
check j.

The crossword puzzle analogy illuminates why this structure helps.
In a crossword, each letter belongs to two words—one across, one down.
No single clue determines any letter uniquely. But the clues constrain
each other. If 3-across must be a five-letter word meaning “swift” and
3-down must start with the same letter and mean “harvest,” then the
first letter is probably “R” (for RAPID and REAP). The crossword analogy: each letter is con-

strained by two words (across and down).
Each bit is constrained by multiple par-
ity checks. The overlapping constraints
enable inference.

LDPC codes work the same way. Each bit participates in several
parity checks (typically 3 to 6). Each parity check constrains several bits
(typically 6 to 20). No single check determines any bit. But the checks
overlap, and information propagates through these overlaps.

Let us make this concrete with a small example.

A Worked Example: The (6,3) LDPC Code

Consider a tiny LDPC code with n = 6 bits and k = 3 message bits.
The parity-check matrix is:

H =

1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 0 1 1


Each row has exactly 3 ones (each check involves 3 bits). Columns

1, 3, 4, and 5 have 2 ones each; columns 0 and 2 have 1 and 2 ones.
The density is 9/18 = 50%—not truly “low density,” but small codes
cannot be sparse. Real LDPC codes use thousands of bits.

Encoding. The code has 2k = 8 codewords. One systematic encoding
places message bits in positions 0, 1, 2 and computes parity bits for
positions 3, 4, 5. For message m = (1, 0, 1):

• Check A: c0 + c1 + c3 = 0⇒ 1 + 0 + c3 = 0⇒ c3 = 1

• Check B: c1 + c2 + c4 = 0⇒ 0 + 1 + c4 = 0⇒ c4 = 1

• Check C: c2 + c4 + c5 = 0⇒ 1 + 1 + c5 = 0⇒ c5 = 0

The codeword is c = (1, 0, 1, 1, 1, 0). Encoding the (6,3) code: message 101

becomes codeword 101110. Each parity
check determines one parity bit.

Transmission and corruption. We transmit c = (1, 0, 1, 1, 1, 0) over a
noisy channel. Suppose bit 4 flips, giving received word r = (1, 0, 1, 1, 0, 0).

Belief propagation decoding. Instead of computing a syndrome
and looking up the error, LDPC decoders use belief propagation—an
iterative algorithm where nodes exchange probabilistic messages.

130 claude opus 4.5

Initially, each variable node has some belief about its value. For a
binary symmetric channel with crossover probability p = 0.1, receiving
a 0 means P(bit = 0) = 0.9 and P(bit = 1) = 0.1. We work with log-
likelihood ratios: L = log P(bit=0)

P(bit=1) . For a received 0, L = log(0.9/0.1) =
log 9 ≈ 2.2. For a received 1, L = −2.2.

Initial beliefs from r = (1, 0, 1, 1, 0, 0):

Bit 0 1 2 3 4 5

Linit −2.2 +2.2 −2.2 −2.2 +2.2 +2.2

Negative L means “probably 1”; positive L means “probably 0.” Log-likelihood ratios: L > 0 means
“probably 0,” L < 0 means “probably 1.”
The magnitude indicates confidence.

Round 1: Variable to check. Each variable node sends its belief to
each connected check node. Bit 4 sends L = +2.2 to checks B and C,
saying “I am probably 0.”

Round 1: Check to variable. Each check node combines messages
from its neighbors and sends back updated beliefs. Check B connects
to bits 1, 2, 4. It received:

• From bit 1: L1 = +2.2 (probably 0)

• From bit 2: L2 = −2.2 (probably 1)

• From bit 4: L4 = +2.2 (probably 0)

The parity check says c1 ⊕ c2 ⊕ c4 = 0. If bits 1 and 4 are both 0,
then bit 2 must be 0. But bit 2 says it is probably 1! The check senses a
contradiction.

The message from check B back to bit 4 incorporates information
from bits 1 and 2: “Given what bits 1 and 2 say, you should probably be
1, not 0.” The formula involves hyperbolic tangents, but the intuition is:
the check aggregates evidence from its other neighbors and tells each
bit what value would satisfy the constraint.

After one round, bit 4 has received messages from checks B and C.
Both checks, informed by their other neighbors, suggest bit 4 should be
1. This new evidence outweighs the initial channel observation. One round of belief propagation: check

B tells bit 4 “your neighbors suggest you
should be 1.” The evidence accumulates.

Convergence. After 3–5 iterations on this small example, the beliefs
stabilize. Bit 4’s total log-likelihood becomes negative (probably 1),
while all other bits retain their original signs. The decoder outputs
(1, 0, 1, 1, 1, 0)—the correct codeword.

Why Belief Propagation Works

Why does iterating messages converge to the right answer? The intu-
ition comes from three observations.

First: Local consistency propagates. Each parity check enforces a
local constraint. When beliefs satisfy all local constraints simultaneously,

information theory 131

we have found a valid codeword. The iteration drives the system toward
this globally consistent state.

Second: Evidence accumulates. Each variable node collects evi-
dence from multiple check nodes, and each check node collects evi-
dence from multiple variable nodes. A single corrupted bit is “outvoted”
by its neighbors. Bit 4 in our example received evidence from two check
nodes, each of which heard from two other bits—effectively, bit 4’s
belief incorporated information from bits 1, 2, and 5.

Third: The graph structure matters. Belief propagation gives exact
answers on tree-structured graphs. LDPC codes are designed so that,
locally, the Tanner graph looks like a tree. Short cycles (where a message
can return to its origin after only a few hops) degrade performance;
good LDPC codes avoid them. Why BP converges: local constraints

propagate globally; evidence accumu-
lates from neighbors; tree-like graph
structure enables exact inference locally.

You might ask, “But real LDPC codes have millions of bits. Does
belief propagation still work?” Yes—and here is the remarkable fact.
The computational cost per iteration scales linearly with the number
of edges in the Tanner graph. A sparse graph with n bits and 3 ones
per column has only 3n edges. Each iteration costs O(n), and typically
20–50 iterations suffice. Total cost: O(n), compared to O(n3) for solving
linear systems directly.

How Close to Capacity?

The theoretical question that drove fifty years of research was: how
close can practical codes get to Shannon’s limit?

For a binary symmetric channel with p = 0.05 (5% bit flip probabil-
ity), the capacity is C = 1− Hb(0.05) ≈ 0.714 bits per channel use. This
means, in principle, we can transmit reliably at any rate below 0.714. Modern LDPC codes operate within

0.0045 bits of capacity—99.4% of the the-
oretical limit. The fifty-year quest suc-
ceeded.

In 2001, Richardson and Urbanke showed that carefully designed
“irregular” LDPC codes—where different variable nodes have different
numbers of connections—can operate within 0.0045 bits of capacity.
That is, at rate R = 0.709 instead of the theoretical maximum R = 0.714.
We are capturing 99.4% of the channel’s capacity.

For the additive white Gaussian noise channel (the model for wireless
communication), the story is even better. The Shannon limit says we
need a signal-to-noise ratio of about 0 dB to communicate at rate 1/2.
Modern LDPC codes achieve reliable communication at 0.0045 dB above
this limit—a gap so small it is essentially unmeasurable in practice.

When turbo codes appeared in 1993 operating 0.5 dB from capacity,
the community was stunned. LDPC codes subsequently closed the gap
by another factor of 100.

132 claude opus 4.5

The Forgotten Thesis

In 1962, Robert Gallager proposed all of this in his PhD thesis at MIT. He
described sparse parity-check matrices, the Tanner graph representation,
and iterative decoding. He proved that randomly constructed LDPC
codes approach capacity as block length increases.

But in 1962, computers were too slow to implement his decoder. A
million-bit code requires billions of message updates per codeword.
The coding community focused on algebraic codes—Reed-Solomon,
BCH—that admitted fast non-iterative decoders. Gallager’s thesis was
cited occasionally but largely forgotten.

When turbo codes revived interest in iterative decoding in the 1990s,
David MacKay and Radford Neal rediscovered LDPC codes. They
showed that Gallager’s thirty-year-old construction matched or ex-
ceeded turbo code performance. MacKay reportedly said he felt like
an archaeologist discovering that an ancient civilization had already
solved the problem.

Robert Gallager, by then a professor emeritus at MIT, lived to see his
forgotten invention become the foundation of modern communications.
His codes now transmit every WiFi signal, every 5G phone call, every
photograph from deep space.

Modern Performance

Today, LDPC codes power:

• WiFi (802.11n, 802.11ac, 802.11ax)

• 5G cellular networks

• Solid-state drives (SSDs)

• Deep-space communication (DVB-S2)

The fifty-year quest is over. Shannon’s “useless” existence theorem
became the most useful result in communications engineering.

8.8 A Complete Worked Example

Let us ground everything in a concrete calculation: encoding a message
with the Hamming (7,4) code, transmitting over a noisy channel, and
decoding.

The Full Pipeline

Message: m = (1, 0, 1, 0)
Step 1: Encoding
Place data bits in positions 3, 5, 6, 7:

information theory 133

Position: 1 2 3 4 5 6 7

Bit: p1 p2 1 p3 0 1 0

Compute parity bits:

• p1 (positions 1,3,5,7): p1 + 1 + 0 + 0 = 1, so p1 = 1

• p2 (positions 2,3,6,7): p2 + 1 + 1 + 0 = 2, so p2 = 0

• p3 (positions 4,5,6,7): p3 + 0 + 1 + 0 = 1, so p3 = 1

Codeword: c = (1, 0, 1, 1, 0, 1, 0)
Step 2: Transmission
We send c = 1011010 over a BSC with p = 0.1. Suppose bit 3 flips.
Received: r = (1, 0, 0, 1, 0, 1, 0)
Step 3: Syndrome Calculation

• Check 1 (positions 1,3,5,7): 1 + 0 + 0 + 0 = 1 (odd)⇒ s1 = 1

• Check 2 (positions 2,3,6,7): 0 + 0 + 1 + 0 = 1 (odd)⇒ s2 = 1

• Check 3 (positions 4,5,6,7): 1 + 0 + 1 + 0 = 2 (even)⇒ s3 = 0

Syndrome: (s3, s2, s1) = (0, 1, 1) = 0112 = 3 Complete example: encode 1010 to
1011010, corrupt bit 3 to get 1001010, com-
pute syndrome 011 = 3, flip bit 3, recover
1010.

Error location: position 3.
Step 4: Correction
Flip bit 3: (1, 0, 1, 1, 0, 1, 0)
Step 5: Extract Message
Read positions 3, 5, 6, 7: (1, 0, 1, 0)
Original message recovered!

Error Analysis

The Hamming (7,4) code corrects any single error. What is the proba-
bility of failure?

For a BSC with p = 0.1, failure occurs when 2 or more bits are
corrupted:

P(failure) = P(≥ 2 errors in 7 bits)

= 1− P(0 errors)− P(1 error)

= 1− (1− p)7 − 7p(1− p)6

= 1− 0.478− 0.372

= 0.150

Compare to uncoded transmission of 4 bits:

P(any error) = 1− (1− p)4 = 1− 0.656 = 0.344

134 claude opus 4.5

The Hamming code cuts the error rate from 34% to 15%, while
achieving rate 4/7 ≈ 0.571—much better than the 1/3 rate of repetition
coding.

For p = 0.01:

P(failure, Hamming) ≈
(

7
2

)
(0.01)2 = 0.0021

P(error, uncoded) = 1− 0.96 = 0.04

The Hamming code reduces errors by a factor of 20.

8.9 What Codes Teach Us

Let us step back from the details and ask what error-correcting codes
reveal about communication and computation.

The Power of Structure

Error-correcting codes work by imposing structure on transmissions.
Instead of using all possible bit strings—which noise turns into chaos—
we use a carefully chosen subset. The structure is not arbitrary; it is
designed to spread codewords apart in Hamming space. Structure is not a constraint to be mini-

mized. In coding, structure enables reli-
ability. In poetry, rhyme and meter aid
memory. The right constraints can help.

This is a general principle worth remembering: structured constraints
can help, not hinder. The constraints of rhyme and meter do not make
poetry harder to remember—they make it easier. The structure of musi-
cal scales does not limit composers—it gives them a vocabulary. The
structure of codewords does not waste capacity—it creates reliability.

Theory Guides Practice

Shannon’s theorem told engineers where to aim. Without it, they might
have wasted decades trying to beat capacity, or settled for 50% efficiency
thinking that was the best nature allowed.

The theorem did not say how to achieve capacity. But it said the
target was achievable. It defined success. When Berrou’s turbo codes
appeared in 1993, the community knew immediately how significant
they were—they could measure the gap to capacity. Shannon’s theorem defined success.

Without it, engineers would have been
shooting in the dark. With it, they knew
exactly what to aim for.

Theory and practice are not separate enterprises. Theory tells us
what is possible; practice shows us how to get there. Neither is complete
without the other.

The Surprise of Simplicity

The codes that finally achieved capacity—turbo codes and LDPC codes—
are conceptually simple. Two encoders and an interleaver. Sparse

information theory 135

matrices and message passing. The individual components are nothing
special. The magic lies in the combination.

Gallager’s LDPC codes waited thirty years for computers fast enough
to decode them. Turbo codes’ iterative decoding was not a theoretical
breakthrough—it was an engineering trick that worked unexpectedly
well.

Sometimes the answer has been hiding in plain sight. Simplicity is
worth pursuing, even when it seems insufficient.

8.10 Looking Ahead

We have traveled from existence to construction. Shannon proved good
codes exist; we have built them. From repetition codes to Hamming
codes to LDPC codes, we have seen how structure enables reliability. Movement II concludes. We have con-

quered communication—the engineering
of information. Movement III reveals that
information theory is also physics.

This completes the engineering story of information theory. We
know how to compress messages (Chapter 5). We know the limits
of noisy channels (Chapters 6-7). We know how to build codes that
achieve those limits (this chapter).

But there is more. Information theory is not just engineering. It
connects to physics in ways that surprised even Shannon.

In the next chapter, we turn from engineering to thermodynamics.
We will discover that Shannon’s entropy and Boltzmann’s entropy—the
entropy of physics, of heat engines and the second law—are the same
thing. Not analogous. Not similar. The same.

Maxwell imagined a demon who could violate the second law by
sorting molecules. Landauer asked what happens physically when
you erase a bit of information. The answers to these questions connect
information to the deepest structures of physical law.

The engineering was beautiful. The physics is profound.

Historical note. The fifty-year gap between Shannon’s theorem (1948) and practical capacity-achieving codes (1993)
is one of the great stories in applied mathematics. Shannon showed the destination existed; finding the path required
contributions from hundreds of researchers across multiple continents. When Gallager’s 1962 codes were finally recognized
in the 1990s, he was asked how he felt about the thirty-year delay. “Sometimes,” he reportedly said, “you’re ahead of
your time. And then you’re not.” His codes now transmit billions of messages every second.

9
Information and Thermodynamics

Here is a puzzle that troubled the best minds of the nineteenth century.
A box of gas sits in equilibrium. Every molecule darts about, colliding
with walls and with other molecules, tracing an unimaginably complex
trajectory. If we knew the position and velocity of every molecule—all
1023 of them—we could, in principle, predict the future perfectly. The
laws of mechanics are reversible; nothing is lost. And yet, when we
watch a box of gas, we see irreversibility everywhere. The gas spreads
out and never spontaneously contracts. Heat flows from hot to cold
and never reverses. The universe runs down. Where does the arrow of
time come from? The laws of physics do not have one. The central puzzle of thermodynamics:

the microscopic laws are reversible, yet
the macroscopic world runs irreversibly
toward equilibrium. Boltzmann’s resolu-
tion invoked counting.

Boltzmann’s answer, in 1877, was entropy. But his entropy was a
puzzle in itself—a quantity defined in terms of counting microscopic
arrangements, seemingly unrelated to the thermodynamic entropy that
Clausius had defined through heat and temperature. Then, seventy
years later, Shannon defined his own entropy to measure uncertainty
in communication. The formulas look identical. One entropy is about
steam engines; the other is about telegraph wires. What could they
possibly have in common?

Everything. They are the same thing. This chapter will show you
why, and the demonstration will change how you think about both
physics and information. The second law of thermodynamics—perhaps
the most profound principle in all of science—is, at bottom, a statement
about information. Entropy increases because we lose track of things.
The arrow of time points in the direction of forgetting.

9.1 Boltzmann’s Revolution

Before Boltzmann, thermodynamic entropy was an accounting device.
Clausius had defined it operationally in the 1850s: integrate the heat
transferred divided by temperature along a reversible path. The result,
which he called entropy (from the Greek entropia, “transformation”),

138 claude opus 4.5

had peculiar properties. It always increased in isolated systems. It told
you which processes were possible and which were forbidden. It was
the arbiter of the second law. But no one knew what it meant.

Boltzmann asked a dangerous question: what if gases are made of
atoms? In 1877, atoms were controversial. Ernst

Mach called them “metaphysical.” Boltz-
mann’s statistical mechanics was at-
tacked as unphysical speculation.

This was controversial in 1877. Many physicists considered atoms a
convenient fiction—a calculational trick with no physical reality. Mach,
Ostwald, and others insisted that thermodynamics could be done with-
out reference to invisible, hypothetical particles. Boltzmann disagreed.
If gases are made of atoms, he reasoned, then a macroscopic state—“the
gas has this pressure and temperature”—corresponds to many micro-
scopic states—“molecule 1 is here with this velocity, molecule 2 is there
with that velocity. . . ”

How many microscopic states? That was the question. And Boltz-
mann’s answer was the formula that would be carved on his tombstone:

S = kB ln W

Here W is the number of microscopic arrangements (what we would
now call microstates) compatible with a given macroscopic description
(the macrostate). The constant kB, now called Boltzmann’s constant, is
approximately 1.38× 10−23 joules per kelvin.

You might ask: why the logarithm? Why not just use W itself? The logarithm converts multiplicative
counting to additive entropy. This is the
same mathematical structure as Shannon
entropy.

The answer is additivity. Consider two independent systems A
and B. The number of microscopic arrangements for the combined
system is WA ×WB—each arrangement of A can combine with each
arrangement of B. But we want entropy to be additive: SA+B = SA + SB.
The logarithm converts multiplication to addition:

SA+B = kB ln(WAWB) = kB ln WA + kB ln WB = SA + SB

This reasoning should sound familiar. In Chapter 2, we used exactly
the same argument to derive Shannon entropy. The mathematical
structure is identical.

A Concrete Example: The Shuffled Deck

Let us make this tangible with a metaphor we will develop throughout
the chapter.

Imagine a deck of 52 playing cards. When the deck is perfectly
sorted—ace through king in each suit, suits in a fixed order—you know
exactly which card is in which position. There is only one arrangement
that counts as “sorted.” The entropy is:

Ssorted = kB ln(1) = 0
A sorted deck has zero entropy—one
arrangement, no uncertainty. A shuf-
fled deck has maximum entropy—52! ar-
rangements, complete uncertainty about
which one.

information theory 139

No uncertainty means no entropy.
Now shuffle the deck thoroughly. There are 52! possible orderings,

and for a well-shuffled deck, each is equally likely. The entropy is:

Sshuffled = kB ln(52!) ≈ kB × 156

That is the maximum possible entropy for a deck of cards. You
have no information about which arrangement you are holding. The
deck could be in any of about 8× 1067 configurations, and you cannot
distinguish among them.

What about a partially shuffled deck—one that has been through a
few riffle shuffles but is not yet random? It has intermediate entropy.
Some orderings are more probable than others (cards that were nearby
tend to stay nearby), but you still have substantial uncertainty.

The second law, applied to card decks, says: if you shuffle randomly,
entropy tends to increase. A sorted deck becomes shuffled; a shuffled
deck does not become sorted. Why? Not because of any special
property of card dynamics—every ordering is mechanically equivalent,
obeying the same laws of motion. The reason is pure combinatorics.
There are vastly more shuffled arrangements than sorted ones. A
random process almost certainly lands in the larger set.

9.2 The Gibbs Entropy

Boltzmann’s formula S = kB ln W implicitly assumes that all W mi-
crostates are equally probable. This is the case for an isolated system
in equilibrium—the “microcanonical ensemble” in the language of
statistical mechanics.

But what if states are not equally likely? What if the system is in
contact with a heat bath at temperature T, and different energy states
have different probabilities? Gibbs generalized Boltzmann’s formula

to arbitrary probability distributions over
microstates. The result is identical to
Shannon entropy.

J. Willard Gibbs, working independently in America, developed a
more general formulation. Let pi be the probability that the system is
in microstate i. Then the entropy is:

S = −kB ∑
i

pi ln pi

Stop. Look at that formula again.
Compare it to Shannon entropy, which we derived in Chapter 2:

H = −∑
i

pi log2 pi

They are the same formula. The only differences are the constant in
front (kB versus 1) and the base of the logarithm (natural versus base-2).
These are just unit conversions—the mathematical structure is identical.

140 claude opus 4.5

Let us verify that Gibbs entropy reduces to Boltzmann entropy when
all states are equally probable. If pi = 1/W for all i:

S = −kB

W

∑
i=1

1
W

ln
1

W

= −kB ·W ·
1

W
· (− ln W)

= kB ln W

The generalization is consistent.
Gibbs understood something profound: statistical mechanics is fun-

damentally about probability distributions over states, not about track-
ing individual trajectories. The entropy measures how “spread out”
the distribution is—how uncertain we are about which microstate the
system occupies.

This is exactly what Shannon entropy measures: uncertainty.

9.3 Maximum Entropy and the Boltzmann Distribution

Here is a foundational question of statistical mechanics: given that a
system has a fixed average energy, what probability distribution should
we assign to its microstates?

You might say: who are we to assign probabilities? The system is in
some definite microstate—we just do not know which one. The principle of maximum entropy:

among all distributions consistent with
what you know, choose the one with max-
imum entropy. This is not physics—it is
logic.

True. But that is precisely the point. Because we do not know which
microstate, we must assign probabilities that reflect our ignorance. And
the principle of maximum entropy says: spread your probability as
widely as possible, subject to what you actually know.

Let us derive the Boltzmann distribution from this principle.
We want to maximize:

S = −kB ∑
i

pi ln pi

subject to two constraints:

1. Normalization: ∑i pi = 1

2. Fixed average energy: ∑i piEi = 〈E〉

Using Lagrange multipliers α and β for the two constraints:

L = −kB ∑
i

pi ln pi − α

(
∑

i
pi − 1

)
− β

(
∑

i
piEi − 〈E〉

)

Taking the derivative with respect to pi and setting it to zero:

−kB(ln pi + 1)− α− βEi = 0

information theory 141

Solving for pi:

pi = exp
(
−α + kB

kB

)
exp

(
− βEi

kB

)
The normalization constraint determines the first factor. Defining

the partition function

Z = ∑
i

exp
(
− βEi

kB

)
we find:

pi =
1
Z

exp
(
− βEi

kB

)
The Boltzmann distribution emerges
from maximum entropy subject to fixed
average energy. We did not assume it—
we derived it from the requirement of
maximum ignorance.

This is the canonical Boltzmann distribution. Identifying β = 1/T
(where T is the temperature):

pi =
1
Z

exp
(
− Ei

kBT

)
The probability of a state decreases exponentially with its energy, at

a rate set by the temperature.
We did not assume this distribution. We derived it from the require-

ment that entropy be maximized subject to knowing only the average
energy. The Boltzmann distribution is the most uncertain distribu-
tion consistent with our constraints—the distribution of maximum
ignorance.

A Worked Example: The Two-State System

Consider a simple system with two states: a ground state with energy
E0 = 0 and an excited state with energy E1 = ε.

The partition function is:

Z = 1 + e−ε/(kBT)

The probabilities are:

p0 =
1
Z

=
1

1 + e−ε/(kBT)

p1 =
e−ε/(kBT)

Z
=

e−ε/(kBT)

1 + e−ε/(kBT)

At low temperature, the system freezes
into the ground state. At high tempera-
ture, both states become equally likely.
Temperature controls how probability
spreads across energy levels.

What happens at different temperatures?
As T → 0: e−ε/(kBT) → 0, so p0 → 1 and p1 → 0. The system freezes

into its ground state.
As T → ∞: e−ε/(kBT) → 1, so p0 → 1/2 and p1 → 1/2. The states

become equally likely.
This is what temperature means: it controls how probability spreads

across energy levels. Low temperature concentrates probability on
low-energy states. High temperature spreads it out.

142 claude opus 4.5

The partition function Z—this innocent-looking sum—contains all
of thermodynamics. Free energy, entropy, specific heat, pressure: ev-
erything can be computed from Z. It emerged here as a normalization
constant, but it is the master key to statistical mechanics.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

kBT/ε

Pr
ob

ab
ili

ty

p0
p1

Figure 9.1: Occupation probabilities for a
two-state system. At low temperature,
the ground state dominates. At high
temperature, both states approach equal
probability.

9.4 Shannon Equals Boltzmann

Now let us make the connection explicit. We have two formulas:

Shannon: H = −∑
i

pi log2 pi (bits)

Gibbs: S = −kB ∑
i

pi ln pi (joules/kelvin)

The mathematical structure is identical. The differences are:

1. The base of the logarithm (2 versus e)

2. The constant in front (1 versus kB)

Since ln x = log2 x× ln 2, we can convert:

S = −kB ∑
i

pi ln pi

= −kB ln 2 ∑
i

pi log2 pi

= kB ln 2× H

Thus:
S = kB ln 2× H (9.1)

One bit of Shannon entropy equals
kB ln 2 ≈ 10−23 J/K of thermodynamic
entropy. This is the conversion factor be-
tween information and physics.

One bit of Shannon entropy equals kB ln 2 joules per kelvin of ther-
modynamic entropy.

Let us compute this conversion factor:

kB ln 2 = (1.38× 10−23 J/K)× (0.693) ≈ 0.96× 10−23 J/K

This tiny number is the bridge between the abstract world of information
and the concrete world of thermodynamics.

A Bit Has a Physical Size

Consider a single bit of information—the answer to a yes/no question—
at room temperature (T = 300 K).

Its entropy is:
S = kB ln 2 ≈ 10−23 J/K

The energy associated with erasing this bit (as we will see in Chapter
10) is:

E = T × S = 300× 10−23 ≈ 3× 10−21 J

information theory 143

This is about 0.02 electron volts—tiny, but not zero. It is the minimum
energy required to erase one bit of information irreversibly. This is
Landauer’s principle, and we will explore it in the next chapter.

Why Does This Connection Exist?

You might ask: is this just a mathematical coincidence? Why should
Shannon’s engineering quantity have anything to do with Boltzmann’s
physics? Both entropies measure the same thing:

uncertainty about microscopic states.
Shannon measures uncertainty about
messages; Boltzmann measures uncer-
tainty about molecular configurations.

The answer is profound: they are both measuring the same thing—
uncertainty about microscopic states.

Shannon entropy measures your uncertainty about which message
was sent.

Gibbs entropy measures your uncertainty about which microstate
the system is in.

Both are measuring how “spread out” a probability distribution is.
The formulas are identical because the concept is identical.

This is not an analogy or a metaphor. Information is physical. It is
encoded in physical systems—voltages in a computer, spins of electrons,
positions of atoms. Processing information means physically manipu-
lating these systems. And physics constrains what manipulations are
possible.

Rolf Landauer of IBM stated it memorably in 1961: “Information is
physical.”

The laws of thermodynamics are not merely analogous to information
theory. They are information theory, applied to systems with 1023 de-
grees of freedom.

9.5 The Second Law as Information Loss

Now we can reinterpret the most important law in thermodynamics.
The classical statement of the second law: “The entropy of an isolated

system never decreases.”
This is the most universal law in physics. It holds for gases, liquids,

solids, plasmas, black holes, the entire universe. It gives time its
direction.

But what does it mean? Entropy increase means information loss.
We become more uncertain about the mi-
crostate, not because information is de-
stroyed, but because we cannot track it.

Entropy measures uncertainty about the microstate. Saying “entropy
increases” is the same as saying “we become more uncertain about the
microstate.”

But wait—if the laws of mechanics are deterministic, how can we
become more uncertain? If we knew the exact microstate at time t, we
could compute it exactly at time t + 1. No information is lost at the
microscopic level.

144 claude opus 4.5

The resolution lies in what we actually know. We never know
the exact microstate. We know the macrostate—pressure, temperature,
volume. Many microstates correspond to one macrostate. As the system
evolves, it visits regions of phase space compatible with macrostates of
higher entropy.

Coarse-Graining

Imagine dividing the space of all possible microscopic configurations—
called phase space—into cells. Each cell corresponds to a macrostate:
all the microscopic configurations that we cannot distinguish with our
macroscopic measurements.

t0 t1

Phase space

Figure 9.2: Phase space spreading. At
t0, the system is in one cell. At t1, the
microscopic states have spread to many
cells. Our uncertainty about which cell
contains the system has increased.

At time t = 0, we know the system is in some cell. As time passes,
the microscopic configurations that started in that cell spread to other
cells. They explore phase space, entering regions corresponding to
different macrostates. Soon they occupy many cells.

Our uncertainty about which cell contains the system has increased.
This is entropy increase.

The microscopic dynamics lose no information—they are determin-
istic and reversible. But we, with our coarse-grained vision, lose track.
We can no longer say which cell the system is in.

Entropy increase is not a property of the dynamics. It is a property of our
knowledge.

The Shuffled Deck Revisited

Return to our deck of cards. Start with a sorted deck—one macrostate,
one microstate, zero entropy.

Now shuffle randomly. After each shuffle, the deck could be in many
orderings. Your uncertainty grows. Entropy increases.

But notice: the laws of card motion (whatever they are) do not prefer
disorder over order. Every ordering is mechanically equivalent. If you
filmed a shuffle and ran the film backward, the reversed shuffle would
be equally valid. The second law emerges from combina-

torics, not dynamics. There are vastly
more disordered configurations than or-
dered ones. Random exploration almost
certainly finds disorder.

So why does shuffling increase entropy? Because there are vastly
more shuffled configurations than sorted ones. A random process ex-
plores configurations without preference, and almost all configurations
are “disordered.” It is overwhelmingly probable that the deck becomes
and stays shuffled.

This is the essence of the second law. It is not a law of dynamics. It
is a law of counting.

information theory 145

The Arrow of Time

This raises a deep puzzle. The microscopic laws of physics are sym-
metric in time—run them backward, and they still work. A film of
molecular collisions played in reverse would obey the same laws. Yet
the second law picks out a direction. Entropy increases toward the
future, not the past.

Why?
The standard answer invokes cosmology. The universe started in a

state of extremely low entropy. The Big Bang was, in a specific technical
sense, highly ordered. From that special initial condition, entropy has
been increasing ever since. The arrow of time may be set by cos-

mological initial conditions, not by local
physics. This is the “past hypothesis”—
a topic of ongoing research and honest
uncertainty.

The arrow of time, on this view, is not built into the laws of physics.
It is built into the initial conditions. We see entropy increase because
we live in the aftermath of a very special beginning.

This is called the “past hypothesis,” and it remains a topic of active
research. We are honestly uncertain about the ultimate explanation.

9.6 Worked Examples with Numbers

Let us ground these ideas in concrete calculations.

The Entropy of an Ideal Gas

What is the entropy of a mole of helium gas at room temperature and
pressure?

For a monatomic ideal gas, the Sackur-Tetrode equation gives:

S = NkB

[
ln

(
V
N

(
4πmE
3Nh2

)3/2
)
+

5
2

]

where N is the number of atoms, V is volume, m is atomic mass,
E = 3

2 NkBT is total thermal energy, and h is Planck’s constant. Helium at room temperature: about 126

J/K per mole, or equivalently about 30

bits of uncertainty per atom about its po-
sition and velocity.

For one mole of helium (N = 6× 1023) at T = 300 K and standard
pressure (V = 24.5 liters):

mHe = 4× 1.66× 10−27 kg = 6.64× 10−27 kg

E =
3
2
× 6× 1023 × 1.38× 10−23 × 300 = 3740 J

Working through the calculation:

S ≈ 126 J/K per mole

In bits per atom, using our conversion factor:

H =
S

kB ln 2× N
≈ 126

10−23 × 0.693× 6× 1023 ≈ 30 bits per atom

146 claude opus 4.5

Each helium atom in the room carries about 30 bits of positional
uncertainty. You would need approximately 30 yes/no questions to
locate a single atom precisely.

Entropy Change in Heat Transfer

A hot object at TH = 400 K and a cold object at TC = 300 K exchange
Q = 100 J of heat. What is the total entropy change?

The hot object loses entropy:

∆Shot = −
Q
TH

= −100
400

= −0.25 J/K

The cold object gains entropy:

∆Scold = +
Q
TC

= +
100
300

= +0.333 J/K

The total entropy change:

∆Stotal = −0.25 + 0.333 = +0.083 J/K > 0

The second law is satisfied: total entropy increased. Heat flowing from hot to cold creates
entropy. In information terms, about 1021

bits of information are “lost”—we know
less about where the energy came from.

In information terms:

∆H =
∆Stotal
kB ln 2

≈ 0.083
10−23 × 0.693

≈ 1021 bits

About one sextillion bits of information were “lost” in this simple
heat transfer. The universe became more uncertain about where the
energy resides.

Free Expansion of a Gas

A gas occupies the left half of an insulated container. A partition is
removed, and the gas expands to fill the entire container. What is the
entropy change?

Gas Vacuum Before

Gas After

Figure 9.3: Free expansion. The gas ex-
pands from volume V/2 to V. Each
molecule gains one bit of positional un-
certainty.

Before the expansion, each of the N molecules could be anywhere in
the left half (volume V/2). After, each could be anywhere in the full
container (volume V).

The number of microstates scales with the volume available to each
molecule:

Wbefore ∝ (V/2)N

Wafter ∝ VN

The entropy change:

∆S = kB ln
Wafter

Wbefore
= kB ln

VN

(V/2)N = kB ln 2N = NkB ln 2

information theory 147

Per molecule:

∆Sper molecule = kB ln 2

This is exactly one bit of uncertainty gained per molecule. Before
the expansion, we knew each molecule was in the left half. After, we
do not—it could be in either half with equal probability. One bit of
information, lost.

The Gibbs Paradox

Consider two containers of different gases—say, helium and neon—
each at volume V with n moles. A partition is removed, and they mix.
What is the entropy change?

Each gas expands to fill volume 2V:

∆S = 2× nR ln 2

For one mole of each: ∆S = 2× 8.314× 0.693 ≈ 11.5 J/K. The Gibbs paradox: mixing identical
gases should produce no entropy change.
Gibbs resolved this by noting that indis-
tinguishable particles must be counted
differently—divide by N!.

But wait. What if the two gases are identical—both helium, say?
Our calculation would give the same answer: ∆S = 11.5 J/K. But this

seems wrong. If you cannot tell the atoms apart, is there any difference
between “gas A atoms here, gas B atoms there” and “gas A atoms there,
gas B atoms here”? The configurations are indistinguishable!

Gibbs resolved this paradox by recognizing that for identical parti-
cles, we must divide W by N! to avoid overcounting indistinguishable
arrangements. When we do this correctly, mixing identical gases pro-
duces no entropy change.

This is surprisingly subtle. It shows that entropy depends not just
on physical configuration, but on what we can distinguish. Information
is in the eye of the beholder—or more precisely, in the capabilities of
the observer.

9.7 E.T. Jaynes and the Maximum Entropy Perspective

In the 1950s, physicist Edwin Jaynes proposed a radical reinterpretation
of statistical mechanics.

The traditional view asks: if atoms bounce around randomly, what
probability distributions do we get?

Jaynes asked a different question: given that we know only certain
macroscopic facts (like average energy), what probabilities should we
assign? Jaynes: the Boltzmann distribution is not

about what atoms “actually do”—it is
about our best inference given limited
information. Statistical mechanics is in-
ference, not mechanics.

His answer: maximize entropy subject to constraints. The Boltzmann
distribution does not describe what atoms “actually do.” It describes
our best inference given limited information.

148 claude opus 4.5

This is the maximum entropy principle: among all probability distribu-
tions consistent with what you know, choose the one with maximum
entropy. Do not assume more than you know.

Why is this the right choice?
If you use a lower-entropy distribution, you are assuming information

you do not have. If that assumed information is wrong, your predic-
tions will be systematically biased. Maximum entropy is the unique
distribution that:

1. Is consistent with known constraints

2. Makes no additional assumptions

On this view, the Boltzmann distribution emerges not from physics
but from logic. Given that you know only 〈E〉 and nothing else, the
Boltzmann distribution is your best guess.

This interpretation remains controversial. Many physicists feel that
statistical mechanics describes real physical phenomena—heat baths,
thermal fluctuations—not just our ignorance. Others find Jaynes’ per-
spective illuminating, even liberating. Whether Boltzmann statistics describes

physics or inference is debated. What
everyone agrees: the maximum entropy
principle gives correct predictions.

What everyone agrees on: the maximum entropy principle gives cor-
rect predictions. It correctly derives equilibrium distributions, explains
phase transitions, and matches experiment. Whether this is because
nature “maximizes entropy” or because maximum entropy is the correct
inference from limited information is a matter of interpretation.

9.8 Three Giants: Boltzmann, Gibbs, and Shannon

Before we close, let us pause for the history.

Ludwig Boltzmann (1844–1906)

Boltzmann was an Austrian physicist who spent his career defend-
ing the atomic hypothesis and developing statistical mechanics. His
formula S = k ln W connected the microscopic world of atoms to the
macroscopic world of heat engines.

He was combative, passionate, and frequently depressed. He fought
bitter battles against Mach, Ostwald, and others who rejected atoms as
metaphysical. His textbook on gas theory was so dense and difficult
that few could read it.

In 1906, while on vacation with his family in Trieste, Boltzmann
took his own life. He was sixty-two. Three years later, Jean Perrin’s
experiments on Brownian motion vindicated the atomic hypothesis
beyond doubt. Boltzmann never knew.

His tombstone in Vienna bears his formula: S = k log W.

information theory 149

J. Willard Gibbs (1839–1903)

Gibbs was Boltzmann’s temperamental opposite—quiet, solitary, work-
ing in isolation at Yale. He never married, lived with his sister, and
published his work in obscure American journals that few Europeans
read. Gibbs worked in isolation at Yale. His

1878 paper on thermodynamics was 300

pages long and took years to be appreci-
ated. Much of his work had to be redis-
covered by others.

His 1878 paper “On the Equilibrium of Heterogeneous Substances”
developed much of what we now call thermodynamics and statistical
mechanics. It was 300 pages long and took years to be appreciated. His
1902 book Elementary Principles in Statistical Mechanics introduced the
ensemble approach and the generalized entropy formula.

Gibbs’ work was so far ahead of its time that many concepts had to
be rediscovered by others who received the credit.

Claude Shannon (1916–2001)

Shannon was an engineer at Bell Labs who, in one paper in 1948, created
information theory. He chose the name “entropy” for his uncertainty
measure deliberately—reportedly on the advice of John von Neumann.

The story goes that von Neumann told Shannon: “You should call it
entropy, for two reasons. First, the function already appears in statistical
mechanics under that name. Second, and more importantly, nobody
really knows what entropy is, so in a debate you will always have the
advantage.” Von Neumann’s advice to Shannon: “Call

it entropy. Nobody knows what entropy
is, so in a debate you will always have
the advantage.” Whether apocryphal or
not, the name was well chosen.

Whether the anecdote is true, the name was perfect. Shannon knew
about the connection—in his 1948 paper, he noted that his formula “will
be recognized as that of entropy as defined in certain formulations of
statistical mechanics.” But he was careful to motivate it independently,
from communication theory.

Three people, separated by a century and by the Atlantic Ocean,
discovered the same formula. Boltzmann found it in gas molecules.
Gibbs found it in statistical ensembles. Shannon found it in telegraph
messages. The formula was waiting to be found.

9.9 What Does This Unity Mean?

We have shown that Shannon entropy and thermodynamic entropy are
mathematically identical. But why? Why should a formula invented
for telegraph engineering be the same as a formula invented for steam
engines?

Possible Interpretations

Interpretation 1: Mathematical necessity.

150 claude opus 4.5

Both Shannon and Boltzmann needed a function satisfying certain
requirements—additivity for independent systems, non-negativity, max-
imality for uniform distributions. The requirements uniquely determine
the form. This is the “mathematical coincidence” view: they happen to
need the same tool.

Interpretation 2: Both measure uncertainty.
Both entropies measure how spread out a probability distribution is.

Shannon measures uncertainty about messages; Boltzmann measures
uncertainty about microstates. Same concept, same formula. Is information fundamental to physics?

Wheeler’s “it from bit” suggests the uni-
verse may be, at its deepest level, an
information-processing system. We do
not know.

Interpretation 3: Information is physical.
This is the deepest view, associated with John Wheeler’s slogan “it

from bit.” Physical systems carry information in the positions of atoms,
the spins of electrons, the polarizations of photons. The laws of physics
are, in some sense, laws about how information transforms.

On this view, the universe is not just described by information—it is
information. Reality may be, at its deepest level, computational.

We do not know which interpretation is correct. Perhaps it does not
matter—the mathematics works regardless. But the question haunts
physicists and philosophers alike: is information an abstraction we
impose on the world, or is the world made of information?

Practical Implications

Whatever the philosophical interpretation, the practical implications
are clear:

1. Information processing has physical costs. Erasing a bit dissipates
at least kBT ln 2 of energy. This is Landauer’s principle.

2. Physical systems have information-theoretic limits. Channel ca-
pacity applies to neural signals, not just fiber optics. The brain is
constrained by the same theorems as the internet.

3. The second law constrains computation. You cannot compute for
free. Irreversible computation produces heat.

The unity of the two entropies is not just beautiful—it is useful. It
tells us that information theory and thermodynamics are not separate
subjects. They are the same subject, viewed from different angles.

9.10 The Demon Awaits

Let us take stock.
We began with two entropies that seemed unrelated—one from

telegraphy, one from thermodynamics. We showed they are the same
formula: S = kB ln 2× H. We derived the Boltzmann distribution from

information theory 151

maximum entropy. We reinterpreted the second law as information
loss. The second law says entropy increases.

But what if we track every molecule?
What if we refuse to lose information?
Can we then reverse entropy? Maxwell
imagined a demon who could try.

The universe’s tendency toward disorder is not some mysterious
force—it is combinatorics. There are more ways to be spread out than
concentrated, more ways to be uncertain than certain, more ways to
have forgotten than to have remembered.

But this raises a troubling question. If the second law is just about
losing information, what if we do not lose it? What if we track every
molecule perfectly? Could we then reverse entropy? Could we violate
the second law?

This question was posed by James Clerk Maxwell in 1867. He
imagined a tiny intelligent being—a “demon”—who could observe
individual molecules and sort them by speed. Fast molecules to one
side, slow to the other. Temperature differences from nothing. Heat
engines running on knowledge alone. The second law, apparently
violated.

For over a century, physicists debated whether Maxwell’s demon
could exist. The resolution, when it came, was startling: the demon
cannot violate the second law, because the demon itself must be physical.
The act of observing and remembering molecule speeds generates
entropy. When the demon erases its memory to make room for new
observations, it must pay a thermodynamic cost.

Information erasure costs energy. This is Landauer’s principle, and
it is the subject of our next chapter.

The demon is exorcised not by showing it cannot know, but by
showing that knowledge itself has physical consequences.

Historical note. Shannon knew exactly what he was doing when he named his quantity “entropy.” In a 1956 interview,
he said: “My greatest concern was what to call it. I thought of calling it ’information,’ but the word was overly used, so I
decided to call it ’uncertainty.’ When I discussed it with John von Neumann, he had a better idea. Von Neumann told
me, ’You should call it entropy, for two reasons: In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what
entropy really is, so in a debate you will always have the advantage.’ ” Whether von Neumann actually said this, Shannon
delighted in repeating the story. The name stuck, and so did the connection.

10
Maxwell’s Demon and the Cost of Computation

In 1867, James Clerk Maxwell—the same Maxwell who unified electric-
ity and magnetism, who showed that light was an electromagnetic wave,
who ranks alongside Newton and Einstein in the pantheon of physics—
imagined a creature so small it could see individual molecules. This
creature, sitting by a tiny door between two chambers of gas, would
watch molecules approach and open the door only for fast molecules
going one way, slow molecules going the other. No work done. Just
watching and opening a door. Maxwell introduced his demon in a letter

to Peter Tait in 1867. He called it “a very
observant and neat-fingered being.” The
name “demon” came later.

If this worked, the demon could create a temperature difference from
uniform gas—hot on one side, cold on the other—without expending
energy. From that temperature difference, you could run a heat engine
indefinitely. The second law of thermodynamics—the law that entropy
always increases, that heat flows from hot to cold, that perpetual motion
is impossible—would be violated.

For over a century, the best physicists in the world attacked this prob-
lem. Some said the demon could not see molecules without disturbing
them. Others said opening the door required energy. Each proposed
solution had flaws. The demon kept escaping.

The answer, when it finally came, was startling. It came not from
mechanics but from information theory. The demon must remember
which molecules it let through. Its memory fills up. And when it erases
that memory to make room for more observations—there is the cost.
Not in seeing, not in sorting, but in forgetting. The resolution of Maxwell’s demon re-

quired understanding that information
is physical. Erasing information has a
thermodynamic cost.

This is the story of how a tiny imaginary creature threatened to
overthrow thermodynamics and was finally defeated—not by physics
forbidding it to act, but by thermodynamics of thought. The universe
does not care what you do; it cares what you forget.

10.1 A Very Observant Being

Let us be precise about what Maxwell’s demon does.

154 claude opus 4.5

The Setup

Imagine a box of gas in thermal equilibrium. The molecules dart about
with a range of speeds—some fast, some slow—distributed according
to the Maxwell-Boltzmann distribution. The average kinetic energy is
the same everywhere; the temperature is uniform. In equilibrium, molecular speeds follow

the Maxwell-Boltzmann distribution. The
temperature is uniform because fast and
slow molecules are mixed everywhere.

Now place a partition in the middle of the box, with a small door.
Station a demon—an intelligent being small enough to see individual
molecules—next to this door.

The demon’s protocol is simple:

1. Watch molecules approaching the door from either side

2. Note their velocity

3. If a fast molecule approaches from the left, open the door and let it
pass right

4. If a slow molecule approaches from the right, open the door and let
it pass left

5. Otherwise, keep the door closed

The door is massless and frictionless; opening it requires no work.
The demon does not push molecules; it only decides when to open the
door.

COLD HOT

Fast (hot) Slow (cold)

Figure 10.1: Maxwell’s demon sorts
molecules by speed. Fast molecules (red)
accumulate on the right; slow molecules
(blue) accumulate on the left.

After many sortings, the right chamber contains mostly fast molecules
(hot), and the left chamber contains mostly slow molecules (cold). A
temperature difference has appeared from nowhere.

Why This Threatens Thermodynamics

The second law of thermodynamics, in one formulation, states: heat
does not spontaneously flow from a cold body to a hot body. Equiva-
lently: the entropy of an isolated system never decreases.

What has the demon achieved? Starting from thermal equilibrium—
maximum entropy for a given total energy—it has created a non-
equilibrium state. The gas on the right is hotter; the gas on the left is
colder. This is a state of lower entropy. From a temperature difference, you can

run a heat engine. The demon seems
to offer perpetual motion of the second
kind.

From this temperature difference, you could run a Carnot engine.
Extract work. The engine eventually re-equilibrates the gas. Let the
demon sort again. Repeat forever. This would be perpetual motion
of the second kind—not creating energy from nothing, but converting
thermal energy to work with no limit, violating the second law.

Maxwell himself suspected the issue involved knowledge and un-
certainty. He noted that the demon violated no mechanical law—every
collision is perfectly reversible. The demon simply exploits information
to extract work.

information theory 155

A Century of Failed Solutions

Physicists attacked the demon for over a century. Let us examine the
main attempts.

The door requires energy to operate. This was the first objection. But in
principle, a door can be made arbitrarily light and frictionless. With
careful engineering, the energy to open the door can be made negligible.

The demon cannot see molecules without disturbing them. Léon Brillouin
pursued this line in 1951. He argued that to detect a molecule, the
demon must shine light on it. The photon carries energy and entropy.
But consider: a gas in equilibrium already glows with blackbody radia-
tion. The demon could use this ambient light to see molecules without
adding anything. The measurement can, in principle, be done without
energy cost. Brillouin and others focused on the mea-

surement process. But measurement can
be done reversibly—the cost is elsewhere.

Measurement must increase entropy. This seemed promising. If acquir-
ing information about a molecule increases entropy by at least as much
as the sorting decreases it, the second law is saved. But this runs into
trouble: it is possible to measure and record information reversibly,
without entropy increase. Simply correlating the demon’s memory with
the molecule’s position is a reversible operation.

Each solution had flaws. The demon kept slipping through.
The key was asking the right question. For a century, physicists

asked: “Where does the demon expend energy?” The answer, perhaps
surprisingly, is: nowhere during sorting. The question should have
been: “Where does information get destroyed?”

10.2 Szilard’s Engine and the Bit

In 1929, Hungarian physicist Leo Szilard made the crucial step. He
stripped Maxwell’s demon to its essence: one molecule, one bit of
information.

The One-Molecule Engine

Szilard’s setup is elegant in its simplicity.
Consider a box containing a single gas molecule in thermal equilib-

rium with a heat bath at temperature T. The molecule bounces around
randomly, colliding with the walls.

(a) Initial state

(b) Insert partition

P

(c) Piston on empty side

Figure 10.2: Szilard’s one-molecule en-
gine. (a) A single molecule in a box.
(b) A partition divides the box. (c) Af-
ter observing which side contains the
molecule, attach a piston to the empty
side. The molecule expands isothermally,
doing work.

Now perform the following cycle:

1. Insert a partition in the middle of the box. The molecule is now
trapped in either the left half or the right half.

2. Observe which side the molecule is on. This is one bit of information.

3. Attach a piston to the empty side. Remove the partition.

156 claude opus 4.5

4. The molecule, bouncing around in its half of the box, pushes against
the piston. Allow isothermal expansion back to the full volume,
extracting work.

How much work is extracted? The expansion is isothermal—heat
flows in from the bath to maintain constant temperature—from volume
V/2 to volume V. The work done is:

W =
∫ V

V/2
P dV =

∫ V

V/2

kBT
V

dV = kBT ln
V

V/2
= kBT ln 2

Szilard’s engine extracts kBT ln 2 of work
per cycle—exactly the energy equivalent
of one bit of information at temperature
T.

At room temperature (T = 300 K), this is:

W = (1.38× 10−23 J/K)(300 K)(0.693) ≈ 2.9× 10−21 J

This is a tiny amount of energy—about 0.018 electron volts. But it is
not zero. We extracted kBT ln 2 of work from thermal equilibrium by
knowing one bit of information.

Where Does the Entropy Go?

Szilard correctly identified the puzzle. Before observation, the molecule
could be on either side—entropy associated with one bit of uncertainty.
After observation, we know exactly where it is—zero uncertainty. The
demon’s knowledge enabled work extraction.

Szilard proposed that measurement itself must cost at least kBT ln 2
of energy, exactly compensating the work extracted. This would pre-
serve the second law. Szilard was right that information is cen-

tral, but he located the cost in the wrong
place. Measurement can be reversible;
erasure cannot.

But Szilard was not quite right. There is no fundamental reason
measurement must cost energy. Here is why.

Consider what measurement actually does. Before measurement, the
molecule is in an unknown position, and the demon’s memory is in a
“blank” state. After measurement, the molecule is in the same position,
and the demon’s memory records that position. Information has been
copied from the molecule to the memory.

Copying can be done reversibly. Given the final state (memory says
“right,” molecule is on right), you can uniquely determine the initial
state (memory was blank, molecule was on right). No information is
lost; entropy need not increase.

So measurement is not the problem. But then where is the cost?
You might ask: “If measurement is free and extracting work is free,

where is the problem?”
The problem is that the demon’s memory is now full. To repeat the

cycle, it must clear that memory. And that is where the demon meets
its doom.

information theory 157

10.3 Landauer’s Principle: The Cost of Forgetting

In 1961, Rolf Landauer of IBM published a remarkable paper: “Irre-
versibility and Heat Generation in the Computing Process.” His key
insight was deceptively simple: erasing information has an irreducible
thermodynamic cost.

What Erasure Means

Let us be precise. Erasure is the process of resetting a memory element
to a standard state, regardless of what state it was in. Erasure is logically irreversible: knowing

the output, you cannot determine the in-
put. This distinguishes it from copying,
which preserves information.

A bit can be 0 or 1. Erasing it means forcing it to 0 (or 1, your choice
of convention), no matter what it was before. The final state does not
depend on the initial state.

This is logically irreversible. Given the output (0), you cannot deter-
mine the input (was it 0 or 1?). Information has been destroyed.

Contrast with copying: if I copy bit A to bit B, the final state (both
bits equal to A) tells me what A was. Copying preserves information.
Erasure destroys it.

The Physical Argument

Consider a physical system representing one bit. A natural example:
a particle in a double-well potential. The particle in the left well
represents 0; the particle in the right well represents 1.

0 1

Before

0

After
Figure 10.3: Erasure compresses phase
space. Before: the particle could be in
either well. After: it is definitely in the
left well.

Before erasure, the particle could be in either well. In the language
of statistical mechanics, the accessible phase space has volume propor-
tional to 2 (two possible configurations).

After erasure, the particle is definitely in the left well. The accessible
phase space has volume proportional to 1.

The phase space has shrunk by a factor of 2. But here is the problem:
Liouville’s theorem states that phase space volume is conserved in
Hamiltonian dynamics. You cannot squeeze the system into a smaller
region of phase space by any dynamical process. Liouville’s theorem: phase space volume

is conserved. If the system’s phase space
shrinks, something else must expand to
compensate. That something is the envi-
ronment.

How can it shrink?
The resolution: the particle’s phase space shrinks, but the environ-

ment’s phase space must expand to compensate. The system is coupled
to a heat bath. When we force the particle into one well (regardless of
where it started), we must dump entropy into the environment.

The Derivation

Let us derive Landauer’s limit carefully.
Initial state: A bit in state 0 or 1 with equal probability. The Shannon

entropy is 1 bit.

158 claude opus 4.5

In thermodynamic terms, the system entropy is:

Sinitial = kB ln 2

Final state: The bit is in state 0 with certainty. The Shannon entropy
is 0 bits.

Sfinal = kB ln 1 = 0

Change in system entropy:

∆Ssystem = Sfinal − Sinitial = −kB ln 2

The second law: For any process, the total entropy change of system
plus environment must be non-negative:

∆Stotal = ∆Ssystem + ∆Senvironment ≥ 0

Therefore:
∆Senvironment ≥ kB ln 2

Landauer’s limit: erasing one bit costs
at least kBT ln 2 of energy, dissipated as
heat. This is thermodynamics, not engi-
neering.

If the environment is a heat bath at temperature T, the minimum
heat dissipated is:

Q = T × ∆Senvironment ≥ kBT ln 2

This is Landauer’s principle: erasing one bit of information costs at least
kBT ln 2 of energy, dissipated as heat to the environment.

The Number

Let us compute the Landauer limit at room temperature.
At T = 300 K:

kBT ln 2 = (1.38× 10−23 J/K)(300 K)(0.693) ≈ 2.9× 10−21 J

In electron-volts, this is about 0.018 eV—18 milli-electron-volts. At room temperature, the Landauer limit
is about 3 × 10−21 joules per bit. Cur-
rent computers dissipate roughly a tril-
lion times this amount.

This is extraordinarily small. For comparison, visible light photons
carry about 2 eV—a hundred times more. The energy released when
an ATP molecule is hydrolyzed is about 0.5 eV—thirty times more. A
single bit of information at room temperature is energetically humble.

Yet the limit is real. It is not a matter of better engineering. It is
thermodynamics. You cannot do better.

Why Erasure Is Fundamental

Landauer’s deeper point: erasure is the only logically irreversible oper-
ation that fundamentally requires energy dissipation. All other compu-
tational operations can, in principle, be done reversibly.

This includes:

information theory 159

• Copying data (reversible: knowing input and output, you can recover
the original)

• Any invertible function (reversible by construction)

• Measurement (reversible correlation between system and memory)

• Logic gates like NOT (reversible: apply NOT again to recover input)

Only erasure destroys information. Only destroying information
costs energy.

There is something profound here. Logically irreversible operations—
where information is lost—are the ones that cost energy. Logic and ther-
modynamics are intertwined. The universe keeps track of information,
and charges you for losing it.

10.4 Bennett’s Resolution: Exorcising the Demon

The pieces were in place, but the connection to Maxwell’s demon was
not yet complete. It fell to Charles Bennett of IBM to close the loop in
1982.

The Complete Cycle

Previous analyses had examined single measurements or single era-
sures. Bennett asked: what happens when the demon operates cycli-
cally? Bennett’s key insight: a demon that op-

erates cyclically must return to its ini-
tial state—including its memory. This
requires erasure.

To violate the second law, the demon must extract work cycle after
cycle, indefinitely. Each cycle, it must:

1. Start with a blank memory

2. Observe a molecule and record its speed (memory now holds 1 bit)

3. Use this information to sort the molecule and extract work

4. End with... what?

The demon’s memory now contains a record of the observation. To
repeat the process, it must clear this memory. Otherwise, after N cycles,
it holds N bits of data—the speeds of all molecules it has sorted.

But clearing the memory is erasure. And erasure, by Landauer’s
principle, costs at least kBT ln 2 per bit.

The Balance Sheet

Let us tally the demon’s accounts for one complete cycle.
Work extracted: From Szilard’s analysis, the demon extracts +kBT ln 2

by using its knowledge of the molecule’s position.

160 claude opus 4.5

Cost of observation: Zero. Measurement can be done reversibly.
Cost of erasure: The demon must erase 1 bit of memory, costing at

least kBT ln 2.
Net energy gain:

∆E = kBT ln 2− kBT ln 2 = 0
The demon’s net energy extraction is zero.
The work gained from sorting equals the
energy lost to erasure. The second law
survives.

The demon cannot profit. The work it extracts is exactly paid back
when it clears its memory. The second law is saved.

Can the Demon Avoid Erasing?

You might try to save the demon with clever accounting.
Option 1: Keep all memories forever. The demon never erases—it just

accumulates data. But then its memory grows without bound. After
N cycles, it holds N bits. Eventually, it runs out of storage. This is not
cyclic operation; it is a one-time extraction that eventually stops.

Option 2: Use an infinite memory tape. Extend the memory indefinitely.
Now the demon can run forever. But the filled tape has lower entropy
than the blank tape—it contains N bits of information. If you account
for the tape as part of the system, total entropy has still increased. The
demon has not violated the second law; it has merely deferred the
accounting.

Option 3: Dump memories into the environment. Let the demon write
its observations onto the thermal environment. But a system in ther-
mal equilibrium is already at maximum entropy. Adding structured
information to it requires work—you are lowering its entropy momen-
tarily, which costs energy. We are back to paying kBT ln 2 per bit.

Every escape route leads back to Landauer’s limit.

The Resolution in One Paragraph

Maxwell’s demon can indeed observe molecules, sort them, and extract
work. No law prevents this. But the demon must record what it
observes—otherwise, how does it know whether to open the door?
These records fill its memory. To operate cyclically, it must erase old
records. Erasure, by Landauer’s principle, requires dissipating kBT ln 2
per bit to the environment. This dissipation exactly compensates the
work extracted. The second law is not violated; it is enforced through
information. The demon is defeated not by physics

forbidding it to see or act, but by the
thermodynamics of memory. Knowledge
has physical consequences.

The demon is defeated not by being forbidden to see or act, but by
the thermodynamics of thought. It can observe freely; it can sort freely;
it can extract work. But it cannot forget for free. The universe charges
for forgetting.

information theory 161

10.5 Reversible Computation

Landauer’s principle raises a startling question: if erasure costs energy,
and computers constantly overwrite data, how much energy must
computation consume?

The Puzzle

Modern computers erase bits constantly. Every time a transistor
switches, the old value is overwritten. Every logical AND or OR
destroys information (knowing the output, you cannot always recover
the inputs). By Landauer’s principle, each such operation should cost
at least kBT ln 2. Modern processors dissipate about a tril-

lion times more energy per operation
than the Landauer limit. There is room
for improvement—but also fundamental
floors.

A modern processor executes roughly 1010 operations per second.
At the Landauer limit:

Pmin = 1010 × 3× 10−21 J = 3× 10−11 W = 30 pW

But modern processors consume about 100 watts—roughly 1012

times the Landauer limit. We are nowhere near the thermodynamic
floor.

Does this mean we can improve by a factor of a trillion? Or is there
something more fundamental limiting us?

Computing Without Erasing

In 1973, Bennett made a remarkable discovery: computation need not
involve erasure at all. Bennett showed that any computation

can be performed reversibly, without
erasing information. Reversible computa-
tion generates no fundamental heat.

The key idea: what if we compute while keeping track of everything?
An ordinary AND gate destroys information. AND(1, 1) = 1, but

so does... wait, no: AND(0, 1) = 0 and AND(1, 0) = 0. Given output
0, we cannot tell which inputs produced it. Two bits in, one bit out—
information lost.

But we can make computation reversible by keeping the inputs
alongside the output. Instead of computing f (x), compute F(x, 0) =
(x, f (x)). The input x is preserved. Given the output (x, f (x)), we can
uniquely recover the input (x, 0).

The Toffoli Gate

Tommaso Toffoli showed in 1980 that any computation can be built
from a single reversible gate, now called the Toffoli gate.

The Toffoli gate has three input bits (a, b, c) and three output bits

162 claude opus 4.5

(a′, b′, c′):

a′ = a

b′ = b

c′ = c⊕ (a ∧ b)

Here ⊕ is XOR (exclusive or) and ∧ is AND.

a

b

c

a

b

c⊕ (a ∧ b)

Figure 10.4: The Toffoli gate. The top
two bits control whether the bottom bit is
flipped. The operation is its own inverse.

The key property: the Toffoli gate is its own inverse. Apply it twice,
and you return to the original input. Three bits in, three bits out—no
information lost.

Yet it is universal: any Boolean function can be computed using only
Toffoli gates, with appropriate ancilla bits.

The Garbage Problem

There is a catch. Reversible computation generates “garbage”—intermediate
results that are not needed for the final output but must be kept to
maintain reversibility. Reversible computation generates

garbage bits. These must be uncomputed
before they can be reused, adding
overhead but avoiding erasure.

Bennett’s solution: compute forward, copy the answer to a safe
location, then compute backward to uncompute the garbage.

The workflow:

1. Start with input x and blank workspace

2. Compute forward: produce output f (x) and garbage g(x)

3. Copy output f (x) to a fresh register (reversible)

4. Compute backward: uncompute the forward calculation, restoring
the workspace to blank

5. Result: input x, output f (x), blank workspace

We have computed f (x) reversibly. The only irreversible step is the
final copying of the answer to where we want it—and that is just one
erasure for the whole computation, not one per gate.

The Cost of Reversible Computation

For a perfectly reversible computer, the energy cost comes only from:

• The final output (must either keep it or pay to erase it)

• Error correction (random errors must be erased to maintain coher-
ence)

• The answer itself (if you want to reuse the output register, you pay
kBT ln 2 per bit)

information theory 163

In principle, computation itself can be
free. You pay only for the information
you ultimately discard.

The computation itself—all the intermediate steps—can be done
without dissipating energy. You pay only for what you ultimately
throw away.

You might object: “But we always need to read out and use the
answer!” True. But reading out costs only one bit-erasure per answer
bit. The work of the computation itself can, in principle, be free.

Why Reversible Computing Matters

Today, reversible computing is mostly a theoretical curiosity. Build-
ing reversible circuits is hard. They run slowly (must operate near-
adiabatically to avoid dissipation). Current technology is so far from
Landauer’s limit that the engineering gains from irreversible computing
vastly outweigh the thermodynamic costs.

But this will not always be true. As transistors shrink toward atomic
scales, the thermodynamic limits become visible. Quantum computers,
which operate with unitary (hence reversible) gates, may approach
these limits. Understanding reversible computation may guide the
computer architectures of the future.

10.6 The Demon in the Laboratory

For fifty years after Landauer’s paper, his principle remained theoretical—
a beautiful argument, but untested. Measuring kBT ln 2 joules is not
easy. At room temperature, this is 3× 10−21 joules—about the energy
of a molecule jiggling once. Landauer’s principle remained untested

until 2012, when experiments with col-
loidal particles in optical traps confirmed
the limit.

Then, in 2012, the demon was finally caught in the laboratory.

Measuring Single-Bit Erasure

Antoine Bérut and colleagues at the École Normale Supérieure de Lyon
performed a landmark experiment. Their “bit” was a tiny silica bead,
about 2 micrometers in diameter, suspended in water and held by an
optical trap—a tightly focused laser beam that creates a potential well.

By adjusting the laser, they could create a double-well potential: the
bead could sit in either the left well (state 0) or the right well (state
1). Erasure meant tilting the potential to force the bead into one well,
regardless of where it started.

0 1 2 3
0

1

2

3

ln 2

Erasure time (s)

H
ea

t
di

ss
ip

at
ed

(k
B

T
)

Figure 10.5: Heat dissipated versus era-
sure time. Fast erasure dissipates extra
heat. Slow erasure approaches kBT ln 2.

By tracking the bead’s position with nanometer precision, they could
measure the work done on it and the heat dissipated to the surrounding
water.

Their key finding: when erasure was done slowly and gently, the
heat dissipated approached kBT ln 2 from above. Fast erasure dissipated

164 claude opus 4.5

more heat—extra friction from the rapid motion. But no matter how
cleverly they designed the protocol, they could not go below kBT ln 2.

The Landauer limit is real.

Information to Energy Conversion

A year earlier, Shoichi Toyabe and colleagues in Tokyo had demon-
strated the reverse process: converting information into energy.

Their setup: a colloidal particle on a staircase-like potential, able
to climb against gravity. A feedback system observed the particle’s
position and adjusted the potential accordingly. When the particle fluc-
tuated upward, the system would raise a barrier behind it, preventing
it from falling back. Toyabe’s experiment demonstrated

information-to-energy conversion. By
observing the particle and exploiting
thermal fluctuations, they extracted work
against gravity.

Step by step, driven by thermal fluctuations and locked in by feed-
back, the particle climbed the staircase. It gained potential energy.
Where did this energy come from? From the heat bath, guided by
information.

The particle extracted work from thermal equilibrium—exactly as
Szilard’s engine does. The maximum energy extracted was kBT times
the information gained by measurement.

Maxwell’s demon, operating in a real physical system.

What the Experiments Confirm

These experiments confirm four things:

1. Erasure dissipates heat

2. The minimum dissipation is kBT ln 2 per bit

3. Information can be converted to work at the same rate

4. The second law holds when information is properly accounted
These experiments show that information
is physical—as real as energy, as measur-
able as temperature. The demon’s defeat
is laboratory fact.

The experiments do not merely verify a formula. They show that
information is physical—as real as energy, as measurable as tempera-
ture. The demon’s defeat is not a mathematical trick; it is laboratory
fact.

10.7 Implications for the Future of Computing

What does all this mean for computers?

The Current State

Modern processors consume about 100 watts while executing 1010

operations per second. That is roughly 10−8 joules per operation.

information theory 165

The Landauer limit at room temperature is about 3× 10−21 joules
per bit erasure.

The ratio:
10−8

3× 10−21 ≈ 3× 1012

Current computers dissipate about a tril-
lion times the Landauer limit. Most of
this is engineering overhead, not funda-
mental physics.

Current computers dissipate roughly a trillion times more energy
per operation than the fundamental limit. Where does this energy go?

Most of it is engineering overhead: charging and discharging transis-
tor gates (capacitive energy), current leaking through “off” transistors,
resistance in wires. These are not fundamental physics—they are arti-
facts of how we build computers.

The End of Dennard Scaling

For decades, computing benefited from Dennard scaling: as transis-
tors shrank, voltage dropped proportionally, so power per transistor
dropped even as speed increased. Every generation of chips was faster
and cooler.

Around 2006, this stopped. Voltage could not drop further without
transistors becoming unreliable—thermal noise would cause errors.
Power density stopped falling. The multicore era began: spread com-
putation across space rather than speed it up in time. Dennard scaling ended around 2006.

Further improvements require new ap-
proaches. Reversible and quantum com-
puting may eventually approach funda-
mental limits.

As devices continue to shrink, we approach not just engineering
limits but physical ones. The Landauer limit, once academic, becomes
visible on the horizon.

Approaching the Limit

Several technologies might approach the Landauer limit:
Adiabatic computing: Charge capacitors slowly, recovering the energy

on discharge. This reduces dissipation below the capacitive limit,
though at the cost of speed.

Reversible logic: As discussed, computation can in principle avoid
erasure entirely. This requires new architectures and is slower, but there
is no fundamental barrier.

Quantum computing: Quantum gates are unitary, hence reversible.
The computation itself need not dissipate energy. Errors and final
measurement still cost, but these are per-answer, not per-operation.

None of these is practical today. But the gap between current practice
and fundamental limits—a factor of 1012—is enormous. There is room
to explore.

The Ultimate Laptop

How fast could a computer possibly compute?

166 claude opus 4.5

Seth Lloyd of MIT estimated the ultimate physical limits in 2000.
Take one kilogram of matter. How many operations can it perform?

Energy limits: Using E = mc2, one kilogram has 9× 1016 joules of
rest mass energy. At the Landauer limit, this allows about 3× 1037 bit
erasures before the matter is exhausted. The ultimate physical computer: about

1040 operations per kilogram-second. We
are far from this limit, but it exists.

Speed limits: Quantum mechanics limits how fast a system can
evolve between distinguishable states (the Margolus-Levitin theorem).
For a system with energy E, the maximum rate is about E/h̄ operations
per second.

The result: about 1040 operations per kilogram-second as an ultimate
limit.

This is a staggering number, but it is finite. Even the ultimate
computer is constrained by information thermodynamics.

10.8 The Century-Long Debate

Let us pause to appreciate the history of this puzzle.
1867: Maxwell introduces the demon in a letter to Peter Tait. He

calls it “a very observant and neat-fingered being.” The name “demon”
came from William Thomson (Lord Kelvin).

1871: Maxwell publishes the thought experiment in Theory of Heat.
The demon becomes famous—and controversial.

1905–1930: Multiple physicists attempt to resolve the paradox. Most
focus on the mechanics of observation.

1929: Leo Szilard publishes his engine, connecting information to
thermodynamics. He proposes that measurement costs energy. The resolution of Maxwell’s demon took

115 years: from Maxwell’s letter in 1867

to Bennett’s resolution in 1982.
1951: Léon Brillouin analyzes measurement, arguing that acquiring

information costs at least kBT ln 2. His analysis has gaps.
1961: Rolf Landauer publishes “Irreversibility and Heat Generation

in the Computing Process.” He shows that erasure—not measurement—
is the irreversible step. But he does not explicitly resolve the demon.

1973: Charles Bennett demonstrates universal reversible computation.
Computation need not dissipate energy.

1982: Bennett finally exorcises the demon. The complete cycle re-
quires erasure, which pays back the extracted work.

2010: Toyabe et al. demonstrate information-to-energy conversion
experimentally.

2012: Bérut et al. measure the Landauer limit directly.
One hundred fifteen years from Maxwell’s letter to Bennett’s resolu-

tion. The delay came not from lack of cleverness but from asking the
wrong question. Each generation focused on measurement, when the
key was memory.

information theory 167

10.9 Information and Reality

What does the demon teach us?

Information Is Physical

Before Landauer, information seemed abstract—patterns, symbols,
ideas. After Landauer, information is concrete. It takes space (in
memory). It costs energy (to erase). It interacts with thermodynamics. Information is not merely abstract. It is

physical—embodied in matter, subject to
thermodynamics, constrained by physics.

This is not metaphor. A bit of information at temperature T has
thermodynamic entropy kB ln 2. Erasing it requires dissipating energy
kBT ln 2. These are measurable quantities with physical dimensions.

Irreversibility Is About Information

The second law says entropy increases. But what is entropy increase,
really?

We now have an answer: entropy increase is information loss. When
we say a process is irreversible, we mean we cannot recover the initial
state from the final state. Information about the past has been erased.

The arrow of time—why entropy increases toward the future—
connects to information. The past is what we can remember; the future
is what we cannot yet know. Memory requires physical records; records
require stability; erasing records costs energy. The thermodynamics of
memory may be the thermodynamics of time itself.

Computation Is Physical
Thinking—whether by brain or machine—
is a physical process. The thermodynam-
ics of information constrains the thermo-
dynamics of thought.

Thinking—whether by brain or by machine—transforms information.
That transformation has physical constraints. Not engineering con-
straints that might be overcome with cleverness, but fundamental
constraints rooted in thermodynamics.

Your brain, running on about 20 watts, processes information at some
rate. That processing dissipates heat. Some of that heat is fundamental—
the cost of erasing memories, making decisions, forgetting details. The
thermodynamics of thought is real.

The Universe as Computer?

John Wheeler proposed the slogan “it from bit”—that physical reality
emerges from information. On this view, the universe is not just
described by information; it is information. The laws of physics are
laws about how information transforms.

We do not know if this is true. But we do know that information
and physics are intertwined at the deepest level. The demon, meant

168 claude opus 4.5

as a paradox about heat, turned out to be a window into the nature of
thought and reality.

10.10 From Demons to Inference

Let us take stock.
We began with a creature that threatened thermodynamics. For a

century, the best physicists could not defeat it. The resolution came
from an unexpected direction: the thermodynamics of memory. Maxwell’s demon is defeated by the cost

of forgetting. This connects physics, com-
putation, and information at the deepest
level.

The demon can observe molecules freely. It can sort them freely.
It can extract work. But it cannot forget for free. Erasing one bit of
memory requires dissipating kBT ln 2 of energy. This is Landauer’s
principle, verified in the laboratory, as fundamental as any law of
physics.

Reversible computation shows that erasure is the only irreducible
cost. Computation itself can, in principle, be free. Only forgetting costs.

The implications ripple outward: to the future of computing, to the
nature of time, to the meaning of information itself.

But there is another direction to explore. Information theory reaches
into physics through Landauer’s principle. Does it reach equally into
statistics and reasoning? When we observe evidence and update our
beliefs, we are performing a computation. Our prior becomes our
posterior. Information flows from observation to conclusion. Chapter 11 turns from physics to infer-

ence. Shannon’s entropy appears natu-
rally in Bayesian reasoning—the expected
information gain is mutual information.

It turns out that Shannon’s entropy appears naturally in Bayesian
inference. The expected information gain from an observation is pre-
cisely the mutual information between observation and hypothesis. The
demon gave us physics. Now let us turn to thought.

The demon was supposed to threaten thermodynamics. Instead, it
revealed how deeply information is woven into the physical world. Let
us see how deeply it is woven into the process of reasoning itself.

Historical note. Maxwell never intended his demon to be taken literally. In his original letter to Tait, he wrote: “if we
conceive a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose
attributes are still as essentially finite as our own, would be able to do what is at present impossible to us.” He was
probing the foundations of the second law, asking whether it was truly a law of nature or merely a statement about human
limitations. The answer—that it is both—took a century to clarify. The demon taught us that physics and knowledge are
not separate domains. What we know affects what we can do. And what we forget has consequences.

11
Information and Inference

Suppose you are investigating a weighted die. Someone has tampered
with it, but you do not know how. You get to roll it ten times. After
those ten rolls, you know more than you did before. But how much
more? The question “how much did I learn?”

has a precise answer. It is given by mu-
tual information—the same quantity that
governs communication channels.

This is not a vague question. We have been developing, through
eleven chapters now, the machinery to answer it precisely. We have seen
entropy measure uncertainty, mutual information quantify what one
thing tells us about another, and the second law of thermodynamics
enforce the cost of forgetting. Now we turn these tools to the problem
of learning itself.

The surprise—though by now perhaps it should not surprise us—is
that Shannon’s theory, built for telephone engineers, turns out to be
exactly what we need. The amount of information that data carries
about an unknown quantity is mutual information. The most honest
way to express ignorance is maximum entropy. The penalty for wrong
beliefs is measured by KL divergence. Information theory and inference
are not merely related; they are the same subject viewed from different
angles.

This chapter forges the connection. We shall see that Bayesian infer-
ence, that framework for updating beliefs in light of evidence, speaks
the language of entropy and mutual information. The tools we built
to understand compression and communication illuminate reasoning
itself.

11.1 The Detective’s Problem

Let us be concrete before we are abstract.

170 claude opus 4.5

A Biased Coin

Consider the simplest case: a coin that may be biased. Someone hands
you a coin and says it lands heads with some probability p, but they
will not tell you what p is. You flip it three times and get heads, heads,
heads.

What have you learned? Before the flips, p could be anything. Af-
ter three heads, you strongly suspect p is
large—but you cannot be certain. This is
the essence of inference.

Before flipping, if you knew nothing about the coin, you might have
said p could be anything from 0 to 1. After seeing three heads, you
suspect p is probably large. A fair coin would produce three heads in a
row one time in eight; a coin with p = 0.9 would do it about 73% of
the time. The evidence points toward a biased coin.

But you cannot be certain. Even a fair coin sometimes produces
three heads. The data has moved your beliefs, but it has not settled the
matter. This is inference: using evidence to update what we believe,
without ever achieving perfect certainty.

Prior, Likelihood, Posterior

To make this precise, we need three ingredients.
The prior: Before seeing any data, what do you believe about p? If

you know nothing, you might assign equal probability to all values—a
uniform distribution on [0, 1]. This represents maximal ignorance.

The likelihood: Given a particular value of p, what is the probability
of seeing the data you saw? If p = 0.7, the probability of three heads
is 0.73 = 0.343. If p = 0.5, it is 0.53 = 0.125. The likelihood function
summarizes what the evidence says about different possible values.

The posterior: After seeing the data, what should you believe? Bayes’
theorem tells us:

posterior ∝ likelihood× prior

For our three heads with a uniform prior:

P(p | HHH) ∝ p3 × 1 = p3

The normalizing constant is found by integration:
∫ 1

0 p3dp = 1/4.
So the posterior density is 4p3—a distribution that concentrates near
p = 1.

p

Prior

Uniform on [0, 1]
0 1

p

Lik.

p3

p

Post.

4p3

Figure 11.1: Bayesian updating. The prior
(uniform) combines with the likelihood
(p3 for three heads) to produce a poste-
rior concentrated near p = 1.

The Philosophical Objection

You might say: “But I do not have a prior! I want to know the true
value of p, not to play games with distributions.”

This is a common objection, and it deserves a serious answer.
The prior makes assumptions ex-
plicit. Classical statistics also makes
assumptions—it simply hides them in
the choice of test or estimator.

The truth is that all inference involves assumptions. Classical statis-
tics asks: “What would happen if I repeated this experiment many

information theory 171

times?” But that requires assuming the experimental conditions remain
fixed—itself an assumption. The Bayesian framework makes assump-
tions explicit through the prior. The prior is not a weakness; it is an
honest statement of what you knew before seeing the data.

If two people have different priors, they will reach different posteri-
ors from the same data. This is not a bug but a feature. A coin expert
who knows that most manufactured coins are nearly fair will update
differently from someone who suspects tampering. Both are reasoning
correctly from their different starting points.

When the data is abundant, the prior becomes irrelevant. The like-
lihood dominates. In the limit of infinite data, all reasonable priors
converge to the truth. This is reassuring: inference does not depend on
arbitrary choices when evidence is plentiful.

11.2 Mutual Information as Expected Information Gain

Now we can ask our central question: how much did the data tell us?

Information Gain for a Single Outcome

Before seeing any flips, your uncertainty about p was captured by the
entropy of the prior:

H(prior) = H(Uniform[0, 1])

For a continuous uniform distribution on [0, 1], this is technically
log 1 = 0 (differential entropy can be zero or negative, but that is a
technicality we need not dwell on). What matters is the change in
entropy. Information gain is the reduction in un-

certainty. Entropy before minus entropy
after. This difference is well-defined even
when individual entropies are problem-
atic.

After seeing three heads, your uncertainty is captured by the entropy
of the posterior:

H(posterior) = H(4p3 on [0, 1])

The information gained from this specific outcome is:

Information gain = H(prior)− H(posterior)

Let us compute. The entropy of the Beta(4, 1) distribution (which is
4p3) is:

H(Beta(4, 1)) = log B(4, 1)− (4− 1)ψ(4)− (1− 1)ψ(1) + (4 + 1− 2)ψ(5)

≈ −0.217 (in nats)

The uniform prior Beta(1, 1) has entropy 0. So the information gain
is about 0.217 nats, or roughly 0.31 bits.

172 claude opus 4.5

Expected Information Gain

But here is the puzzle: we did not know in advance that we would see
three heads. We might have seen two heads and a tail, or no heads at
all. Each outcome would produce a different posterior, with a different
entropy.

The natural question is: on average, how much information do we
expect to gain? We do not know what data we will ob-

serve. So we ask: averaging over all pos-
sible outcomes, how much do we expect
to learn?

Let Θ represent the unknown parameter (the coin bias p), and let
D represent the data (the sequence of flips). Before observing, our
uncertainty about Θ is H(Θ). After observing D = d, our uncertainty
is H(Θ | D = d).

The expected posterior entropy is:

H(Θ | D) = ∑
d

P(D = d) H(Θ | D = d)

And the expected information gain is:

Expected information gain = H(Θ)− H(Θ | D)

But wait. This is exactly the definition of mutual information!

I(Θ; D) = H(Θ)− H(Θ | D)

The expected information gain from observing D about the unknown
Θ is the mutual information I(Θ; D).

The Unification

This is worth pausing over. Mutual information, which we introduced
to analyze communication channels, turns out to be exactly what mea-
sures learning. Mutual information answers both “How

much can we communicate?” and “How
much can we learn?” It is the fundamen-
tal quantity of information.

In Chapter 3, we showed that mutual information measures how
much observing the channel output tells you about the input. Now we
see it measures how much observing data tells you about unknown pa-
rameters. The mathematics is identical; only the interpretation changes.

The properties of mutual information now make intuitive sense for
inference:

• I(Θ; D) ≥ 0: Data never makes us more uncertain on average.

• I(Θ; D) = 0 if and only if Θ and D are independent: uninformative
data tells us nothing.

• I(Θ; D) = H(Θ) when D determines Θ exactly: we learn everything.

• I(Θ; D) = I(D; Θ): the information that data carries about parame-
ters equals the information that parameters carry about data.

information theory 173

A Numerical Example

Let us see this concretely for coin flips.
Suppose the prior on p is uniform on [0, 1]. We flip the coin once and

observe heads or tails. How much information do we gain on average?

Flips I(p; data)

1 0.28 bits
2 0.49 bits
5 0.92 bits
10 1.42 bits
50 2.42 bits
100 2.92 bits

Table 11.1: Mutual information between
coin bias p (uniform prior) and observed
flips. Each flip adds information, but
with diminishing returns.

The calculation requires integrating over the prior and the binomial
likelihood. The result: one flip provides about 0.28 bits of information
about p.

Why so little? Because a single flip tells you only whether the coin
came up heads or tails—one bit of data. But that one bit is not entirely
about p; much of it is noise. Even knowing p exactly, you cannot predict
the flip with certainty.

As the number of flips increases, the mutual information grows, but
with diminishing returns. The first flip is worth more than the tenth;
the tenth is worth more than the hundredth. Eventually, you know p
almost perfectly, and additional flips add little.

You might object: “The information depends on the prior. With a
different prior, I would get a different answer.”

Yes—and this is correct! If you already know p ≈ 0.5 (a concentrated
prior), a single flip tells you less than if you were completely ignorant
(a uniform prior). The information gain depends on what you knew
before. This is not a defect but a feature: information is always relative
to a starting point.

11.3 The Maximum Entropy Principle

We have seen that mutual information measures how much we learn.
But there is a complementary question: if we must state beliefs without
data, how should we choose?

The Problem of Priors

Consider: you know that a die produces outcomes with some average
of 4.2 (rather than 3.5 for a fair die). What probabilities should you
assign to each face? Many probability distributions have the

same mean. How do we choose among
them? Maximum entropy says: pick the
one that assumes the least.

Infinitely many distributions have mean 4.2. You could assign all
probability to face 6 and face 1 in just the right proportions. You could
concentrate everything on faces 4 and 5. You could spread probability
across all six faces. Which is correct?

The problem is that any specific choice assumes more than you know.
If you put all probability on two faces, you are assuming the other faces
never come up. But you were not told that.

174 claude opus 4.5

Maximize Entropy Subject to Constraints

The maximum entropy principle says: among all distributions satisfying
your constraints, choose the one with maximum entropy.

Why? Because any other distribution assumes more information
than you have. Entropy measures uncertainty; maximizing it means
assuming as little as possible beyond what you know.

For the die with mean 4.2:

Maximize H(p1, . . . , p6) = −
6

∑
k=1

pk log pk

subject to:

6

∑
k=1

pk = 1 (normalization)

6

∑
k=1

k · pk = 4.2 (mean constraint)

Using Lagrange multipliers, the solution is:

pk =
eλk

Z
where Z =

6

∑
j=1

eλj

The parameter λ is chosen so that ∑ k · pk = 4.2.
1 2 3 4 5 6

0

0.1

0.2

0.3

Mean = 4.2
Face

Pr
ob

ab
ili

ty

Figure 11.2: Maximum entropy distribu-
tion for a die with mean 4.2. Higher faces
are more likely, but all faces have nonzero
probability.

The result is an exponential distribution on the faces. Higher-
numbered faces are more likely (to achieve the high mean), but all
faces have nonzero probability. We have not assumed any face is
impossible—because we were not told any face is impossible.

Recovering Familiar Distributions

The maximum entropy principle derives many familiar distributions:

• Known mean only (positive variable): exponential distribution

• Known mean and variance: Gaussian distribution

• No constraints (finite outcomes): uniform distribution

• Known geometric mean (positive variable): power law distribution

Let us derive the exponential case. Suppose X > 0 and we know
only that E[X] = µ. Maximize:

H = −
∫ ∞

0
p(x) log p(x) dx

subject to
∫ ∞

0 p(x) dx = 1 and
∫ ∞

0 x p(x) dx = µ.

information theory 175

The variational calculation gives:

p(x) =
1
µ

e−x/µ

The exponential distribution is the max-
imum entropy distribution when you
know only the mean. The Gaussian
emerges when you know mean and vari-
ance.

This is the exponential distribution with mean µ—the most famous
distribution in queuing theory, reliability engineering, and radioactive
decay.

Connection to Thermodynamics

We have seen this before! In Chapter 9, we derived the Boltzmann
distribution by maximizing entropy subject to fixed energy. That was
thermodynamic equilibrium: the state that assumes nothing beyond
the total energy.

The maximum entropy principle unifies statistical mechanics and
inference. Both ask: given constraints, what is the most honest proba-
bility distribution? The Boltzmann distribution is not merely a physical
fact; it is a logical consequence of maximum entropy reasoning. Ther-
modynamics is inference. Statistical mechanics is a special case of

maximum entropy inference. The Boltz-
mann distribution maximizes entropy
subject to fixed average energy.

E.T. Jaynes, who developed this connection most fully, called it
“probability theory as extended logic.” Given what you know, there is a
unique most honest way to quantify uncertainty. That way is maximum
entropy.

A Philosophical Aside

You might ask: is maximum entropy objective or subjective?
In one sense, it is objective. Given a set of constraints, the maxi-

mum entropy distribution is unique. Different people with the same
constraints must reach the same distribution.

In another sense, it is subjective. The choice of constraints is yours.
If you decide that only the mean matters, you get the exponential. If
you also constrain the variance, you get the Gaussian. The constraints
encode your modeling choices.

This is the right level of subjectivity. Given what you know, the
inference is determined. But what you know—or what you choose
to model—is up to you. Maximum entropy separates the subjective
(constraint choice) from the objective (inference given constraints).

11.4 KL Divergence: The Price of Wrong Beliefs

Maximum entropy tells us how to encode ignorance. But what if our
beliefs are wrong? How do we measure the cost?

176 claude opus 4.5

Definition and Interpretation

The Kullback-Leibler divergence between distributions P and Q is:

DKL(P‖Q) = ∑
x

P(x) log
P(x)
Q(x)

or, for continuous distributions:

DKL(P‖Q) =
∫

p(x) log
p(x)
q(x)

dx

KL divergence measures the cost of be-
lieving Q when the truth is P. It has
units of bits (or nats) and is always non-
negative.

What does this measure? Consider encoding data from P using a
code optimized for Q. The average code length is H(P) + DKL(P‖Q),
whereas the optimal code length is just H(P). The KL divergence is the
coding penalty for using the wrong distribution.

Equivalently, if P is true and you believe Q, then DKL(P‖Q) is the ex-
pected extra surprise per observation. You think events have probability
Q(x), but they actually have probability P(x). When Q underestimates
the true probability, you are more surprised than necessary.

Key Properties

KL divergence has several important properties:

1. DKL(P‖Q) ≥ 0, with equality if and only if P = Q

2. It is not symmetric: DKL(P‖Q) 6= DKL(Q‖P) in general

3. It is not a distance (does not satisfy the triangle inequality)

The asymmetry is meaningful. Believing Q when P is true differs
from believing P when Q is true. Suppose P assigns positive probability
to an event that Q says is impossible (Q(x) = 0). Then DKL(P‖Q) = ∞:
your model assigns zero probability to something that actually happens.
But DKL(Q‖P) might be finite: your model just overpredicts some
events. x

P Q

6=

Figure 11.3: KL divergence is asymmetric:
DKL(P‖Q) 6= DKL(Q‖P).

KL Divergence and Bayesian Updating

There is a beautiful connection between KL divergence and Bayesian
inference.

Consider the expected KL divergence from the posterior to the prior:

ED[DKL(posterior‖prior)]

This measures, on average, how much the posterior differs from
the prior. It turns out that this expected divergence equals the mutual
information between parameters and data:

I(Θ; D) = ED[DKL(P(Θ|D)‖P(Θ))]

information theory 177

The expected KL divergence from pos-
terior to prior equals the mutual
information. Learning can be measured
as movement in probability space.

Bayesian updating can be seen as moving through probability space.
The prior is your starting point; the posterior is where you end up. The
average distance traveled (in KL divergence) equals the information
gained.

Maximum Entropy as Minimum KL

Here is another unifying perspective. The maximum entropy distri-
bution subject to constraints can be characterized as the distribution
that minimizes KL divergence from the uniform distribution (or from a
specified reference), subject to the constraints.

If your “base” distribution is uniform and you want to incorpo-
rate a constraint like E[X] = µ, the maximum entropy solution is the
distribution closest to uniform (in KL sense) that satisfies the constraint.

This perspective unifies maximum entropy with Bayesian updating.
Both are about moving the minimum distance in KL divergence from
a starting point to satisfy new information. The starting point for
maximum entropy is typically uniform (maximum ignorance); the
starting point for updating is the prior.

11.5 Fisher Information and the Limits of Precision

We have discussed Shannon information—entropy and mutual information.
But there is another quantity called “information” in statistics, devel-
oped by R.A. Fisher in the 1920s, that measures something different.

The Estimation Problem

Suppose data comes from a distribution p(x|θ), where θ is an unknown
parameter. You want to estimate θ from the data. Fisher information measures how pre-

cisely a parameter can be estimated. It is
the curvature of the likelihood function
at the true parameter value.

How precise can your estimate be? This is a different question from
“how much information does data carry about θ?” Here we ask about
the best possible estimator, in terms of variance.

Fisher Information Defined

The Fisher information is:

I(θ) = E

[(
∂

∂θ
log p(X|θ)

)2
]

This measures how sharply peaked the log-likelihood is around the
true parameter. If the likelihood changes rapidly with θ, small changes
in data give strong evidence about θ—high Fisher information. If the

178 claude opus 4.5

likelihood is flat, data distinguishes poorly between nearby parameter
values—low Fisher information.

An equivalent formula, when the regularity conditions hold:

I(θ) = −E

[
∂2

∂θ2 log p(X|θ)
]

Fisher information is the expected curvature of the log-likelihood.

The Cramer-Rao Bound

Fisher information leads to a fundamental limit on estimation. For any
unbiased estimator θ̂:

Var(θ̂) ≥ 1
I(θ)

The Cramer-Rao bound: no unbiased esti-
mator can have variance less than 1/I(θ).
This is fundamental, not a limitation of
our cleverness.

This is the Cramer-Rao bound. No matter how clever your estimation
procedure, you cannot beat this variance. The bound is achieved
by certain “efficient” estimators, including the maximum likelihood
estimator under good conditions.

Let us see this for coin flips. If you flip a coin n times to estimate the
bias p:

I(p) =
n

p(1− p)

The Cramer-Rao bound gives:

Var(p̂) ≥ p(1− p)
n

The maximum likelihood estimator p̂ = k/n (the fraction of heads)
achieves this bound asymptotically. If n = 100 and the true p = 0.3:

Minimum standard deviation =

√
0.3× 0.7

100
≈ 0.046

You cannot do better than about 4.6% standard deviation with 100

flips from a 30% coin.
0 0.2 0.4 0.6 0.8 1

0

2

4

6
·10−2

True p

M
in

.s
td

de
v

(n
=

10
0)

Figure 11.4: Cramer-Rao lower bound on
standard deviation for estimating coin
bias with 100 flips. Estimation is hardest
near p = 0.5.

Connection to Shannon Information

Fisher information and Shannon information both use the word “information,”
but they measure different things. Are they related?

Yes, through KL divergence. The KL divergence between p(x|θ) and
p(x|θ + dθ) expands, for small dθ:

DKL(p(·|θ)‖p(·|θ + dθ)) ≈ 1
2
I(θ) (dθ)2

Fisher information is the local curvature
of KL divergence. It measures how distin-
guishable nearby parameter values are.

Fisher information is the local curvature of KL divergence in parame-
ter space. It measures how quickly distributions become distinguishable
as parameters change.

information theory 179

This connects two conceptions of information. Shannon entropy
measures uncertainty about outcomes. Fisher information measures
sensitivity to parameters. KL divergence bridges them: it measures
distinguishability of distributions, and Fisher information is its second
derivative.

Two Fishers, One Framework

A historical note, which I cannot resist. R.A. Fisher, who developed
Fisher information in the 1920s, and Shannon, who developed Shannon
information in the 1940s, worked in different fields (statistics and
communication) with different motivations. The connection between
their “informations” was clarified later.

The pun writes itself: two Fishers, one framework. But the deeper
point is that information theory unifies concepts that arose indepen-
dently. The mathematics of uncertainty is the same whether we are
estimating parameters, decoding messages, or understanding thermo-
dynamics.

11.6 Information in Hypothesis Testing

Let us apply these ideas to a concrete problem: distinguishing between
two hypotheses.

The Setup

Suppose you are testing whether a coin is fair (H0: p = 0.5) or biased
(H1: p = 0.6). You flip it n times and must decide which hypothesis is
true. Hypothesis testing asks: can we distin-

guish two explanations? KL divergence
measures their distinguishability.

There are two kinds of errors:

• Type I error (false positive): deciding H1 when H0 is true

• Type II error (false negative): deciding H0 when H1 is true

With limited data, you cannot avoid both errors. There is a tradeoff.

KL Divergence as Distinguishability

How distinguishable are the two hypotheses? KL divergence provides
the answer.

Under H0, each flip is Bernoulli(0.5). Under H1, it is Bernoulli(0.6).

180 claude opus 4.5

The KL divergence per flip is:

DKL(H0‖H1) = 0.5 log
0.5
0.6

+ 0.5 log
0.5
0.4

= 0.5× (−0.263) + 0.5× (0.322)

≈ 0.029 nats ≈ 0.042 bits

This is small—the hypotheses are hard to distinguish. After n flips,
the total KL divergence is about 0.042n bits.

For n = 100, we have about 4.2 bits of distinguishing power. The
error probability decays roughly as 2−4.2 ≈ 0.054—about 5%.

Flips KL (bits) Min. error

10 0.42 0.67

50 2.1 0.23

100 4.2 0.05

200 8.4 0.003

Table 11.2: Distinguishing p = 0.5 from
p = 0.6. As flips increase, the KL diver-
gence grows and error probability drops
exponentially.

The Neyman-Pearson Lemma

The optimal test—the one that minimizes Type II error for a given Type
I error—is the likelihood ratio test. You compute:

Λ =
P(data|H1)

P(data|H0)

and decide H1 if Λ exceeds a threshold.
From an information-theoretic viewpoint, the likelihood ratio cap-

tures all the information relevant for distinguishing the hypotheses.
The sufficient statistic (in this case, the number of heads) contains ev-
erything the data says about which hypothesis is true. Processing the
data further cannot help.

This is the data processing inequality applied to hypothesis test-
ing. You cannot distinguish hypotheses better by throwing away
information.

11.7 Historical Development

Let us pause to appreciate how these ideas came together.

Fisher’s Foundations (1920s)

R.A. Fisher developed maximum likelihood estimation, sufficient statis-
tics, and Fisher information in a series of papers in the 1920s. He
was concerned with agricultural experiments: how to design trials and
analyze data efficiently. Fisher developed his information con-

cept in the 1920s for agricultural statistics.
Shannon’s entropy came later, for com-
munication. Jaynes unified them.

Fisher’s framework was frequentist: probabilities describe long-run
frequencies, and parameters are fixed (not random). He did not connect
his work to entropy or communication.

Shannon’s Revolution (1948)

Shannon’s 1948 paper established information theory as a mathemati-
cal discipline. He defined entropy, mutual information, and channel

information theory 181

capacity. He proved the fundamental theorems of source and channel
coding.

Shannon’s focus was communication: how to transmit messages
efficiently and reliably. He did not explicitly develop applications to
inference, though the tools were there.

Jaynes and the Maximum Entropy Revolution (1950s–1980s)

E.T. Jaynes, a physicist, made the crucial synthesis. In his 1957 papers
“Information Theory and Statistical Mechanics,” he showed that the
Boltzmann distribution emerges from maximum entropy reasoning.
Thermodynamics is not a physical peculiarity but a consequence of
consistent inference. Jaynes spent decades advocating that

probability is logic. Maximum entropy
follows from consistency requirements.
His view is now mainstream in Bayesian
statistics.

Jaynes spent the rest of his career advocating “probability theory
as extended logic.” His book Probability Theory: The Logic of Science,
published posthumously in 2003, remains the definitive statement of
this view.

The Bayesian and information-theoretic perspectives, once seen as
separate, are now understood as aspects of one framework. Information
theory provides the quantities; Bayesian inference provides the updat-
ing rules; maximum entropy provides the priors. They fit together.

Cox’s Theorem (1946, 1961)

Underlying this synthesis is a remarkable result by R.T. Cox. He asked:
what mathematical rules must “degrees of belief” satisfy to be logically
consistent?

Starting from simple requirements (like: if belief in A and belief in B
given A are both high, belief in A and B should be high), Cox derived
that any consistent system of beliefs must satisfy the rules of probability
theory. This is not an assumption but a theorem. Cox showed that probability theory is the

unique consistent system for degrees of
belief. Any other system leads to logical
contradictions.

If Cox is right, then Bayesian inference is not one option among
many. It is the only consistent way to quantify uncertainty and update
beliefs. Maximum entropy follows as a corollary: given constraints, the
unique consistent prior is the maximum entropy one.

11.8 From Information to Learning

Let us take stock of what we have established.

The Unified Picture

Mutual information measures expected information gain. When you
observe data and update your beliefs, the average reduction in uncer-

182 claude opus 4.5

tainty equals I(Θ; D), the mutual information between parameters and
data.

Maximum entropy provides principled priors. When you must
state beliefs without data, the most honest distribution is the one
with maximum entropy subject to your constraints. Any other choice
smuggles in assumptions. The unified view: mutual information

measures learning, maximum entropy en-
codes ignorance, KL divergence penal-
izes errors, Fisher information limits pre-
cision.

KL divergence measures the cost of wrong beliefs. If you believe Q
when the truth is P, you pay DKL(P‖Q) bits of coding inefficiency per
observation. Wrong beliefs have a price.

Fisher information limits precision. No estimator can have variance
below 1/I(θ). There are fundamental limits on what we can learn, not
just practical ones.

The Deeper Lesson

Information is not merely something we transmit through wires. It is
the currency of inference—the measure of how much we know and
how much we can learn.

This is why the same quantity, entropy, appears in communication
theory and in statistical mechanics and in Bayesian inference. It is not
three things with the same name; it is one thing viewed from three
angles. Entropy appears everywhere because un-

certainty is everywhere. Quantifying un-
certainty is the fundamental problem of
science, engineering, and thought.

The demon of Chapter 10 taught us that information is physical.
Now we see that information is logical: the measure of what we know,
and the guide to honest reasoning.

An Open Question

We have treated parameters as fixed and data as random. But what if
we flip this perspective? What if we ask: how much data is needed to
learn a given model?

This leads to a remarkable principle that we will develop in the next
chapter: the minimum description length principle. It says that the
best model is the one that compresses the data most. Compression and
learning are two faces of the same coin.

Think about it: a good model predicts the data. A good prediction
means short coding (you assign high probability to what happens).
Short coding is good compression. So a model that predicts well is a
model that compresses well. Good prediction is good compression. A

model that predicts data well assigns it
high probability, which means short code
lengths. This connects learning to coding.

This is not a metaphor. It is a mathematical identity. The Bayesian
posterior predictive distribution is exactly the distribution that mini-
mizes expected code length for new data. Learning and compression
are the same thing.

In Chapter 12, we develop this idea fully. We will see how Oc-
cam’s razor—the preference for simple explanations—emerges from

information theory 183

information theory. We will see that every good learner is, at heart,
a compressor. And we will see fundamental limits on what can be
learned from data.

But that is for next time. For now, we have forged the link between
Shannon’s theory and the problem of inference. The tools built for
telephone engineers illuminate reasoning itself.

Historical note. The unification of information theory and inference took decades. Shannon’s 1948 paper focused on
communication, mentioning inference only in passing. Fisher, working in statistics, never connected his “information” to
Shannon’s. Jaynes, starting in 1957, spent thirty years advocating the connection, often against resistance. By the 1990s,
the Bayesian interpretation was mainstream. Today, information theory and statistical inference are recognized as aspects
of one framework. The story illustrates how ideas can take generations to synthesize, even when the mathematics is clear.
The connections were always there; we had to learn to see them.

12
Minimum Description Length

Suppose I show you ten data points, scattered roughly along a line
but with some noise. You want to fit a curve. A straight line captures
the trend, leaving small residuals. A degree-nine polynomial passes
through every point exactly, leaving no residuals at all. The polynomial achieves zero error. The

line has residuals. By the standard of
“minimize error,” the polynomial wins.
Yet something feels deeply wrong about
this.

Which is the better fit?
If your goal is to minimize error on these ten points, the polyno-

mial wins. It achieves perfection. Yet anyone with scientific intuition
recoils. The polynomial is not capturing the underlying pattern; it is
memorizing the noise. The line, with its imperfect fit, somehow seems
truer.

But why? What makes us prefer the simpler model despite its larger
errors?

The usual answer is Occam’s razor: prefer the simpler explanation.
But this is philosophy, not mathematics. It tells us what to prefer
without telling us why, or how much. Is a model with three parameters
twice as good as one with six? Half as good? How do we compare the
cost of complexity against the benefit of fit?

This chapter provides the answer. The Minimum Description Length
principle—MDL for short—transforms Occam’s razor from a vague
heuristic into a precise mathematical statement. The best model, MDL
says, is the one that compresses the data most. Simplicity is not aesthetic
prejudice; it is information-theoretic necessity.

12.1 The Two-Part Code

Let us think carefully about what it means to describe data.

Description as Communication

Imagine you need to transmit those ten data points to a colleague. The
colleague knows nothing about your experiment; you must tell them

186 claude opus 4.5

everything. Transmission is description. A code that
sends data efficiently must capture its
structure. This is the heart of MDL.

One approach: send the raw coordinates. Each point (xi, yi) requires
some number of bits. If x and y are each specified to 10-bit precision,
you need 20 bits per point, or 200 bits total.

But suppose you first send a model, then send only the residuals—
the deviations from the model’s predictions. If the model captures the
pattern, the residuals are small. Small numbers need fewer bits.

With the linear model y = 2.1 + 0.8x:

1. Send the model: two parameters (slope and intercept), maybe 20

bits each, so 40 bits total

2. Send the residuals: if they are small (say, within ±0.5), each might
need only 4 bits instead of 10, saving 60 bits

3. Total: 40 + 40 = 80 bits, versus 200 for the raw data

The model has earned its keep. By spending 40 bits to describe the
pattern, we saved more than 40 bits on the residuals.

The Fundamental Tradeoff
Simple models are cheap to describe but
may leave large residuals. Complex mod-
els are expensive to describe but can re-
duce residuals to nothing. MDL balances
these costs.

Now consider the degree-nine polynomial. It passes through every
point, so the residuals are zero. But describing nine coefficients (plus
the constant) requires perhaps 200 bits. The total message is: 200 bits
for the model, 0 bits for the residuals, giving 200 bits overall.

We have gained nothing! The polynomial is so complex that de-
scribing it costs as much as just listing the data. Its perfect fit is an
illusion—it compresses nothing.

Here is the tradeoff:

• Simple models: cheap to describe, but may leave expensive residuals

• Complex models: expensive to describe, but may leave cheap (or
zero) residuals

The MDL principle says: minimize the total. Find the sweet spot
where the sum of model description length plus residual description
length is smallest.

Making It Precise

Let us write this mathematically. Given data D and a model M:

L(D, M) = L(M) + L(D | M)

where L(M) is the description length of the model and L(D | M) is
the description length of the data given the model. L(M) + L(D | M) is the total message

length: describe the model, then describe
how the data deviates from it. Minimize
this sum.

information theory 187

The MDL principle: among all candidate models, choose the one
that minimizes L(D, M).

This is not merely a heuristic. It is a theorem about compression.
The model that minimizes total description length is, by definition, the
model that compresses the data most. And compression, as we have
seen throughout this book, is prediction. A model that compresses well
must be capturing genuine structure.

12.2 What Goes Into Description Length?

We have been vague about what “description length” means. Let us be
precise.

Describing the Model Class

First, we must say what kind of model we are using. Are we fitting a
line? A polynomial? A neural network? This takes some bits.

If we have K model classes under consideration, specifying which
one requires log K bits. This is usually a small contribution.

Describing the Parameters
Parameters must be specified to some
precision. More precision means longer
descriptions. The right precision is part
of what MDL optimizes.

Next, we must specify the parameters. A linear model has two parame-
ters (slope and intercept). A degree-d polynomial has d + 1 parameters.
A neural network might have millions.

But parameters are real numbers, and real numbers have infinitely
many digits. How do we describe them finitely?

The answer is discretization. We specify each parameter to k bits of
precision. This allows 2k possible values per parameter, spread over
whatever range we consider reasonable.

If a model has p parameters, each specified to k bits:

L(parameters) = p · k

More parameters means longer descriptions. Higher precision means
longer descriptions. Both contribute to model complexity.

Describing the Residuals

Finally, we describe how the data deviates from the model’s predictions.
If we assume the residuals ri = yi − ŷi are drawn from some

distribution—say, Gaussian with variance σ2—then the description
length for each residual is approximately − log P(ri).

For Gaussian residuals:

L(D | M) =
n

∑
i=1

(− log P(ri)) =
n
2

log(2πσ2) +
1

2σ2 ln 2

n

∑
i=1

r2
i

188 claude opus 4.5

Large residuals cost more bits. A model
that fits poorly produces large ri , inflat-
ing L(D | M).

The key term is the sum of squared residuals. Larger residuals mean
longer descriptions. A model that fits poorly is expensive to “correct”
because its errors must be transmitted explicitly.

A Numerical Example

Let us make this concrete with polynomial regression.
We generate n = 20 data points from the true model y = 2 + 3x + ε,

where ε is Gaussian noise with σ = 1. We fit polynomials of degree
d = 0, 1, 2, . . . and compute the description lengths.

d Params ∑ r2
i L(M) Total

0 1 185 8 228

1 2 21 16 68

2 3 20 24 75

3 4 19 32 80

5 6 17 48 92

10 11 12 88 124

Table 12.1: Description lengths for poly-
nomial fits. The linear model (d = 1)
achieves the minimum total, correctly
identifying the true model order.

I have assumed 8 bits per parameter and computed L(D | M) from
the sum of squared residuals assuming σ = 1 is known.

The degree-0 model (just a constant) gives huge residuals—it cannot
capture the linear trend. The degree-1 model (the true model) fits well
with only two parameters. Higher-degree models reduce residuals
slightly, but the additional parameters cost more than the reduction
saves.

MDL correctly identifies degree 1 as optimal. It finds the true model.

What If We Have More Data?

Now suppose we repeat the experiment with n = 200 points instead of
20.

The model description length L(M) stays the same—it depends only
on the number of parameters, not the amount of data. With more data, the model complexity

penalty becomes relatively smaller. More
data justifies more complex models.

But L(D | M) scales with n. With ten times more data, the residual
term is roughly ten times larger in absolute size.

What happens? The ratio L(M)/L(D | M) shrinks. The complexity
penalty becomes relatively less important. With abundant data, we can
afford more complex models.

This is exactly right. With 20 points, we should be conservative; the
data cannot justify much complexity. With 200 points, we can reliably
distinguish a quadratic from a line. With 2000 points, we might detect
subtle cubic terms.

MDL automatically adjusts its conservatism to the data size. It is
appropriately humble with limited data and appropriately ambitious
with abundant data.

12.3 The Bayesian Connection

Here is a remarkable fact: MDL and Bayesian model selection are two
faces of the same coin.

information theory 189

Bayes’ Theorem for Models

Given data D and candidate models M1, M2, . . ., Bayesian inference
computes:

P(M | D) ∝ P(D | M) · P(M)

The best model maximizes this posterior probability. Taking negative
logarithms:

− log P(M | D) = − log P(D | M)− log P(M) + const

Minimizing the negative log posterior is equivalent to maximizing
the posterior.

The Correspondence
MDL description lengths correspond ex-
actly to Bayesian negative log probabil-
ities. The model prior is a code. The
likelihood is a code.

Compare the expressions:

MDL: L(M) + L(D | M)

Bayesian: − log P(M)− log P(D | M)

These are the same if:

• L(M) = − log P(M): model description length equals negative log
prior

• L(D | M) = − log P(D | M): residual description length equals
negative log likelihood

The first equation says that assigning a code of length L to model
M is equivalent to assigning it a prior probability P(M) = 2−L. Short
codes correspond to high priors. A model that is easy to describe is a
model we consider plausible before seeing the data.

The second equation is just the source coding theorem applied to
residuals. If residuals come from distribution P(r | M), the optimal
code length is − log P(r | M).

Where Do Priors Come From?

Bayesian inference is sometimes criticized for requiring “subjective”
priors. Where do these priors come from? Who decides?

MDL provides a different perspective. The prior is not a subjective
belief; it is a coding scheme. The question “What prior should I use?”
becomes “What code should I use?” The prior is a code. The code is a prior.

These are not metaphors but mathemati-
cal identities. Choosing one is choosing
the other.

And coding schemes are not arbitrary. A good code assigns short
lengths to models we expect to encounter frequently and long lengths
to bizarre ones. A prior that assigns equal probability to all possible
neural network weight configurations is like a code that wastes bits on
nonsense—inefficient and wrong.

190 claude opus 4.5

In practice, priors and codes both encode our beliefs about which
models are reasonable. The MDL perspective makes this explicit: your
prior is revealed by how efficiently you can describe each model. If a
model is easy to describe, you implicitly believe it is plausible.

A Philosophical Aside

You might say: “This is circular. The prior determines the code, and
the code determines the prior. We have explained nothing.”

There is something to this objection. But consider: what alternative
is there? Any method of choosing among models must somehow
penalize complexity. Whether we call it a “prior” or a “code” or a
“regularization penalty,” we must say how much complexity costs.

MDL makes the cost explicit in bits. Bayesian inference makes it
explicit in log-probabilities. These are the same thing measured in
different units. The advantage of both frameworks is that they force
us to state our assumptions. A Bayesian must write down a prior; an
MDL user must specify an encoding. Neither can hide behind vague
appeals to “simplicity.”

12.4 Normalized Maximum Likelihood

We have been discretizing parameters to compute description lengths.
But this involves arbitrary choices: How many bits? What range?
Different choices give different answers.

Can we do better? Can we define description length without arbi-
trary discretization?

The Problem with Two-Part Codes
Two-part codes require choosing how
to encode parameters. The Normalized
Maximum Likelihood distribution elimi-
nates this choice.

In a two-part code, we first encode the model, then the data. But en-
coding continuous parameters requires discretization, and the resulting
description lengths depend on our discretization choices.

This is not just a technical annoyance. It means that MDL, as we
have presented it, gives different answers depending on how we encode
parameters. The principle seems less principled than we might hope.

The NML Distribution

The solution is the Normalized Maximum Likelihood (NML) distribu-
tion. For a model class with parameter θ, define:

PNML(x) =
P(x | θ̂(x))

∑y P(y | θ̂(y))

where θ̂(x) is the maximum likelihood estimate of θ given data x.

information theory 191

In words: for each possible dataset y, compute how well it can be
fit by the best parameter value for that dataset. The NML probability
of x is how well x can be fit, normalized by the total “fittability” of all
possible datasets.

Why This Works

The denominator—call it C—measures the complexity of the model
class. It sums up how well the class can fit every possible dataset. A
flexible model class that can fit many different patterns has large C. A
rigid class that fits only specific patterns has small C. The parametric complexity C measures

how flexible the model class is. Flexible
classes can fit anything, so any particular
fit is less impressive.

The description length under NML is:

LNML(x) = − log P(x | θ̂(x)) + log C

The first term is the negative log likelihood at the best parameter
value—how well the data fits. The second term is the complexity
penalty—how flexible the model class is.

This is beautiful. We no longer need to discretize parameters. The
complexity penalty emerges automatically from the model class itself.
It measures, in a principled way, how much we should distrust a good
fit.

An Example: Coin Flips

Consider n coin flips with k heads. The model class is Bernoulli(θ),
with θ ∈ [0, 1].

The maximum likelihood estimate is θ̂ = k/n. The likelihood at this
estimate is:

P(x | θ̂) =

(
n
k

)(
k
n

)k (n− k
n

)n−k

The parametric complexity sums this over all possible values of k:

C =
n

∑
k=0

(
n
k

)(
k
n

)k (n− k
n

)n−k

For small n, we can compute this exactly.

n log C (bits)

1 1.00

2 1.50

5 2.16

10 2.66

100 4.16

Table 12.2: Parametric complexity for the
Bernoulli model. It grows as 1

2 log n +
O(1).

The complexity grows as 1
2 log n. With more data, the Bernoulli

model becomes “more complex” in the sense that it can fit more
precisely—but the growth is slow, only logarithmic.

The Minimax Property

NML has a remarkable optimality property. Among all possible codes
for a model class, NML minimizes the worst-case regret—the maximum
excess code length compared to knowing the true parameter.

192 claude opus 4.5

This makes NML the “safest” choice. It never does much worse than
the best possible, for any data and any true parameter. It is the coding
analog of minimax decision theory.

12.5 Kolmogorov Complexity: The Ultimate Limit
Kolmogorov complexity asks: what is
the shortest program that produces this
data? It is the ultimate MDL—but un-
computable.

We have been comparing models within a fixed class: lines versus
polynomials, one degree versus another. But MDL’s logic extends
further. What if we compare across all possible descriptions?

The Definition

The Kolmogorov complexity K(x) of a string x is the length of the
shortest computer program that produces x.

This captures a profound intuition. A string is “simple” if it can
be generated by a short program. A string is “complex” if there is no
shortcut—the only way to describe it is to list it out.

Examples

Consider a string of 1000 zeros. Its Kolmogorov complexity is roughly
log 1000 ≈ 10 bits. A program like “print ’0’ 1000 times” needs only
specify the character and the count.

Consider the first 1000 digits of π. The Kolmogorov complexity is
again about 10 bits: “compute π to 1000 digits.” Despite appearing
random, π is generated by a simple algorithm.

Consider a truly random string of 1000 bits. Its Kolmogorov com-
plexity is approximately 1000 bits. There is no pattern; no shortcut; the
only description is the string itself.

000...000 K ≈ 10

3.14159... K ≈ 10

0110100... K ≈ 1000

(repetitive)

(algorithmic)

(random)

Figure 12.1: Three 1000-symbol strings.
Repetitive and algorithmic strings have
low complexity; random strings have
high complexity.

MDL as an Approximation to Kolmogorov

Kolmogorov complexity is the ultimate MDL. The “model” is any
computer program. The “residuals” are zero (the program produces
the data exactly). The description length is just the program length.

Any specific MDL framework—polynomial regression, neural net-
works, whatever—provides an upper bound on K(x). If you can de-
scribe x using 500 bits in your framework, then K(x) ≤ 500 (plus a
small constant for specifying the framework itself).

MDL with a particular model class is an approximation to the ideal
of Kolmogorov complexity. We cannot compute K(x) directly, but we
can compute description lengths in tractable model classes.

information theory 193

The Catch
Kolmogorov complexity is uncom-
putable. No algorithm can determine
the shortest program for an arbitrary
string. MDL provides computable
approximations.

Kolmogorov complexity is uncomputable. There is no algorithm that,
given a string x, outputs K(x).

Why? Because computing K(x) would solve the halting problem. To
find the shortest program, we would need to test all short programs
to see if any produces x. But testing whether a program produces x
requires running it—and we cannot know in advance whether it will
halt.

This is not a practical limitation we might overcome with faster
computers. It is a mathematical impossibility, as fundamental as the
undecidability of the halting problem itself.

Why It Matters Anyway

If Kolmogorov complexity is uncomputable, why discuss it?
Because it provides a theoretical foundation. It tells us what MDL is

trying to approximate. It shows that “simplicity” has an objective mean-
ing independent of our choice of model class. It connects information
theory to the foundations of computation.

And it offers a philosophical insight. There is a fact of the mat-
ter about how complex a string is. A string with K(x) = 100 bits
is genuinely simpler than one with K(x) = 1000 bits, regardless of
what model class we happen to use. MDL in practice approaches this
objective truth; it does not create it.

12.6 A Worked Example: Detecting the True Model

Let us see MDL in action on a more substantive example.

The Setup
We generate data from a known model
and see if MDL can recover it. This tests
whether the principle works, not just in
theory, but in practice.

An experimentalist measures a response y at various inputs x. The true
relationship is:

y = 1.0 + 2.0x− 0.5x2 + ε

where ε ∼ N(0, 0.52). The experimentalist collects 30 data points.
She considers models from degree 0 (constant) to degree 6 (sextic

polynomial). Which should she choose?

The Calculation

For each degree d, she fits the polynomial by least squares, computes
the sum of squared residuals, and calculates the description length.

I assume:

• Each parameter is encoded to 16 bits of precision

194 claude opus 4.5

• The noise variance σ2 = 0.25 is known

• The model class (polynomial) is fixed, so we need not encode it

Degree Parameters SSR L(M) (bits) L(D | M) (bits)

0 1 95.3 16 275

1 2 42.1 32 122

2 3 7.8 48 22

3 4 7.5 64 22

4 5 7.2 80 21

5 6 6.9 96 20

6 7 6.6 112 19

Table 12.3: MDL analysis for polynomial
regression. SSR is sum of squared residu-
als.

Degree Total L

0 291

1 154

2 70

3 86

4 101

5 116

6 131

Table 12.4: Total description lengths. De-
gree 2 is the clear minimum, correctly
identifying the true model.

The quadratic model achieves the minimum total description length.
MDL correctly identifies the true model order.

What Happened?

Going from degree 1 to degree 2, the sum of squared residuals drops
dramatically (from 42 to 7.8). The extra parameter is worth it: it captures
real structure.

Going from degree 2 to degree 3, the residuals barely change (from
7.8 to 7.5). The cubic term is fitting noise, not signal. The 16 bits spent
describing it are not recovered in shorter residuals.

MDL balances fit against complexity automatically. It does not need
to be told which improvements are “real”—the description lengths
reveal this.

The Key Insight
A coefficient that captures real structure
reduces residuals by more than its de-
scription cost. A coefficient that fits noise
does not pay for itself.

When a model captures genuine structure, the reduction in residual
description length exceeds the cost of describing the additional param-
eters. The total shrinks.

When a model fits noise, the reduction in residuals is small (noise,
by definition, cannot be predicted). The parameter description costs
more than it saves. The total grows.

This is why MDL works. It does not magically know which patterns
are “real.” It simply notices that real patterns compress the data, while
noise does not.

12.7 MDL and Information Criteria

You may have encountered model selection criteria like AIC and BIC.
These are essentially MDL in disguise.

information theory 195

The Akaike Information Criterion

AIC is defined as:

AIC = −2 log L + 2k

where L is the maximum likelihood and k is the number of parame-
ters. AIC and BIC are MDL with specific pa-

rameter encoding assumptions. They dif-
fer in how heavily they penalize complex-
ity.

The first term is twice the negative log likelihood—essentially the
description length of the data given the model. The second term is a
complexity penalty: 2 bits per parameter.

AIC penalizes complexity lightly. It is appropriate when the true
model is rich and you have plenty of data to estimate it.

The Bayesian Information Criterion

BIC is defined as:

BIC = − log L +
k
2

log n

where n is the sample size.
The complexity penalty now depends on the amount of data. With

more data, each parameter “costs” more in the sense that we hold
models to a higher standard.

BIC is consistent: as n→ ∞, it selects the true model with probability
approaching 1. AIC is not consistent; it tends to overfit slightly even
with infinite data.

Connection to MDL

Both criteria are approximations to MDL:

• AIC corresponds to a two-part code with a fixed 1-bit-per-parameter
penalty

• BIC corresponds to NML for regular parametric models

The k
2 log n term in BIC matches the parametric complexity we com-

puted for NML. It is not an arbitrary choice but an asymptotic result
from information theory.

12.8 Compression as Understanding

We have been developing MDL as a model selection principle. But
there is a deeper lesson here, one that connects to the themes running
through this entire book.

196 claude opus 4.5

What Does It Mean to Understand?
To understand data is to compress it. A
theory that explains is a theory that pre-
dicts, and a theory that predicts is a code
that compresses.

Consider what it means to “understand” a phenomenon. You un-
derstand the tides when you can predict them—when, given today’s
conditions, you can say what tomorrow’s tide will be. You understand a
language when you can compress it—when, given the previous words,
you can predict the next.

This is not metaphor. Prediction and compression are mathematically
equivalent. If you can predict with probability p, you can encode
in − log p bits. If you can compress to L bits, you were implicitly
predicting with probabilities 2−L.

A scientific theory is a compression scheme. Newton’s laws com-
press the motions of planets into a few equations. Quantum mechanics
compresses atomic spectra into wave functions. The theory that com-
presses most—that reduces the most data to the shortest description—is
the theory that understands most.

The Limits of Understanding

But some data cannot be compressed. A truly random sequence is
incompressible; its Kolmogorov complexity equals its length. No theory
can predict it; no understanding can simplify it.

This is profound. It means that understanding has limits. There exist
phenomena that no theory can explain, not because we are not clever
enough, but because there is no pattern to find. Random data is incompressible. This is

not a failure of our methods but a fact
about the data. Some things cannot be
explained because there is nothing to ex-
plain.

When we encounter data that resists compression, we face a choice.
Perhaps we have not found the right model class. Perhaps we need
more data. Or perhaps the data is genuinely random—noise with no
signal, chaos with no pattern.

MDL does not tell us which possibility holds. But it tells us when
compression fails, and that is the first step toward understanding our
own ignorance.

Simplicity and Truth

Why should the simplest model be truest? This is an old question, older
than MDL, older than information theory.

One answer: simplicity is a proxy for probability. Among all the
functions that pass through ten points, almost all are complex (high-
degree polynomials, bizarre curves). Simple functions (lines, low-
degree polynomials) are rare. If we draw a function at random, it is
almost certainly complex. So if our data fits a simple function, that is
surprising—and surprises are evidence.

Another answer: Occam’s razor is not a fact about nature but a fact
about inference. Given finite data, we cannot distinguish among all

information theory 197

models. We must choose, and choosing the simplest is the only strategy
that does not overcommit. Simplicity is not about truth; it is about
humility. Perhaps nature is simple. Perhaps sim-

plicity is just humility. MDL works either
way.

A third answer: nature really is simple. The laws of physics fit on
a t-shirt. The universe runs on elegant mathematics. This might be a
deep fact about reality, or it might be selection bias (we notice the parts
we can understand), or it might be both.

MDL does not resolve these philosophical puzzles. But it provides a
framework in which they can be precisely stated. Whatever simplicity
means, MDL measures it in bits.

12.9 Looking Forward

We have transformed Occam’s razor into a calculation. The best model
is the one that compresses data most. Compression equals prediction.
Prediction equals understanding.

This principle—that learning and compression are one—has pro-
found implications for what can be learned from data. If a model
cannot compress the data, it has learned nothing. If it compresses
perfectly, it has understood completely. Between these extremes lies the
practical problem of learning: how much can we compress, and how
much data do we need? MDL tells us which model is best. The

next question: how much data do we
need to learn reliably? Chapter 13 de-
velops information-theoretic bounds on
learning.

In Chapter 11, we saw that mutual information measures expected
information gain. Now we see that MDL measures which model best
captures that information. The two perspectives fit together: mutual
information is the currency of learning, and MDL is the budget.

But we have not yet asked the hardest question. Given a learning
problem, how much data is enough? What are the fundamental limits
on what can be learned? These are not philosophical questions but
mathematical ones, and information theory provides answers.

Chapter 13 develops these learning bounds. We will see that over-
fitting is not just a practical nuisance but an information-theoretic
necessity: any learner that tries to extract more bits than the data con-
tains will fail. We will connect MDL to PAC learning, to the information
bottleneck, to the deep question of what machine learning can and
cannot achieve.

The tools are now in place. We have entropy, mutual information,
KL divergence, maximum entropy, and MDL. These are not separate
ideas but facets of one framework. The next chapter puts them to work
on the ultimate question: what can be learned?

Historical note. The Minimum Description Length principle was developed primarily by Jorma Rissanen, beginning in

198 claude opus 4.5

the 1970s. Rissanen, an engineer at IBM, was motivated by problems in data compression and automatic model selection.
His key insight was that compression and inference are the same problem in different clothes. The connection to Bayesian
inference was recognized early, and the equivalence between description lengths and negative log probabilities is now
understood as fundamental. Kolmogorov complexity, which predates MDL, was developed independently by Solomonoff,
Kolmogorov, and Chaitin in the 1960s. The incomputability of Kolmogorov complexity was established by Kolmogorov
and remains one of the central results connecting information theory to computability theory. MDL can be seen as making
Kolmogorov’s ideas practical: we compute description lengths in tractable model classes rather than over all possible
programs.

13
Information-Theoretic Limits on Learning

Suppose I give you a million data points. You train the most sophis-
ticated algorithm known to science. You tune every hyperparameter.
You achieve perfect accuracy on your training data.

Then I show you new data, and your predictions fail. This is not a hypothetical. It happens
constantly. The question is not whether
it happens, but whether we could have
known in advance.

Not because your algorithm was poorly chosen. Not because you
made implementation errors. But because no algorithm, however clever,
could have done better. The data simply did not contain enough
information to solve your problem.

This is the situation we confront in this chapter: the fundamental
limits on what can be learned from data. These limits are not about
computational resources—give your algorithm unlimited time and
memory, and it will still fail. They are not about our cleverness—
Einstein himself could not transcend them. They are limits imposed by
information theory, as fundamental as the speed of light or the second
law of thermodynamics.

You might say, “But machine learning works! Deep networks achieve
remarkable performance! Surely these limits cannot be too restrictive.”

We shall see. The limits are real, but they are not where the naive
observer might expect them. Understanding where the limits lie—and
where they do not—is essential for knowing what we can and cannot
ask of our learning systems.

13.1 The Communication Channel of Experience

Let us begin with a metaphor that will guide us through this chapter. Learning from data is communication
through a noisy channel. The “sender”
is the true pattern. The “channel” is the
sampling process. The “receiver” is our
model.

Learning from data is a communication problem. There is a true
pattern in the world—perhaps a function relating inputs to outputs, or
a distribution governing future events. This pattern is the “sender.” You
observe samples from this pattern, corrupted by noise, selection bias,
finite precision. The sampling process is the “channel.” Your learning
algorithm constructs a model from these samples. The algorithm is the

200 claude opus 4.5

“receiver.”
Shannon’s channel capacity theorem tells us that reliable communi-

cation is possible up to capacity—and impossible beyond it. No matter
how clever your decoder, you cannot recover more signal than the
channel transmitted.

The same logic applies to learning. No matter how clever your
algorithm, you cannot learn more than your data contains. If the
data carries only 50 bits of information about the true pattern, you
cannot learn 100 bits worth of pattern. You will fill the gap with noise,
mistaking the static for the message.

This is what overfitting is: decoding more than was transmitted. The
extra “information” you extract is not information at all—it is artifacts
of the particular sample you observed, patterns that will not appear in
future samples because they never existed in the true distribution.

The Fundamental Inequality

Consider learning a function f : X → Y from n training examples. How
many bits does f require to specify? If f is complex—say, a function
that makes a different decision for each of 2100 possible inputs—it might
require 100 bits or more.

But how many bits do the training examples contain about f ? Each
example (xi, yi) provides at most log |Y| bits (the entropy of the output).
With n examples, you get at most n log |Y| bits. If specifying f requires more bits than the

data provides, the data cannot determine
f . Some of what you learn must come
from assumptions, not evidence.

If f requires 100 bits to specify and your training data contains only
50 bits about it, you face an impossible situation. The data cannot
uniquely determine f . Many functions are consistent with your obser-
vations. Any algorithm must choose among them, and that choice must
come from somewhere other than the data—from prior assumptions,
regularization, architectural biases.

This is not a failure of any particular algorithm. It is a mathematical
necessity. Information cannot be created from nothing.

The Role of Assumptions

You might object: “But algorithms do learn useful things from limited
data! They must be doing something right.”

They are. They bring assumptions to the table. A linear regression
assumes the true function is linear—if correct, this assumption provides
the missing bits. A neural network architecture embodies assump-
tions about what kinds of functions are likely. A prior distribution in
Bayesian inference explicitly encodes beliefs about which hypotheses
are plausible. Every learning algorithm embodies as-

sumptions. The question is not
whether to assume, but what to assume.
Information theory does not tell us what
to assume; it tells us that we must.

These assumptions are not cheating. They are necessary. Without
them, learning is impossible. The question is not whether to make

information theory 201

assumptions, but which assumptions to make, and how much they
help.

Information theory does not prescribe assumptions. It measures
them. A prior that assigns probability p to hypothesis h provides
− log p bits toward specifying h. The tighter your prior, the fewer bits
you need from data. The looser your prior, the more you demand from
observations.

13.2 The Information Bottleneck

Consider a concrete learning task. You have inputs X—perhaps images—
and outputs Y—perhaps labels (“cat,” “dog,” “truck”). You want to
learn a representation T of the inputs that is useful for predicting the
outputs.

What should T look like?

Two Desiderata
The information bottleneck formalizes a
fundamental tradeoff: retain what mat-
ters for prediction, discard what does not.

You might want T to preserve everything about X. After all, who
knows what might be relevant? But this leads to overfitting. If T = X,
you have learned nothing—you are just passing raw inputs through,
including all their noise and irrelevant details.

You might want T to be as simple as possible. Simpler representa-
tions generalize better. But if T is too simple, it throws away information
needed to predict Y.

The information bottleneck, introduced by Naftali Tishby and col-
leagues, formalizes this tradeoff:

1. T should retain as much information about Y as possible: I(T; Y)
should be large.

2. T should discard as much information about X as possible: I(X; T)
should be small.

These goals conflict. A representation that discards X-information
may discard Y-relevant information too. The question is: how much
can we compress X while retaining what matters for Y?

The Objective Function

The information bottleneck objective is:

min
T

I(X; T)− β I(T; Y)

where β > 0 controls the tradeoff. The parameter β controls how much we
care about prediction versus compression.
Different β values trace out the optimal
tradeoff curve.

At β = 0, we care only about compression. The optimal T is a
constant—maximum compression, no prediction.

202 claude opus 4.5

As β→ ∞, we care only about prediction. The optimal T is X itself—
no compression, maximum prediction (to the extent X determines
Y).

For intermediate β, we obtain representations that balance compres-
sion against prediction. Varying β from 0 to infinity traces out a curve
of achievable (I(X; T), I(T; Y)) pairs.

The Information Curve

I(X; T)

I(T; Y)

β = 0

β = 1

β→ ∞I(X; Y)

Achievable

Figure 13.1: The information bottleneck
curve. Points below the curve are achiev-
able; points above are impossible.

This curve is remarkable. It is not a property of any learning algorithm—
it is a property of the joint distribution P(X, Y) itself. No algorithm can
achieve points above the curve. Every algorithm, if optimal, achieves
points on the curve.

The curve tells us the fundamental tradeoff for this particular learn-
ing problem. Some problems have curves that rise steeply—a little
compression costs a lot of prediction. Other problems have curves
that stay flat—massive compression is possible with minimal loss. The
curve reveals the structure of the problem.

What This Means for Generalization

A representation with small I(X; T) and large I(T; Y) will generalize
well. It has extracted what matters for prediction and discarded what
does not. Good representations compress the input

while preserving prediction. This is ex-
actly what generalization requires.

Why? Consider what overfitting means in this language. An over-
fit model has large I(X; T)—it remembers too much about the train-
ing inputs, including their noise and idiosyncrasies. But this extra
information does not help prediction on new data. It hurts.

The information bottleneck makes this precise. The goal is not to
learn everything about X. The goal is to learn what X tells us about
Y—and nothing more.

Practical Challenges

You might ask: how do we compute these mutual information quantities
for real data? Mutual information is notoriously dif-

ficult to estimate for high-dimensional
data. This limits direct application of the
bottleneck principle, but the principle it-
self remains valid.

The answer is sobering. For high-dimensional data (images, text,
neural network activations), estimating mutual information is extremely
difficult. Different estimation methods give substantially different an-
swers. Published claims about “mutual information in neural networks”
should be interpreted cautiously.

But the principle remains valid even when exact computation is
impossible. The information bottleneck tells us what to aim for. Good
representations should compress; they should retain what matters; they
should discard what does not. Architectures that explicitly impose bot-

information theory 203

tlenecks (like the narrow hidden layer in an autoencoder) are trying to
enforce this principle, whether or not they optimize the exact objective.

13.3 PAC-Bayesian Bounds

The information bottleneck asks: what representations should we learn?
We now ask a different question: how well can any learned hypothesis
generalize?

The Setup

We observe n training examples (x1, y1), . . . , (xn, yn) drawn indepen-
dently from some unknown distribution D. We learn a hypothesis h
from some class H. We want to know the true error:

L(h) = Pr
(x,y)∼D

[h(x) 6= y]

The true error is what we care about. The
training error is what we observe. The
gap between them is the generalization
gap.

What we observe is the training error:

L̂(h) =
1
n

n

∑
i=1

1[h(xi) 6= yi]

The generalization gap L(h)− L̂(h) measures how much worse we
do on new data than on training data. We want this gap to be small.

Classical Bounds

Classical learning theory bounds the generalization gap in terms of
the “complexity” of the hypothesis class H—its VC dimension or
Rademacher complexity. These bounds apply uniformly to all hy-
potheses in the class.

But such bounds can be loose. They penalize complexity of the entire
class, even if the algorithm selects a simple hypothesis from a complex
class.

The PAC-Bayesian Approach

PAC-Bayesian bounds take a different approach. Instead of penalizing
the class, they penalize the algorithm’s dependence on the training
data. PAC-Bayes bounds measure how much

the learning algorithm changed its beliefs
after seeing data. Large changes are pe-
nalized; small changes generalize safely.

The setup: before seeing any data, we specify a prior distribution
P over hypotheses. This represents what we believe before observing
anything. After seeing data, we compute a posterior distribution Q.
This represents what we believe after learning.

204 claude opus 4.5

McAllester’s PAC-Bayes theorem states: with high probability over the
training sample,

Eh∼Q[L(h)] ≤ Eh∼Q[L̂(h)] +

√
KL(Q‖P) + ln(2n/δ)

2n

Interpreting the Bound

The bound says: expected true error is at most expected training error
plus a penalty term.

The penalty depends on KL(Q‖P)—how much the posterior differs
from the prior. If you change your beliefs dramatically after seeing
data, the KL divergence is large, and the bound is loose. If you change
only slightly, the bound is tight. The PAC-Bayes message: you can only

generalize safely if you do not deviate too
far from your prior beliefs. Wild changes
in belief may fit training data but fail on
new data.

This is intuitive. If the training data convinced you of something
radically different from your prior beliefs, one of two things happened.
Either the data contained strong evidence (good), or you overreacted to
noise (bad). The bound does not distinguish—it simply says that large
changes carry risk.

The penalty also shrinks with n. More data justifies larger changes
in belief. With abundant evidence, you can safely move far from your
prior.

The Information-Theoretic View

The KL divergence KL(Q‖P) measures the information gained about
the hypothesis from the training data:

KL(Q‖P) ≈ I(h; S)

where S denotes the training sample and h the learned hypothesis. Generalization gap is bounded by mu-
tual information between hypothesis and
training data. You cannot generalize bet-
ter than the information content allows.

This reveals the information-theoretic nature of PAC-Bayes bounds.
The generalization gap is bounded by how much information the
algorithm extracts from the training data. Algorithms that extract less
information generalize better.

This explains why regularization helps: it constrains the algorithm,
reducing the information it can extract. It explains why early stopping
helps: cutting off learning before the algorithm fully fits the data limits
information extraction. It explains why dropout helps: randomizing
the training process reduces the dependence between hypothesis and
data.

These techniques work not because of ad-hoc intuitions but because
they reduce I(h; S).

13.4 Generalization Through an Information Lens

Let us now step back and ask: why does overfitting happen at all?

information theory 205

Signal and Noise

Every training sample contains signal and noise. The signal is the true
pattern that will recur in future data. The noise is the idiosyncratic
variation of this particular sample. Training data = signal + noise. Overfit-

ting is learning the noise as if it were
signal.

A model that fits the training data perfectly has captured both. It
cannot distinguish signal from noise—both are present in the data, both
influence the fit.

But on new data, only the signal recurs. The noise is different. The
model’s predictions based on the old noise fail to match the new noise.

This is overfitting. It is not a bug in our algorithms. It is an inevitable
consequence of learning from finite samples.

The Information Perspective

In information-theoretic terms:

• I(model; signal) is what we want—information about the true pat-
tern

• I(model; noise) is what kills generalization—information about this
sample’s idiosyncrasies

The model cannot distinguish signal from
noise in the training data. All it sees is
data. This is the tragedy of finite samples.

Fitting more tightly increases both. The model cannot tell which is
which. All it sees is data.

The signal-to-noise ratio of the training data limits how much signal
we can extract. If noise dominates, even perfect learning extracts more
noise than signal. If signal dominates, aggressive fitting is safe.

The Bias-Variance Tradeoff

The classical decomposition of prediction error is:

Error = Bias2 + Variance + Noise

Bias is systematic error from model limitations. Variance is error
from sensitivity to the training sample. Noise is irreducible error from
the problem itself. Bias comes from model limitations. Vari-

ance comes from overfitting. The tradeoff
between them is forced by information
constraints.

The information-theoretic interpretation:

• High bias: the model class cannot capture the truth, so I(model; signal)
is limited by model capacity

• High variance: the model depends sensitively on the training sample,
so I(model; noise) is high

• Irreducible noise: I(data; truth) is limited by the problem itself

The tradeoff is forced by information constraints. Using a more
flexible model class allows higher I(model; signal), but also higher
I(model; noise). You cannot increase one without risking the other.

206 claude opus 4.5

13.5 Sample Complexity

We now ask quantitatively: how many examples do we need to learn?

The Definition

The sample complexity of learning a concept to accuracy ε with confi-
dence 1− δ is the minimum number of examples n(ε, δ) required. Sample complexity asks: how much data

is enough? Information theory provides
lower bounds that no algorithm can beat.

This depends on the concept being learned, the hypothesis class, and
the learning algorithm. But information theory provides lower bounds
that no algorithm can beat.

Information-Theoretic Lower Bounds

Consider learning a target hypothesis h∗ from a class H. The hypothesis
is unknown; we must identify it from training data.

Each training example provides some number of bits about h∗. This
depends on the problem: in a noiseless binary classification task, each
example provides 1 bit. In a noisy task, each example provides less. You need at least log |H| bits of

information to identify a hypothesis from
class H. This is not a worst case—it is a
lower bound.

To uniquely identify h∗ from H, we need at least log |H| bits of
information. If each example provides at most c bits, we need at least
n ≥ log |H|/c examples.

This is a fundamental limit. No algorithm can learn faster. Clever
algorithms can approach this limit; none can beat it.

Fano’s Inequality

Fano’s inequality makes this precise. If we observe data S and try to
identify hypothesis h∗:

P(error) ≥ H(h∗ | S)− 1
log |H|

Fano’s inequality: if the data leaves too
much uncertainty about the true hypoth-
esis, no algorithm can identify it reliably.

If the conditional entropy H(h∗ | S) is large—if the data leaves sub-
stantial uncertainty about h∗—then the probability of error is bounded
away from zero. No algorithm can do well.

Fano’s inequality is the information-theoretic version of “you can’t
get blood from a stone.” If the data does not distinguish among
hypotheses, no algorithm can distinguish among them either.

A Worked Example

Consider learning an unknown binary string b ∈ {0, 1}k. Each example
is a noisy observation of one bit, correct with probability p > 1/2.

The target has k bits. Each example provides 1 − H2(p) bits of
information, where H2(p) = −p log p− (1− p) log(1− p) is the binary
entropy.

p Bits/example Examples for k = 100

0.99 0.92 109

0.90 0.53 189

0.75 0.19 526

0.60 0.03 3333

Table 13.1: Sample complexity for learn-
ing a 100-bit string from noisy observa-
tions. As noise increases (p decreases
toward 0.5), required samples grow dra-
matically.

information theory 207

To learn all k bits reliably, we need approximately:

n ≥ k
1− H2(p)

examples. As p → 1/2 (pure noise), the denominator approaches
zero and the required samples explode to infinity. This is correct:
random noise contains no information about the target.

13.6 Deep Learning and the Information Plane

Modern deep learning has achieved remarkable successes. Can information
theory explain what is happening?

The Deep Network as a Markov Chain

A deep neural network processes data through layers:

X → T1 → T2 → · · · → TL → Ŷ
Each layer of a deep network forms a
Markov chain. By the data processing
inequality, information about X can only
decrease as we go deeper.

Each layer T` depends only on the previous layer. This is a Markov
chain. By the data processing inequality:

I(X; T1) ≥ I(X; T2) ≥ · · · ≥ I(X; TL)

Information about X can only decrease as we go deeper. Each layer
compresses the representation.

If the network is doing its job, it should also maintain I(T`; Y)—the
information about the target should be preserved even as irrelevant
information is discarded.

The Information Plane Hypothesis

Tishby and colleagues proposed visualizing learning in the “information
plane”: a 2D space with I(X; T) on one axis and I(T; Y) on the other.

I(X; T)

I(T; Y)

Fitting

Compression

Init

Final

Figure 13.2: The information plane
hypothesis: learning proceeds in two
phases. First, fitting increases I(X; T).
Then compression decreases I(X; T)
while maintaining I(T; Y).

The claim: neural networks during training first increase I(X; T)
(the fitting phase), then decrease it while maintaining I(T; Y) (the
compression phase). Learning proceeds in two distinct phases.

The Controversy

This claim is controversial. Subsequent research has shown:

• The compression phase may be an artifact of how mutual information
is estimated

• Networks with ReLU activations do not show the same pattern as
networks with tanh

208 claude opus 4.5

• The observed dynamics depend sensitively on architecture, data, and
estimation method

Whether deep networks actually follow
the two-phase trajectory is disputed. The
principle that good representations com-
press may be true even if the specific dy-
namics are not universal.

What can we say with confidence? Less than the original claims, but
still something important:

Layers do compress. Even if the dynamics are not a clean two-phase
process, deeper layers generally have lower I(X; T) than earlier layers.
The network is discarding information.

Compression correlates with generalization. Networks that achieve
better generalization tend to have representations with lower I(X; T)
for comparable I(T; Y). Whether this is cause or effect is unclear.

The principle is sound even if the dynamics are debated. The
information bottleneck tells us what good representations should look
like, even if we cannot reliably measure whether any particular network
achieves them.

Grokking

A recent observation adds to the puzzle. In some cases, neural net-
works achieve perfect training accuracy quickly, then—much later—
suddenly achieve perfect test accuracy as well. This phenomenon is
called “grokking.” Grokking: perfect training accuracy, then

a long plateau, then suddenly perfect
test accuracy. What happens during the
plateau?

What happens during the plateau? The network has already fit
the training data. Its predictions are not changing. Yet something is
happening internally that eventually leads to generalization.

One hypothesis: the network is compressing its representation. The
weights are rearranging to find a simpler solution that achieves the same
training accuracy with less reliance on the specific training examples.
When compression reaches a threshold, generalization emerges.

If true, this supports the view that compression causes generaliza-
tion. Fitting is fast—gradient descent rapidly reduces training loss.
Compression is slow—the network must find simpler representations
that achieve the same predictions.

But this is speculative. We do not yet fully understand grokking.

13.7 The Double Descent Puzzle

Classical learning theory predicts that test error should follow a U-
curve as model complexity increases: underfitting at low complexity,
good fit in the middle, overfitting at high complexity. Classical theory: error decreases, then

increases with complexity. Reality: er-
ror decreases, increases, then decreases
again. This is double descent.

Modern deep learning violates this prediction. As model complex-
ity increases past a critical point—where the model can exactly fit
the training data—test error starts decreasing again. This is “double
descent.”

information theory 209

Model complexity

Test error

Classical

Double descent

InterpolationUnderfit Overparameterized

Figure 13.3: Double descent: test
error does not simply increase with
model complexity. Past the interpola-
tion threshold—where the model can
exactly fit training data—error may de-
crease again. This defies classical intu-
ition.

How can overparameterized models generalize well? They have far
more parameters than training examples. By classical reasoning, they
should massively overfit.

The Information-Theoretic Resolution

The resolution is subtle. What matters is not parameter count but
effective information content. Parameter count is not the same as ef-

fective complexity. A neural network
with millions of parameters may have
far lower effective description length.

A neural network with 100 million parameters, trained with stochas-
tic gradient descent and early stopping, does not encode 100 million
independent pieces of information. The training dynamics constrain
the solution. The implicit regularization of SGD biases toward sim-
ple solutions. The architecture limits what kinds of functions can be
represented efficiently.

The effective description length of a well-generalizing network is much
shorter than its parameter count suggests. MDL tells us that general-
ization depends on description length, not parameter count. Double
descent becomes less mysterious: past the interpolation threshold, the
effective complexity may actually decrease as parameter count increases.

The Lottery Ticket Hypothesis

This connects to the “lottery ticket hypothesis”: large neural networks
contain small subnetworks that can achieve the same test accuracy
when trained in isolation. The lottery ticket hypothesis: inside a

large network is a small network that
does all the work. The large network
helps find it; the small network is what
generalizes.

The large network’s purpose is not to encode a complex function. It
is to provide enough “tickets”—enough random initializations—that
one of them happens to be a good small network. Training finds and
amplifies this subnetwork.

If true, this explains why large networks generalize: they are effec-
tively small. The extra parameters are scaffolding for the search process,
not load-bearing parts of the final solution.

210 claude opus 4.5

13.8 What Cannot Be Learned

We close by asking what is fundamentally unlearnable.

Random Functions

If the target function is random—if outputs have no systematic relation-
ship to inputs—then no algorithm can learn it. Random functions are unlearnable in

principle. This is not a limitation of our
methods; it is a fact about the problem.

This is obvious, but worth stating precisely. The training data pro-
vides no information about future outputs. Every example is indepen-
dent. The mutual information I(training data; test outputs) is zero.

No algorithm, however clever, can extract information that does not
exist.

Noisy Labels

If training labels are corrupted with probability ε, you cannot achieve
better than ε error on those examples.

The noise destroys information. If 30% of your labels are wrong,
you are learning from a dataset that is 30% lies. No algorithm can
distinguish the lies from the truth. Noisy labels set a floor on achievable er-

ror. This floor cannot be lowered by algo-
rithmic cleverness.

This does not mean learning is hopeless. If the noise is random (not
adversarial), and if the true pattern is strong, you can still learn a useful
model. But you cannot achieve perfect accuracy. The noise sets a floor.

Insufficient Features

If the features do not contain information about the target, no algorithm
can predict the target.

This sounds obvious, but it is often forgotten. If you try to predict
stock prices from weather data, and prices are not influenced by weather,
you will fail—not because your algorithm is bad, but because the
problem is impossible. If the features contain no information

about the target, learning is impossi-
ble. No algorithm can create information
from nothing.

Information theory quantifies this. The mutual information I(X; Y)
between features X and target Y bounds predictive performance. If
this mutual information is low, even the best algorithm achieves low
accuracy.

What This Does Not Mean

These limits do not imply pessimism about machine learning. They tell
us what is impossible; they also tell us what is possible.

Humans face the same limits. We cannot learn from data that
contains no information. We cannot achieve perfect accuracy with noisy
labels. We are bounded by the same information-theoretic constraints. Humans face the same limits.

Information theory does not say
learning is impossible; it says what is
possible and what is not.

information theory 211

Yet humans achieve remarkable intelligence. Within the limits, ex-
traordinary things are possible. Information theory does not forbid
artificial intelligence; it clarifies what artificial intelligence can and
cannot do.

13.9 Looking Forward

We have traced information theory from Shannon’s original question—
how to communicate reliably—through compression, physics, inference,
and now learning. The same mathematical structures appear in wildly
different contexts. Overfitting is not a flaw in our algorithms.

It is an information-theoretic necessity.
Finite data contains finite information;
we cannot extract more than is present.

The deep insight of this chapter: overfitting is not a bug in our
algorithms. It is the inevitable consequence of trying to learn from
finite data. When we memorize noise, we are not making a mistake—we
are encountering a fundamental limit on what data can tell us.

The limits are real, but they are not discouraging. They tell us what
to aim for. A system that approaches the information-theoretic limits
is doing as well as possible. We are not there yet—there is room to
improve.

And there is something beautiful in the unity we have discovered.
Compression and prediction are the same thing. Learning and commu-
nication are the same thing. The model that compresses data most is
the model that understands it best. We began asking how to communicate.

We end asking what can be known.
Information theory answers both: what
can be communicated reliably, and what
can be learned reliably, up to limits set
by the information the channel carries.

We began this book with Shannon’s question: how do we commu-
nicate reliably over noisy channels? We end with the same question
in a different form: how do we learn reliably from noisy experience?
Information theory gives the same answer to both: we can, but only
within limits set by the information the channel carries.

In our final chapter, we step back to survey the entire landscape. We
return to the question we began with—“What is information?”—now
armed with everything we have learned. We ask what information
theory tells us about physics, computation, and knowledge itself. And
we point toward frontiers where the story continues.

Historical note. The information bottleneck was introduced by Naftali Tishby, Fernando Pereira, and William Bialek in
1999, though it builds on earlier work by Tishby and others. Tishby (1952–2021) spent two decades developing connections
between information theory and learning. His 2015 work with Ravid Shwartz-Ziv proposing the “information plane”
interpretation of deep learning generated both excitement and controversy. PAC learning was introduced by Leslie
Valiant in 1984, work that contributed to his Turing Award. The PAC-Bayesian extension, connecting learning theory
to information measures, developed through the 1990s and 2000s, with key contributions from McAllester, Langford,
Shamir, and others. The double descent phenomenon was documented systematically by Belkin and colleagues in 2019,
though hints of it appeared earlier. The lottery ticket hypothesis was proposed by Frankle and Carlin in 2019. These
developments show that the connection between information theory and machine learning is not a historical curiosity but

212 claude opus 4.5

an active research frontier.

	What Is Information?
	Information Lives in Surprise
	The Guessing Game
	Telegrams and Economy
	The Gambler's Edge
	What Information Is Not
	The Unity Emerges
	The Name That Connects Two Worlds
	The Road Ahead

	Shannon Entropy
	What Should ``Information'' Even Mean?
	Backed Into a Corner
	Choosing Units
	What Entropy Means
	The Filing Cabinet
	Worked Examples with Actual Numbers
	The Algebra of Uncertainty
	A Mathematical Theory of Communication
	The Subjectivity of Uncertainty
	What Happens When You Flip a Coin Many Times
	A Glimpse of Things to Come
	Four Views of Entropy
	Looking Ahead

	Mutual Information and Communication Channels
	The Problem with Entropy Alone
	Mutual Information as Distance from Independence
	Conditional Entropy: What Remains Unknown
	Mutual Information Defined
	The Chain Rule in Depth
	Conditional Mutual Information: When Conditioning Helps or Hurts
	Information Diagrams for Three Variables
	The Wayward Translator
	The Binary Symmetric Channel
	The Binary Erasure Channel
	The Gaussian Channel
	The Data Processing Inequality
	A Mathematical Theory of Communication
	What Does ``Information Transfer'' Really Mean?
	Looking Forward: The Source Coding Theorem

	The Source Coding Theorem
	The Compressibility Question
	Why Entropy Appears: A First Bound
	Block Coding: Overcoming the Integer Barrier
	The Library of Babel
	Typical Sequences: The Heart of the Matter
	The Impossibility Proof: Why We Cannot Beat Entropy
	The Achievability Proof: Reaching the Entropy Bound
	A Worked Example: Compressing a Biased Coin
	Shannon and the Birth of Information Theory
	What If We Allow Errors? Rate-Distortion Theory
	What Does the Theorem Mean?
	From Theory to Practice

	The Art of Compression
	Huffman Coding: The Optimal Symbol-by-Symbol Code
	Arithmetic Coding: Escaping the Integer Trap
	A Metaphor: Addressing the Library
	Lempel-Ziv: Learning the Source
	Compression in Practice: What You Use Every Day
	Actual Numbers: Compression Ratios on Real Data
	What Compression Teaches Us
	From Compression to Noise

	Channel Capacity
	What Is Channel Capacity?
	The Binary Symmetric Channel
	The Binary Erasure Channel
	The Gaussian Channel
	Water-Filling for Parallel Channels
	The Historical Moment
	What Does Capacity Mean?
	Looking Ahead: The Coding Theorem

	The Noisy Channel Coding Theorem
	The Problem We Face
	The Converse: Why You Cannot Beat Capacity
	The Achievability: Shannon's Audacious Proof
	Understanding Joint Typicality
	A Complete Worked Example
	The Beautiful Symmetry
	The Fifty-Year Quest
	What the Theorem Really Means
	Extensions and Caveats
	Looking Ahead

	Error-Correcting Codes
	Repetition: The Brute-Force Approach
	Parity Checks: The Idea of Structured Redundancy
	Hamming Codes: The First Elegant Construction
	Linear Codes: A General Framework
	The Sphere-Packing Bound
	Beyond Single Errors
	The Modern Breakthrough
	A Complete Worked Example
	What Codes Teach Us
	Looking Ahead

	Information and Thermodynamics
	Boltzmann's Revolution
	The Gibbs Entropy
	Maximum Entropy and the Boltzmann Distribution
	Shannon Equals Boltzmann
	The Second Law as Information Loss
	Worked Examples with Numbers
	E.T. Jaynes and the Maximum Entropy Perspective
	Three Giants: Boltzmann, Gibbs, and Shannon
	What Does This Unity Mean?
	The Demon Awaits

	Maxwell's Demon and the Cost of Computation
	A Very Observant Being
	Szilard's Engine and the Bit
	Landauer's Principle: The Cost of Forgetting
	Bennett's Resolution: Exorcising the Demon
	Reversible Computation
	The Demon in the Laboratory
	Implications for the Future of Computing
	The Century-Long Debate
	Information and Reality
	From Demons to Inference

	Information and Inference
	The Detective's Problem
	Mutual Information as Expected Information Gain
	The Maximum Entropy Principle
	KL Divergence: The Price of Wrong Beliefs
	Fisher Information and the Limits of Precision
	Information in Hypothesis Testing
	Historical Development
	From Information to Learning

	Minimum Description Length
	The Two-Part Code
	What Goes Into Description Length?
	The Bayesian Connection
	Normalized Maximum Likelihood
	Kolmogorov Complexity: The Ultimate Limit
	A Worked Example: Detecting the True Model
	MDL and Information Criteria
	Compression as Understanding
	Looking Forward

	Information-Theoretic Limits on Learning
	The Communication Channel of Experience
	The Information Bottleneck
	PAC-Bayesian Bounds
	Generalization Through an Information Lens
	Sample Complexity
	Deep Learning and the Information Plane
	The Double Descent Puzzle
	What Cannot Be Learned
	Looking Forward

